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Abstract
Spatial-temporal k-anonymity has become a mainstream approach among techniques for

protection of users’ privacy in location-based services (LBS) applications, and has been

applied to several variants such as LBS snapshot queries and continuous queries. Analyz-

ing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In

this paper, we propose two location prediction methods based on transition probability

matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First,

we define single-step sequential rules mined from sequential spatial-temporal k-anonymity

datasets generated from continuous LBS queries for multiple users. We then construct tran-

sition probability matrices from mined single-step sequential rules, and normalize the transi-

tion probabilities in the transition matrices. Next, we regard a mobility model for an LBS

requester as a stationary stochastic process and compute the n-step transition probability

matrices by raising the normalized transition probability matrices to the power n. Further-

more, we propose two location prediction methods: rough prediction and accurate predic-

tion. The former achieves the probabilities of arriving at target locations along simple paths

those include only current locations, target locations and transition steps. By iteratively com-

bining the probabilities for simple paths with n steps and the probabilities for detailed paths

with n-1 steps, the latter method calculates transition probabilities for detailed paths with n

steps from current locations to target locations. Finally, we conduct extensive experiments,

and correctness and flexibility of our proposed algorithm have been verified.

Introduction
With the rapid development in mobile communication and the popularity of positioning devices
(e.g. Global Position System, GPS), LBS are widely used because of simplification in computing
[1]. However, the deployment of LBS would bring privacy problems (e.g., employers snoop
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whereabouts of the staff, stalkers attack user trajectories to find out their religion, sex orientation,
etc.) if used illegally, which has raised great attention from academia to business circle [2][3].

Early research on privacy protection for LBS users put emphasis on establishment of laws
and treaties. While this research lacks flexibility, and has lagged behind attack technologies,
some new technologies have been put forward. For instance, the use of hierarchical clustering
[4], dummies [5][6], spatial transformation based on the Hilbert curve [7], private information
retrieval (PIR) protocols [8] and spatial-temporal k-anonymity [9]. Spatial-temporal k-ano-
nymity has become a mainstream privacy protection method for LBS users due to its simplifi-
cation and various applications.

Furthermore, the basic principle of cloaking a requestor’s identification as well as accurate
time and position information has inspired several variants on the original method [10].

As spatial and temporal properties are most important elements of spatial-temporal k-anonym-
ity datasets (hereafter referred to as anonymity datasets), anonymity datasets can be formatted into
a number of sequences of generalized regions. Analyzing large-scale anonymity datasets recorded
and stored by LBS providers (such as Google Maps, Foursquare, BaiduMaps, etc.), can achieve a set
of sequential rules reflecting LBS issuers’movement behaviors. Furthermore, the sequential rules
can be utilized to predict locations of future users, and provide assist decision support functions for
LBS applications, such as intelligent navigation systems, personalized service systems, and so on
[11][12]. Unfortunately, location prediction simply based on sequential rules does not perform well,
as the prediction can only be single step, that is, the prediction only includes one source and one
destination. Amore practical location prediction method (such as multistep, etc.), is urgently
needed in applications. To our knowledge, there is little literature that focuses on this subject by far.

In this paper, based on sequential rules mined from large-scale anonymity datasets, we pro-
pose two location prediction methods. Simultaneously, privacy attack problems that may result
from our proposed location prediction methods are also analyzed.

The rest of this paper is organized as follows. Preliminary work is described in Section 2.
Two location prediction methods based on preprocessing sequential rules from anonymity
datasets are presented in Section 3. Comprehensive experiments are conducted in Section 4,
and the results are analyzed. Section 5 concludes the paper and discusses further work.

Preliminaries
In this section, the basic concepts of LBS queries and the primitives of LBS privacy are intro-
duced. Examples of anonymity datasets adopted by a typical method of spatial-temporal k-ano-
nymity are also presented.

LBS query
A location service can be defined as a service that integrates the location of an LBS user with
other information to provide added value to the user. Applications are designed by adopting
two modes: push and pull [13]. Furthermore, there are two types of pull services, namely snap-
shot queries such as “recommend 10 nearby restaurants based on my profile”, and continuous
queries such as “continually tell me the shopping mall nearest my location”. For a snapshot
query, an LBS user only needs to report their current location to the service provider once to
obtain the desired information. On the other hand, for a continuous query, an LBS user has to
continually report their location to the service provider in a periodic or on-demand manner to
obtain the desired results[14]. Additionally, in a continuous query, a consistent user identity
(or pseudo-identifier) is used until the query expires, that is, LBS providers can link requests
issued by the same (anonymous) user at different times in chronological order to obtain a
sequence of requests.
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Primitives of LBS privacy
Privacy is an essential requirement for providing LBS, and can be grouped into two categories:
identity and sensitive information [2]. Identity of each individual is unique which distinguishes
an individual from a group of individuals (i.e., a security identifier or SID). Sensitive informa-
tion consists of location and request content. Location privacy is the tracks of individuality or a
group of people, which includes coordinates, landmarks, etc. Semantic location privacy is an
instance of privacy regarding sensitive semantic information, for example, hospitals, religious
buildings, and so on. Request content privacy involves sensitive attribute information, such as
disease, salary, religion, and so on. It is worth noting that identity privacy can be associated
with sensitive information privacy to cause more severe privacy invasion.

Spatial-temporal k-anonymity
Spatial-temporal k-anonymity is a branch of the k-anonymity method, which is an obfuscation
technique. Based on spatial-temporal k-anonymity, a query request submitted to LBS providers
does not only contributed by the identity and location of LBS users, but also at least k pseudo-
nyms of the users, including the requestor and others nearby, and a cloaking region enclosing the
locations of the k (or more) LBS users. Thus, given a query request, an anonymity dataset is gen-
erated, consisting of at least k pseudonyms and a cloaking region. Consequently, identity privacy
is protected by replacing the identities of requestors with pseudonyms, and location privacy is
protected by replacing accurate locations of query requestors with cloaking regions. Furthermore,
as an anonymity dataset includes at least k pseudonyms and a cloaking region, the association
between pseudonyms and the cloaking region can be prevented at a certain degree. Likewise, the
association between pseudonyms and the content of the request can also be avoided, as any pseu-
donym within the anonymity dataset may have issued the query request.

Spatial-temporal k-anonymity and its optimized versions are widely used in LBS snapshot
queries and continuous queries [2]. To better understand the follow-up analysis of anonymity
datasets, we present an example workflow of generating an anonymity dataset adopted by the
modified adaptive-interval cloaking algorithm [9].

First, we present the basic definitions of an anonymity dataset for an LBS snapshot query
SnAS = hUP,CR,TCi, where UP = hU1,U2,. . .,Uki represents a set of k user pseudonyms, CR =
hCell1,Cell2,. . .,Cellmi represents a cloaking region that includes m grid cells enclosing the loca-
tions of the k users, and TC = hTI1,TI2,. . .,TIni represents temporal cloaking with n time inter-
vals of equal duration. Moreover, the time intervals hTI1,TI2,. . .,TIni provide very little
temporal information, that is, SnAS is a temporally-ordered sequence without a specified time.

Fig 1 presents an example of an anonymity dataset for an LBS snapshot query, where
SnAS = hhU11,U12,U13,U14,U15,U16,U17,U18,U19,U26,U27,U28i,hCell22,Cell23,Cell33i,h1ii. We set
k = 10, and for the sake of simplicity, we set the number of temporal cloaking to be 1.

Based on the definitions of anonymity datasets for a snapshot query, we define an anonym-
ity dataset for an LBS continuous query as, CoAS = hSnAS1,SnAS2,. . .,SnASsi where SnASi(1�
i� s) represents an anonymity dataset for a snapshot query. In this paper, we focus on ano-
nymity datasets for LBS continuous queries. Fig 2 presents an example of an anonymity dataset
for an LBS continuous query, where CoAS = hSnAS1,SnAS2,SnAS3,SnAS4i,

SnAS1 ¼ hhU11;U12;U13;U14;U15;U16;U17;U18;U19;U26;U27;U28i; hCell22;Cell23;Cell33i; h1ii;
SnAS2 ¼ hhU3;U4;U5;U6;U8;U14;U15;U16;U17;U18i; hCell15;Cell16;Cell26i; h2ii;
SnAS3 ¼ hhU11;U12;U13;U14;U22;U23;U24;U25;U26;U27;U28i; hCell27;Cell37;Cell38i; h3ii;
SnAS4 ¼ hhU1;U2;U7;U8;U9;U10;U11;U14;U17;U19i; hCell112;Cell211;Cell212i; h4ii:
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Finally, as we deal only with spatial-temporal properties of anonymity datasets, an anonym-
ity dataset for an LBS continuous query can be denoted more briefly as

CoAS
0 ¼ hSnAS1 0 ; SnAS2 0 ; SnAS3 0 ; SnAS4 0 i; SnAS1

0 ¼ hhCell1;Cell2; . . . ;Cellm1i; hTI1;TI2; . . . ;TIn1ii;
SnAS2

0 ¼ hhCell1;Cell2; . . . ;Cellm2i; hTI1;TI2; . . . ;TIn2ii;
SnASs

0 ¼ hhCell1;Cell2; . . . ;Cellmsi; hTI1;TI2; . . . ;TInsii:

In the case of the anonymity dataset in Fig 2, the simplified notation is as follows:

CoAS
0 ¼ hSnAS1 0 ; SnAS2 0 ; SnAS3 0 ; SnAS4 0 i; SnAS1

0 ¼ hhCell22;Cell23;Cell33i; h1ii;
SnAS2

0 ¼ hhCell15;Cell16;Cell26i; h2ii; SnAS3
0 ¼ hhCell27;Cell37;Cell38i; h3ii;

SnAS4
0 ¼ hhCell112;Cell211;Cell212i; h4ii:

Fig 1. Example of an anonymity dataset for an LBS snapshot query.

doi:10.1371/journal.pone.0160629.g001

Fig 2. Example of an anonymity dataset for an LBS continuous query.

doi:10.1371/journal.pone.0160629.g002

Location Prediction for Spatial-Temporal K-Anonymity Dataset

PLOS ONE | DOI:10.1371/journal.pone.0160629 August 10, 2016 4 / 22



Location prediction method
In this section, two location prediction methods are proposed. Either follows 5 phases:

1. Mining sequential rules from anonymity datasets for LBS continuous queries;

2. Constructing transition probability matrices from the mined sequential rules;

3. Normalizing the transition probabilities in the transition probability matrices;

4. Computing n-step transition probability matrices by raising the normalized transition prob-
ability matrices to the power n;

5. Designing a rough location prediction method and an accurate location prediction method
based on the n-step transition probability matrices.

Mining sequential rules from anonymity datasets for LBS continuous queries
Prediction is an important type of data mining technology, and discovering temporal relation-
ships in sequences of discrete events stored in large databases can help with the prediction of
events[15]. Sequential patterns in sequences of events can reflect temporal relationships even
without a specified time between events, and mining sequential patterns has become a popular
technique for prediction. Meanwhile, as a sequential pattern only indicates that a sequence of
events appears frequently in a database, it is not sufficient for the prediction of events. Thus,
the concept of a sequential rule, also called a prediction rule, was proposed in [16].

A sequential rule has the form X! Y, where X and Y are two sets of events. X! Y is inter-
preted to mean “if events X appear, the events Y are likely to occur afterward with a given confi-
dence value or probability”. Events X and events Y occur in succession frequently within a single
sequence. A sequential rule typically has twomeasures of significance: support and confidence. The
support of a sequential rule is here defined as the number of sequences where the left part occurs
before the right part, divided by the number of sequences; the confidence of a rule is the number of
sequences where the left part occurs before the right part, divided by the number of sequences
where the left part occurs. For example, for a sequential rule X! Y, the support value and the
confidence value of the sequential rule are respectively formulated as follows: seqsup(X! Y) =
seqsup(X [ Y)/|D| and seqconf(X! Y) = seqsup(X [ Y) / seqsup(X), where |D| is the number of
sequences in a sequence databaseD, seqsup(X) is the number of sequences inD where X occurs,
and seqsup(X [ Y) is the number of sequences inDwhere Y occurs after X. Neither seqsup(X! Y)
nor seqconf(X! Y) are less than the user-defined thresholds seqsupmin and seqconfmin.

In this paper, we focus on spatial-temporal properties of anonymity datasets. Sequential
rules mined from large-scale historical anonymity datasets generated by LBS continuous que-
ries can be used to make location prediction for LBS users. In particular, a sequential rule of the
form A! B with the confidence seqsconf(A–> B) may indicate that, if an LBS user issued a
continuous query and presented an anonymous request in grid cell A, then with the confidence
seqsconf(A! B) (s)he will continue to present an anonymous request in grid cell B. That is,
sequential rules mined from anonymity datasets can reflect the movement regularity of LBS
users among a series of grid cells. Table 1 presents a sample of sequential rules mined from
anonymity datasets generated by LBS continuous queries.

Constructing n-step transition matrices by normalizing the confidence
values of sequential rules
From a statistical standpoint, a mobility model for an LBS requester can be viewed as a
stationary stochastic process [17]. Each movement of LBS users among a series of grid cells can
be regarded as a discrete Markov process {Xn,n2T}, where T is a discrete time set (e.g., T =
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{1,2,. . .}), the random variable X represents the location of an LBS user who requests an
anonymous continuous query, and Xn represents the value of random variable X at time n (here,
Xn represents the grid cell where the LBS user is located at time n). We refer to Xn as a state and
call I = {i1,i2,i3. . .im}, the set of all possible states of Xn, the state space of Xn. I can be achieved by
counting of the number of distinguished grid cells appearing in the left and right parts of the
sequential rules mined from large-scale historical anonymity datasets generated by LBS continu-
ous queries. In the case of the collection of sequential rules in Table 1, I = {A,B,C,D,E,F}.

For any given n 2 T, i0,i1. . .in+12 I, the discrete Markov process {Xn,n2T} is called a 1-order
Markov chain if the following formula holds: P{Xn+1 = in+1 | X1 = i1,X2 = i2,. . .,Xn = in} = P{Xn+1 ==
in+1 | Xn = in}, where P{Xn+1 = in+1 | X1 = i1,X2 = i2,. . .,Xn = in} is the conditional probability of
Xn+1 = in+1 given X0 = i0, X1 = i1,. . .,Xn = in, and P{Xn+1 == in+1 | Xn = in} is the conditional proba-
bility of Xn+1 = in+1 given Xn = in. That is, a 1-order Markov chain {Xn,n2T} can be characterized as
memoryless: the next state Xn+1 = in+1 depends only on the current state Xn+1 = in+1 but not on the
sequence of events that preceded it. In the case of sequential rules mined from anonymity datasets,
the memoryless means that the future grid cell at which an LBS user arrives is independent of all
but the most recent grid cell.

The conditional probability P{Xn+1 == i | Xn = j}, i, j 2 I can also be taken as a one-step
transition probability from state i to state j, which is denoted by pij. In statistical significance,
pij is consistent with the confidence value of the sequence rule of the form i! j. Based on all
one-step transition probabilities that corresponding to the sequential rules, a transition matrix

P ¼

(
p11 p12 . . . p1m

p21 p22 . . . p2m

. . . . . . . . . . . .

pm1 pm2 . . . pmm

)
can be constructed, where the dimensionm is equal to the

number of states in the state space I. Continuing with the sequential rules in Table 1, the gen-

erated transition matrix is: P ¼

A B C D E F

A 0 0:2 0:5 0:2 0 0

B 0 0 0:7 0 0:3 0

C 0 0 0 0:1 0 0:6

D 0 0 0 0 0 0:9

E 0 0 0 0 0 0:8

F 0 0 0 0 0 0

2
66666666666664

3
77777777777775
.

Table 1. Sample of sequential rules mined from anonymity datasets generated by LBS continuous
queries.

No. Rules seqconf

1 A->B 0.2

2 A->C 0.5

3 A->D 0.2

4 B->C 0.7

5 B->E 0.3

6 C->D 0.1

7 C->F 0.6

8 D->F 0.9

9 E->F 0.8

doi:10.1371/journal.pone.0160629.t001
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However, the transition matrix must be normalized so that the condition
X
j2I

pij ¼ 1; i 2 I

holds. For example, for given i = A, i 2 {A,B,C,D,E,F},
X
A

pAj must be equal to 1, whileX
A

pAj = pAA + pAB + pAC + pAD + pAE + pAF = 0 + 0.2 + 0.5 + 0.2 + 0 + 0 = 0.9.

The normalization formula of pij is pij
‘ ¼ pij=

X
j2I

pij, pAi
‘ ¼ pAi=

X5

i¼1

pAi. Then, we get

p
0
AA ¼ 0, p

0
AB ¼ 0:2222, p

0
AC ¼ 0:5556, p

0
AD ¼ 0:2222, p

0
AE ¼ 0 and p

0
AF ¼ 0. We refer to a transi-

tion matrix with normalized transition probabilities as a one-step transition matrix, and denote
by P(1) the result corresponding to P0.

In addition, the normalized probabilities are time-invariant. One reason for this is that the
confidence values of the sequential rules mined from large-scale historical anonymity datasets
generated by LBS continuous queries essentially reflect routine behaviors of a large number of
LBS users. On the other hand, sequential rules only reflect temporally-ordered relationships
between routine behaviors without specifying times. That is, LBS users follow a common route
regardless of when they move. Hence, the Markov chain {Xn,n2T}, which corresponds to the
movement of LBS users among a series of grid cells, can also be characterized as time-invariant,
and further P(1) can be considered to be independent of n. Furthermore, we can obtain the n-
step transition matrix P(n) from P(1) using the formula P(n) = (P(1))n. The maximum value of n
can be determined from the conditions that P(n) is not a zero matrix and that n is less than the
length of the longest sequence of LBS anonymity datasets. Here, by raising P(1) to an appropri-
ate power, we obtain P(2), P(3), and P(4) as follows:

Pð1Þ ¼

A B C D E F

A 0 0:2222 0:556 0:2222 0 0

B 0 0 0:7 0 0:3 0

C 0 0 0 0:1429 0 0:8571

D 0 0 0 0 0 1

E 0 0 0 0 0 1

F 0 0 0 0 0 0

2
6666666666666666666664

3
7777777777777777777775

; Pð2Þ ¼

A B C D E F

A 0 0 0:1555 0:0794 0:0667 0:6984

B 0 0 0 0:1000 0 0:9000

C 0 0 0 0 0 0:1429

D 0 0 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 0 0 0

2
6666666666666666666664

3
7777777777777777777775

;

Pð3Þ ¼

A B C D E F

A 0 0 0 0:0222 0 0:2794

B 0 0 0 0 0 0:1000

C 0 0 0 0 0 0

D 0 0 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 0 0 0

2
6666666666666666666664

3
7777777777777777777775

; Pð4Þ ¼

A B C D E F

A 0 0 0 0: 0 0:0222

B 0 0 0 0 0 0

C 0 0 0 0 0 0

D 0 0 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 0 0 0

2
6666666666666666666664

3
7777777777777777777775

:
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Prediction for arriving at a target location based on n-step transition
matrices

Rough prediction. This prediction consists of three main phases:
First, we specify a grid cell as the target location. Continuing the examples of sequential

rules in Table 1, we assume that the grid cell represented by F is the target location.
Second, from the n-step transition matrix, we directly derive paths along which LBS users

can arrive at the target location with specified probabilities. As the paths only include the target
location and the grid cell ("begin location" for short) where the LBS users are when they begin
to move, we denote these paths as simple paths. Based on the transition matrices P(1) * P(4),
we obtain all simple paths by ascending number of steps as shown in Table 2.

Finally, by matching the grid cell ("current location" for short) where an LBS user is cur-
rently with all simple paths, we can make a location prediction for LBS users’ arriving at the
target location. In the case of the simple paths in Table 2, the location prediction results are
shown in Table 3. For example, when an LBS user appears in grid cell A, three predictions
(indicated by the shaded entries) can be performed. In particular, after leaving the grid cell A,
the LBS user has the three probability values 0.6984, 0.2749 and 0.0222 for arriving at the target
location F through 2-, 3-, and 4-step transitions respectively. Likewise, location prediction can
be performed when LBS users occupy grid cells B, C, D and E.

As can be seen in Table 3, the transitions from the current location to the target location can
be classified as either single step or multistep. For single step transitions, the paths that LBS
users follow are shown clearly. In particular, after leaving their current location, an LBS user
arrives directly at the target location. For example, after leaving grid cell C, an LBS user arrives
directly at the target location F with probability 0.8571.

Table 2. Simple paths for arriving at a target location F.

Steps Begin location Probability Target location

1 D 1 F

C 0.8571

E 1

2 A 0.6984

B 0.9000

C 0.1429

3 A 0.2749

B 0.10000

4 A 0.0222

doi:10.1371/journal.pone.0160629.t002

Table 3. Rough prediction for arriving at a target location F.

Current location Steps Probability Target location

A 2 0.6984 F

3 0.2749

4 0.0222

B 2 0.9000

3 0.10000

C 1 0.8571

2 0.1429

D 1 1

E 1 1

doi:10.1371/journal.pone.0160629.t003
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However, for multistep transitions, we find that the simple paths that LBS users follow
include one or more intermediate locations, but these intermediate locations are unknown, so
the detailed path between the current location and the target location cannot be investigated.
For example, LBS users currently in grid cell C arrive at the target location F with probability
0.1429 through a 2-step transition. This simple path certainly includes one intermediate loca-
tion, but we cannot know the intermediate location. If there are several options for the interme-
diate location, then the simple path actually contains several detailed paths, and the probability
0.1429 is the sum of the probabilities for those detailed paths. In many practical applications, it
is significant to know these detailed paths to predict future movements of the LBS users [18].

Accurate prediction. We propose a method of calculating probabilities for detailed paths to
make accurate location predictions. The principle of calculating transition probabilities for detailed
paths is to iteratively calculate the probabilities for detailed paths with (S+1) steps by combining the
probabilities for detailed paths with n−1 steps and the probabilities of simple paths with n steps.

The pseudo code for calculating transition probabilities for detailed paths is given below.
Algorithm 1: R: CalcuDetailPath(L,TL)
Input: L, a linked list of 1- to n-step transition matrices; TL, a target
location.
Output: R, a linked list of detailed paths with one to n transition steps.
1. { P(1) = L.Get(1);

2. Rð1Þ
simp in ¼ Pð1Þ:GetArriveðTLÞ;

3. Rð1Þ
Detail in ¼ Rð1Þ

simp in;

4. R:addðRð1Þ
Detail inÞ;

5. CalcuDetailPathIðL;TL;Rð1Þ
Detail in; 1;RÞ;

6. Return R;
7. }
Algorithm 2: CalcuDetailPathI(L,TL,RExac_in,S,refR)
Input: L, a linked list of 1-step to n-step transition matrices; TL, a target
location; RDetail_in, a linked list of detailed paths with S-step transition
steps; S, the transition steps in the current iteration; R, a parameter
passed by reference, which represents a linked list of detailed paths with
one to S transition steps.
Output: null.
1. { P(S+1) = L.Get(S + 1);

2. RðSþ1Þ
simp in ¼ PðSþ1Þ:GetArriveðTLÞ;

3. For ði ¼ 1; i<=RðSþ1Þ
simp in � count; i++Þ

4. { ðESþ1 ¼ RðSþ1Þ
simp in � GetðiÞ � firstStateÞ;

5. For (j = 1; j� RDatai_in�count;j++)
6. { prob1 = RDetai_in�Get(j)�probValue;
7. ES = RDetai_in�Get(j)�FirstState;
8. If (P(1)�Exist(ES+1,ES))
9. {Prob2 = P(1)�ProbValue(ES+1,ES);
10. RðSþ1Þ

Detai in � addprobðprob1 � prob2Þ;
11. Subs ¼ RðSþ1Þ

Detai in � GetðjÞ � Subs;
12. RðSþ1Þ

Detai in � addPathðESþ1; SubsÞ;
13. }//end if
14. }//end for
15. }//end for

16. RDetai in ¼ RðSþ1Þ
Eetai in;

17. R�add(RDetai_in);
18. S++;
19. If (S� L�count)
20. CalcuDetaiPathI(L,TL,RDetai_in,S,R);
21. }

Location Prediction for Spatial-Temporal K-Anonymity Dataset
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Algorithm 1 is the main procedure. Lines 1~4 are the initialization, where the simple paths
with one transition step are obtained from P(1); line 5 calls the sub-procedureAlgorithm 2 to obtain
a linked list of detailed paths with one to n transition steps; line 6 returns the final result R.

Algorithm 2 performs recursive operations. Line 1 takes an (S+1)-step transition matrix

P(S+1) from a linked list of transition matrices L; line 2 obtains the simple paths RðSþ1Þ
simp in with one

transition step from P(S+1); lines 3~15 combine RðSþ1Þ
simp in with the passed parameter RDetai_in to

obtain the detailed paths with (S+1) steps; line 8 checks for the state pair (ES+1,ES), and line 10
calculates the probabilities for all detailed paths in RðSþ1Þ

Detai in
; lines 16~17 assign RðSþ1Þ

Detai in
to RDetai_in;

lines 18~19 check whether (S+2) is greater than the number of steps in the linked list L; line 20
passes RDetai_in for the next recursive call of procedure CalcuDetailPathI.

Next, we present the flowchart for the two algorithms and accurate location prediction
based on the detailed paths obtained. The flowchart is depicted in Fig 3. The processes of the
workflow are described below.

(1) As in the rough prediction, we first specify a grid cell as the target location. We again
assume that grid cell F is the target location.

(2) From the (S+1)-step transition matrix, we directly obtain all simple paths and the proba-
bilities of arriving at F after (S+1) steps. Here, we obtain all simple paths with two steps from

P(2) and record them in Rð2Þ
simp in, so that R

ð2Þ
simp in = ([A! F], [B! F], [C! F]).

(3) Detailed paths with S steps are determined from the parameter passed by the previous
iteration or by the initialization. Here, we initialize to obtain detailed paths with one step

Rð1Þ
Detai in from simple paths with one step Rð1Þ

simp in obtained from P(1), so that Rð1Þ
Exac in = Rð1Þ

simp in =

([C! F], [D! F], [E! F]).
(4) Assemble the start locations of the simple paths and the start locations of the detailed

paths to obtain location pairs. For each start location of the detailed paths in Rð1Þ
Detai in and each

start location of the simple paths in Rð2Þ
simp in, we can obtain a location pair. For example, for the

detailed path ([C! F] and the simple path [A! F], we obtain the location pair [A! C]. Like-
wise, we can obtain other location pairs: [B! C], [C! E]. Furthermore, we obtain ([A! D],
[B! D], [C! D], [A! E], [B! E] and [C! E].

(5) Check to see whether there are location pairs in P(1) that place the start locations of the
simple paths at the head of the detailed paths to obtain new detailed paths with n transition
steps. Here, we obtain the location pairs [A! C], [A! D], [B! C] and [C! D], and the
new detailed paths [A! C! F], [A! C! F], [B! C! F] and [C! D! F].

(6) Multiply the probabilities of the location pairs by the probabilities of the detailed paths
with S steps to obtain probabilities for the detailed paths with (S+1) steps. Here, By multiplying
the probability 0.8571 for the detailed path [C! F] and the probability 0.5556 for the location
pair [A! C], we obtain the probability 0.4762 for the detailed path [A! C! F]. Similarly,
we obtain probabilities 0.2222, 0.59997, 0.3, and 0.1429 for the detailed paths [A! D! F],
[B! C! F], [B! E! F] and [C! D! F], respectively.

(7) Iterate to find detailed paths and probabilities for (S + 2) transition steps until the maximum

number of transition steps is reached. Here, we first obtain all simple paths Rð3Þ
simp in = ([A! F],

[B! F]) from P(3), then combine these with Rð2Þ
Detai in = ([A! C! F], [A! D! F], [B! C! F],

[B! E! F], [C! D! F]) in steps (2)~(6) and obtain Rð3Þ
Exac in = ([A! B! C! F],

[A! B! E! F], [A! C! D! F], [B! C! D! F]).

Furthermore, we can combine Rð3Þ
Detai in with Rð4Þ

simp in ¼ ½A ! F� to obtain Rð4Þ
Detai in = [A! B!

C! D! E]. Finally, we obtain all detailed paths and probabilities of arriving at F, as shown in
Table 4.
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Fig 3. Flowchart for making accurate location predictions based on the probabilities of detailed paths.

doi:10.1371/journal.pone.0160629.g003
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(8) From the detailed paths and probabilities, we can make accurate location predictions for
arriving at the target location. The accurate location prediction results are shown in Table 5. After
leaving grid cell B, an LBS user will arrive at the target location F with probability 0.59997 along the
detailed B, C,D [B! C! F], with probability 0.3 along the detailed path [B! E! F], and proba-
bility 0.10003 along the detailed path [B! C! D! F] (indicated by the shaded entries). Likewise,
accurate location prediction can be performed when LBS users start from grid cells A, C,D and E.

Experiments and Discussion

Data preparation
Simulated anonymity datasets for LBS continuous queries. Because spatial-temporal k-ano-

nymity and its variants have not been widely applied in business LBS systems, we adopt a software
system developed in the literature to simulate large-scale anonymity datasets for LBS continuous
queries fromGPS trajectories. Table 6 summarizes the basic characteristics of the simulated datasets.

Sequential rules & n-step transition matrix. We adopt the RuleGrowth algorithm in
SPMF [19] to mine sequential rules from simulated anonymity datasets. The parameters seq-
supmin and seqconfmin are set to be 0.02 and 0.24, respectively. The 18 mined sequential rules
are given in Table 7.

Table 4. Detailed paths for arriving at the target location F.

Steps Current location Detailed path Probability Target location

1 D D->F 1 F

C C->F 0.8571

E E->F 1

2 A A->C->F 0.4762

A->D->F 0.2222

B B->C->F 0.59997

B->E->F 0.3

C C->D->F 0.1429

3 A A->B->C->F 0.1333

A->B->E->F 0.0666

A->C->D->F 0.0794

B B->C->D->F 0.10003

4 A A->B->C->D->F 0.0222

doi:10.1371/journal.pone.0160629.t004

Table 5. Accurate prediction for arriving at the target location F.

Current location Steps Detailed path Probability Target location

A 2 A->C->F 0.4762 F

A->D->F 0.2222

3 A->B->C->F 0.1333

A->B->E->F 0.0666

A->C->D->F 0.0794

4 A->B->C->D->F 0.0222

B 2 B->C->F 0.59997

B->E->F 0.3

3 B->C->D->F 0.10003

C 1 C->F 0.8571

2 C->D->F 0.1429

D 1 D->F 1

E 1 E->F 1

doi:10.1371/journal.pone.0160629.t005
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Table 6. Basic characteristics of simulated anonymity datasets for LBS continuous queries.

Parameter Value

Number of sequences 490

Maximum number of cloaking regions in a single sequence 38

Minimum number of cloaking regions in a single sequence 2

Avg. number of cloaking regions for all sequences 19.8

Minimum number of time intervals(h) in a single sequence 1

Maximum number of time intervals (h) in a single sequence 12

Range of each cell of cloaking regions (m2) 105*88

Number of cells contained by all cloaking regions 692

doi:10.1371/journal.pone.0160629.t006

Table 7. Sequential rules mined from simulated anonymity datasets for LBS continuous queries.

No. Sequential rule Confidence value

1 D->M 0.3023

2 A->E 0.2619

3 B->E 0.2703

4 C->E 0.2500

5 D->E 0.2791

6 F->E 0.2424

7 D->N 0.2558

8 H->E 0.3125

9 E->I 0.3182

10 F->I 0.2424

11 G->I 0.2608

12 O->N 0.2537

13 H->I 0.3125

14 J->I 0.2500

15 P->N 0.2821

16 K->N 0.2500

17 K->I 0.3250

18 L->I 0.2439

doi:10.1371/journal.pone.0160629.t007

Table 8. Rough predictions for arriving at the target location I.

Current location Steps Probability Target location

A 2 1 I

B 2 1

C 2 1

D 2 0.3333

E 1 1

F 1 0.5

2 0.5

G 1 1

H 1 0.5

2 0.5

J 1 1

K 1 0.5652

L 1 1

doi:10.1371/journal.pone.0160629.t008
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By normalizing the confidence values of the 18 mined sequential rules, we obtain the one-
step transition matrix Psimu

(1), and further calculate the 2-step transition matrix Psimu
(2).

Pð1Þ
simu ¼

A B C D E F G H I J K L M N O P

A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0:3333 0 0 0 0 0 0 0 0:3611 0:3056 0 0

E 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

F 0 0 0 0 0:5 0 0 0 0:5 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

H 0 0 0 0 0:5 0 0 0 0:5 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0:5652 0 0 0 0 0:4348 0 0

L 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Pð2Þ
simu ¼

A B C D E F G H I J K L M N O P

A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0:3333 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0:5 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0:5 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Results and Discussion
Experiment 1. We specify the grid cell I as the target location, and derive simple paths for

arriving at I from Psimu
(1) and Psimu

(2) directly. Based on the simple paths, we make the rough
location predictions shown in Table 8. Furthermore, we obtain detailed paths using the algo-
rithm CalcuDetailPath, and make accurate location predictions based on the detailed paths.
The results are shown in Table 9 and are mapped onto geographic background datasets in
Fig 4.

Table 9. Accurate predictions for arriving at the target location I.

Current location Steps Detailed path Probability Target location

A 2 A->E->I 1 I

B 2 B->E->I 1

C 2 C->E->I 1

D 2 D->E->I 0.3333

F 2 F->E->I 0.5

H 2 H->E->I 0.5

doi:10.1371/journal.pone.0160629.t009

Fig 4. Mapping display of accurate location predictions on geographic background datasets.

doi:10.1371/journal.pone.0160629.g004
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Experiment 2. This experiment aims to verify the correctness of the proposed location
prediction methods. As mentioned above, we find that the accurate prediction method is
essentially an optimized version of the rough location prediction method. Thus, we only evalu-
ate the correctness of the accurate prediction method with the realprecisionmeasure. This mea-
sure is a direct measurement calculated as the number of correct predictions divided by the
total number of predictions. For example, for the detailed path [A! E! I], the realprecision
value is equal to the conditional probability P(A! E! I|A). The results of this experiment
are shown in Fig 5, from which we see that for the detailed paths [H! E! I], [F! E! I]
and [D! E! I], the realprecisionmeasure and the prediction probability are similar, while
for the detailed paths [A! E! I], [B! E! I] and [C! E! I], there are significant differ-
ences between the realprecision values and the prediction probabilities. Namely, the realpreci-
sion values are much lower than the prediction probabilities.

Fig 5. Comparison between real precision and location prediction probabilities.

doi:10.1371/journal.pone.0160629.g005
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Next, we analyze causes of this problem. According to the algorithm CalcuDetailPath, we
find that the prediction probabilities for the detailed paths [A! E! I], [B! E! I] and
[C! E! I] are products of the probabilities for the detailed path [E! I] and the location
pairs [A! E], [B! E] and [C! E] in Psimu

(1).
Furthermore, we find from Table 7 and Psimu

(1) that there are significant differences between
the confidence values and the normalized values for the sequential rules [A! E], [B! E],
[C! E] and [E! I]. Specifically, the confidence values are 0.2619, 0.2703, 0.2500, and 0.3182,
respectively, but the normalized values are all 1. We argue that reason is that the confidence
threshold seqconfmin for sequential rule mining is too large to allow the discovery of enough
sequential rules. Hence, we make the assumption that too large confidence threshold for
sequential rules may result in significant differences between the realprecision values and the
prediction probabilities for the detailed paths [A! E! I], [B! E! I], [C! E! I]. Next,
we further test this hypothesis with Experiment 3.

Experiment 3. First, we use the two lower confidence thresholds 0.2 and 0.22 to mine
sequential rules and obtain 104 sequential rules and 56 sequential rules respectively, among
which the sequential rules with start locations A, B, C, and E are shown in Table 10.

Table 10. Sequential rules with confidence thresholds 0.2 and 0.22 and start locations A, B, C, and E.

seqconfmin Begin Sequential rule Confidence value

0.2 A A->E 0.2619

A->I 0.2381

A->N 0.2381

A->M 0.2381

B B->E 0.2703

C C->E 0.2500

C->I 0.2273

E E->I 0.2353

E->N 0.2059

E->M 0.2059

0.22 A A->E 0.2619

A->I 0.2381

A->N 0.2381

A->M 0.2381

B B->E 0.2703

C C->E 0.2500

C->I 0.2273

E E->I 0.2353

doi:10.1371/journal.pone.0160629.t010

Table 11. Sequential rules with confidence thresholds 0.2 and 0.22 and normalized confidence values.

seqconfmin Sequential rule Confidence value Normalized value

0.2 A->E 0.2619 0.2683

B->E 0.2703 1

C->E 0.25 0.5238

E->I 0.2353 0.3636

0.22 A->E 0.2619 0.2683

B->E 0.2703 1

C->E 0.25 0.5238

E->I 0.2353 1

doi:10.1371/journal.pone.0160629.t011
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Next, we obtain normalized values for the confidence values of sequential rules (in
Table 10) of [A! E], [B! E], [C! E] and [E! I], which are shown in Table 11, and the
comparison of the differences between the confidence values and the normalized values is
shown in Fig 6. We see that differences decrease along with decreasing confidence thresholds
except in the case of the sequential rule [B! E].

Finally, by constructing n-step transition matrices and adapting the algorithm CalcuDetail-
Path, we obtain location prediction probabilities for the detailed paths [A! E! I], [B! E!
I], [C! E! I]. The comparison of varying proximities between location prediction probabili-
ties and realprecision values is shown in Fig 7.

We see that as the confidence threshold decreases, the location prediction probabilities for
six of the detailed paths are all closer to their corresponding realprecision values.

This experiment confirms our previous hypothesis from Experiment 2. Thus, we can con-
clude that proximity between location prediction probabilities and realprecision values for
detailed paths can be adjusted flexibly by setting different confidence thresholds for mining
sequential rules. That is, when users believe that the accuracy of the accurate prediction cannot

Fig 6. Comparison of differences between confidence values and normalized values for the sequential rules with confidence
thresholds 0.2, 0.22 and 0.24.

doi:10.1371/journal.pone.0160629.g006
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meet their requirements, they can obtain higher prediction accuracy by decreasing confidence
thresholds of mining sequence rules used to construct transition probability matrices.

Conclusion and future work
Because of its ease of implementation, spatial-temporal k-anonymity has become a mainstream
approach for protecting the privacy of LBS users. Analyzing large-scale anonymity datasets can
benefit some LBS applications. In this paper, we propose two location prediction methods for
the probabilities of arriving at specified locations based on transition probability matrices con-
structing from sequential rules for spatial-temporal k-anonymity dataset. By conducting exten-
sive experiments, we have verified the correctness and flexibility of our proposed methods.

However, because technologies are intent neutral, they harbor neither benevolent nor malev-
olent intent with respect to the individuals using them. Thus, our proposed location prediction
methods can also lead to substantial privacy threats. For example, target locations that are
regarded as privacy-sensitive regions, such as military zones, red-light districts, and so on, may
be susceptible to more menacing attacks, because the existing spatial-temporal k-anonymity

Fig 7. Comparison of varying proximities between location prediction probabilities and realprecision values for the sequential
rules with confidence thresholds 0.2, 0.22 and 0.24.

doi:10.1371/journal.pone.0160629.g007
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methods and its variants mainly concern the current and historical private information of LBS
users but not the future information [20]. Hence, in the future, we will study the capabilities and
limitations of those attacks methods to lay foundations for research into performance
optimization for spatial-temporal k-anonymity methods and its variants, thus helping data min-
ers and domain experts ensure that privacy-sensitive knowledge is released or accessible only to
trusted parties.
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