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A B S T R A C T

We present an “upstream analysis” strategy for causal analysis of multiple “-omics” data. It analyzes
promoters using the TRANSFAC database, combines it with an analysis of the upstream signal
transduction pathways and identifies master regulators as potential drug targets for a pathological
process. We applied this approach to a complex multi-omics data set that contains transcriptomics,
proteomics and epigenomics data. We identified the following potential drug targets against induced
resistance of cancer cells towards chemotherapy by methotrexate (MTX): TGFalpha, IGFBP7, alpha9-
integrin, and the following chemical compounds: zardaverine and divalproex as well as human
metabolites such as nicotinamide N-oxide.
ã 2016 The Author(s). Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

Cancer cells are currently subject of very intense studies of the
molecular mechanisms of cancerogenesis. Multiple “-omics” data
are generated worldwide measuring expression of proteins,
miRNAs and long non-coding RNAs of the cancer cells and, as
prerequisite, the epigenomic signatures of DNA methylation and
various modifications of chromatin. One of the most important
problems is to decipher the mechanisms how cancer cells develop
resistance against chemotherapy and search for possible ways to
suppress such resistance by interacting with specific molecular
targets. One of the important drugs currently widely used in cancer
therapy is methotrexate (MTX). Emergence of resistance to MTX of
various cancer cells is one of the most important problems in the
long-term application of this drug. Several authors compared MTX
resistant cells with sensitive cells and generated various sets of
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“-omics” data [1,2]. We focused our attention on the MTX resistant
cells of the colon cancer cell line HT29.

According to the classical view on the mechanism of resistance
to the chemotherapy, the resistant clones/lineages are already
present in the tumor tissue ab-initio (due to some randomly
occurring “favorite” mutations) and get proliferated during the
drug treatment while other cells die. However, more recently, a
different point of view gets more and more evidences that at least
in some cases the cancer cell populations experiencing transitions
from a sensitive state to the resistant state during and sometime as
a result of the treatment using various chromatin reprogramming
mechanisms [3,4]. In this paper we follow this novel point of view
and search for such specific reprograming mechanisms in the
cancer cells.

Methotrexate (MTX) is a folate antagonist, which kills the
proliferating cell by binding tightly to the enzyme dihydrofolate
reductase (DHFR). Due to this binding the pathway of de novo DNA
synthesis is blocked [1]. But continued administration to patients
often results in the emergence of drug-resistance [2]. The analysis
of the molecular mechanisms of the resistance can help to identify
the most promising targets to combat this resistance. Numerous
“-omics” studies on the molecular mechanisms of resistance offer
the possibility to mine these high-throughput data by applying
teomics Association (EuPA). This is an open access article under the CC BY-NC-ND
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computational tools and analyzing functions and regulation of the
involved genes. Such “-omics” data are often deposited in
databases such as ArrayExpress [5] or Gene Expression Omnibus
(GEO) [6], and derived sets of differentially expressed genes (DEG)
(expression signatures) can be found in more specialized databases
such as the Expression Atlas [7], the Mouse Expression Database
(GXD) [8] and others. These signatures can be used directly for
selection of potential drug targets using the mere statistical
significance of the expression changes. For a more refined analysis
of the molecular mechanisms a conventional approach of mapping
the DEG sets to Gene Ontology (GO) categories or to KEGG
pathways, for instance by GSEA (gene set enrichment analysis), is
usually applied [9,10].

Since such approach provides only a very limited clue to the
causes of the observed phenomena, we introduced earlier a novel
strategy, the “upstream analysis” approach for causal interpreta-
tion of the expression changes [11–13,18]. This strategy comprises
two major steps: (1) analysis of promoters and enhancers of
identified DEGs to identify transcription factors (TFs) involved in
the process under study; (2) reconstruction of signaling pathways
that activate these TFs and identification of master-regulators on
the top of such pathways. The first step is done with the help of the
TRANSFAC database [14] and site identification algorithms, Match
[15] and CMA [16]. The second step is done with the help of the
TRANSPATH database [17], one of the first signaling pathway
databases available, and special graph search algorithms imple-
mented in the geneXplain platform [18].

In this paper, we introduce two enhancements to the upstream
analysis approach. First, we add a new graph-weighting schema to
the algorithm of master-regulator search that enables to incorpo-
rate proteomics data by adding a “context protein” list that pushes
the graph search towards those nodes that are expressed in the
cell. The second improvement of the approach is an adding the
option to analyse TF binding sites in potential enhancer and
silencer areas of the genome that are inferred from overlapping
transcriptomics and epigenomics ChIP-seq data. These two
enhancements of our “upstream analysis” approach at present
open the possibility to perform multi-omics studies using the
geneXplain platform.

Our study revealed that the novel multi-omics “upstream
analysis” approach allows to identify a number of important
master regulators of MTX resistance. Among them are some that
are known to play essential roles as targets for anti-cancer drug
therapy and our results suggest them for the use as anti-resistance
targets. These targets were used in the final step of our analysis, i.e.
the identification of chemical compounds that have the potential
of inhibiting or activating these targets and consequently
suppressing the MTX resistance mechanisms.

In silico discovery of chemical compounds that are able to
inhibit or activate given molecular targets is one of the most
important problems in chemoinformatics. Most often such drug
discovery attempts involve the design of molecules that are
complementary in shape and charge to the target with which they
are supposed to interact. This usually relies on computational
molecular modeling techniques. This type of modeling is often
referred to as structure-based drug design [19]. In the current work
we used an alternative method called ligand-based drug design, or
(Q)SAR (Quantitative) Structure-Activity Relationships, which
relies on the knowledge of other molecules that bind to the
biological target of interest [20]. We are using one of the most
powerful instruments in this field, the computer program PASS,
which is based on Multilevel Neighborhoods of Atoms (MNA)
descriptors to consider the chemical structures of the known
ligands of the target of interest and Bayesian approach to estimate
the probability that new ligands interact with the same target
[21,22]. The PASS program was trained on more the 3500 different
molecular targets and can be used now to scan thousands and
millions of chemical compounds and find new potential ligands for
those targets.

In the current work we applied PASS for the identification of
chemical compounds that have the potential to be ligands for the
selected targets to combat the MTX resistance mechanisms.
Among the promising compounds we found some known drugs,
such as zardaverine and divalproex as well as human metabolites
such as nicotinamide N-oxide.

As a conclusion, we propose a novel combination of multi-
omics bioinformatics analysis with a systems biology approach to
the analysis of signaling networks for predicting drug targets and
with an advanced chemoinformatics approach for the identifica-
tion of potentially effective chemical compounds. This approach
was successfully applied to the analysis of cancer drug resistance
mechanisms.

The workflow of drug target identification is freely accessible
online on the geneXplain platform [23].

2. Data and methods

2.1. Microarray data, differential expression analysis

For the analysis of gene expression changes in MTX resistant
cells we took publicly available microarray data from Gene
Expression Omnibus (NCBI, Bethesda, MD, USA), data entry
GSE11440 [24]. The authors analyzed the transcriptome of the
colon cancer HT29 cells that were MTX-sensitive and compared
them to MTX-resistant cells generated from the same cell line. In
total 6 Affymetrix microarray experiments were done, 3 biological
replicates for the sensitive cells and 3 replicates for the resistant
cells.

Raw microarray data of MTX-resistant and sensitive cells, the
latter being used as control in our study, were normalized and
background corrected using RMA (Robust Multi-array Average).
The Limma (Linear Models for Microarray Data) method was
applied to define fold changes of genes and to identify the
statistically significantly expressed genes using a Benjamini-
Hochberg adjusted p-value cutoff (�0.05) [25].

2.2. Proteomics data

Proteomics data of the HT29 colon cancer cell line were
extracted from the PRIDE database (EBI, Hinxton, UK, http://www.
ebi.ac.uk/pride), with the project accession number PRD000369
(http://www.ebi.ac.uk/pride/archive/projects/PRD000369). The
data were generated and analyzed in the publication [26]. The
authors extracted proteins from different regions of multicell
tumour spheroids grown from HT29 colon carcinoma cells. They
used trypsin digestion iTRAQ 4-plex labeling, 2D separation using
OffGel (24 fractions) and RP nanoHPLC, MALDI TOF-TOF MS/MS
instruments to determine changes in protein expression across the
regions analysed. Authors identified proteins using Mascot
software version 2.2 (Matrix Science, U.K.), which compared MS/
MS generated data against the Swiss-Prot 2010 human protein
database containing 20473 sequences. They set Mascot search
parameters for Peptide mass tolerance at 100 ppm (ppm) and MS/
MS tolerance at �0.7 Da. Trypsin proteolysis (cleavage to the C-
terminal side of lysine and arginine except when proline is present)
was selected allowing for one missed proteolytic cleavage. A 95%
confidence threshold (p < 0.05) was used for searching the MS/MS
data, which corresponded to a Mascot score threshold of �28. We
took the list of proteins (with UniProt accession numbers) from
PRIDE (1107 unique accession numbers) and converted them into
Ensembl genes (1109 genes). No protein quantitative data were
used in our further analysis.

http://www.ebi.ac.uk/pride
http://www.ebi.ac.uk/pride
http://www.ebi.ac.uk/pride/archive/projects/PRD000369


A.E. Kel et al. / EuPA Open Proteomics 13 (2016) 1–13 3
2.3. Epigenomic data on CDK8 co-activator complex in colon cancer

CDK8 is a kinase associating with the mediator complex and is
often over-expressed in colorectal cancer [27]. We analyzed data
from a study investigating genome-wide localization of CDK8 in
human colorectal cancer cell line HT29. The data were extracted
from Gene Expression Omnibus (NCBI, Bethesda, MD, USA), data
entry GSE53602. In that study Genomic DNA was enriched by
chromatin immunoprecipitation (ChIP) and analyzed by Solexa
sequencing. ChIP was performed using an antibody against CDK8.
We have downloaded the NGS sequences from SRA repository
(http://www.ncbi.nlm.nih.gov/sra) and analyzed with the help of
the geneXplain platform. Only one biological replica of ChIP-seq
data was used here for the further analysis. The ChIP-seq sequence
reads were mapped to the human genome build hs19 with the use
of the genome mapper Bowtie [28] with default parameters. The
peak calling program MACS [29] (without control and with almost
all default parameters, except parameter “Enrichment ratio”,
which was set to value 5 in order to achieve higher number of
peaks) was applied then to the obtained alignments, which
returned 29,400 peaks of CDK8 complex binding in the whole
human genome.

2.4. Analysis of enriched transcription factor binding sites

Transcription factor binding sites in promoters of differentially
expressed genes were analyzed using known DNA-binding motifs
described in the TRANSFAC1 library, release 2014.4 (BIOBASE,
Wolfenbüttel, Germany) (http://genexplain.com/transfac). The
motifs are specified using position weight matrices (PWMs) that
give weights to each nucleotide in each position of the DNA binding
motif for a transcription factor or a group of them.

The geneXplain platform provides tools to identify transcription
factor binding sites (TFBS) that are enriched in the promoters
under study as compared to a background sequence set such as
promoters of genes that were not differentially regulated under the
condition of the experiment. We denote study and background sets
briefly as Yes and No sets. The algorithm for TFBS enrichment
analysis, called F-Match, has been described in [11,18] and briefly
described in the Supplementary materials (part S1).

In the geneXplain platform, such binding site enrichment
analysis is carried out as part of a dedicated workflow. We consider
for further analysis only those TFBSs that achieved a Yes/No ratio
>1 and a P-value < 0.01. The workflow further maps the matrices to
potential transcription factors, and generates visualizations of all
results. In the current work we have modified the workflow by
considering not only promoter sequences of a standard length of
1100 bp (�1000 to +100), but also sequences of potential enhancers
and silencers derived from combined transcriptomics and epi-
genomics data as it is described below. The error rate in this part of
the pipeline is controlled by estimating the adjusted p-value (using
Benjamini-Hochberg procedure) in comparison to TFBS frequency
found in randomly selected regions of human genome (adj.p-
value < 0.01).

2.5. Finding master regulators in networks

We searched for master regulator molecules in signal trans-
duction pathways upstream of the identified transcription factors
using geneXplain platform tools. The master-regulator search uses
the TRANSPATH1 database (BIOBASE) [17]. A comprehensive
signal transduction network of human cells is built by the software
on the basis of reactions annotated in TRANSPATH. The main
algorithm of master regulator search has been described earlier
[11] (see Supplementary material S2.1). The goal of the algorithm is
to find nodes in the global signal transduction network that may
potentially regulate the activity of the set of transcription factors
found at the previous step of analysis. Such nodes are considered as
most promising drug targets, since any influence on such a node
may switch the transcriptional programs of hundreds of genes that
are regulated by the respective TFs. In our analysis we have run the
algorithm with the maximum radius of 10 steps upstream of each
TF in the input set. Control of the error rate of this algorithm is done
by applying it 10000 times to randomly generated sets of input
transcription factors of the same size of the sets. Z-score and FDR
value of ranks is calculated then for each potential master regulator
node on the basis of such random runs (see detailed description in
[11]). We control the error rate by the FDR threshold 0.05.

In this paper we are introducing “Context algorithm” that
allows incorporation of proteomics data into the analysis of master
regulators. A brief description of the “Context algorithm” is done in
the Supplementary material (see document S2.3). The algorithm
encodes this additional context information as modified edge costs
in the signaling network. For instance, the proteomics data gives
information about proteins that are expressed in the cell. We call
them “context proteins”. The idea of the approach is to attract the
key node search (e.g. the underlying Dijkstra algortithm for
shortest paths) towards context proteins by decreasing the costs of
those edges that are close to the context proteins in the network.
(see Illustration of the algorithm in Fig. S1).

2.6. Search for chemical compounds targeting master regulators with
PASS

The PASS software (www.way2drug.com) aims to predict
biological activities of small organic drug-like compounds. The
acronym PASS stands for “Prediction of Activity Spectra for
Substances”. PASS uses 2D structural formulae of organic com-
pounds to simultaneously predict many types of biological
activities including such activities as inhibition of a number of
important cellular molecular targets. This allows the evaluation of
the biological activity profiles for compounds prior to their
synthesis and biological testing. The prediction algorithm of PASS
is based on Bayesian estimates of probabilities for a compound to
belong to the classes of “active” or “inactive”, respectively. The
mathematical method has been described in several publications,
most recently by Filimonov et al. [31]. The predicted activity
spectrum is presented in PASS by the list of activities, with
probabilities “to be active” Pa and “to be inactive” Pi calculated for
each activity. In PASS special descriptors, so called Multilevel
Neighborhoods of Atoms (MNA), are applied to describe the 2D
structural formulae of organic compounds. The molecular struc-
ture is represented in PASS by the set of unique MNA descriptors of
the 1st and 2nd levels. The details about MNA descriptors are
published in [21]. The current release of PASS (2014) is able to
predict more than 3800 different biochemical mechanisms of
action, such as inhibitors, antagonists or agonists of various protein
targets. The PASS program goes together with PharmaExpert – a
program for interpretation of PASS results and selecting com-
pounds with the required biological activities on the basis of
complex queries.

In this paper, we applied the PASS program to three libraries of
chemical compounds in order to find potential ligands for the
master regulators found at the previous step. We screened the
following three libraries: (1) Top 200 drugs prescribed in the
world. Among those 200 drugs, 153 are small organic compounds
with known structural formulae; (2) Prestwick chemical library
(http://www.prestwickchemical.com/prestwick-chemical-library.
html), which is a collection of “1280 small molecules, 100%
approved drugs (FDA, EMA and other agencies) selected by
medicinal chemists and pharmacists, thus presenting the greatest
possible degree of drug-likeness, selected for their high chemical

http://www.ncbi.nlm.nih.gov/sra
http://genexplain.com/transfac
http://www.prestwickchemical.com/prestwick-chemical-library.html
http://www.prestwickchemical.com/prestwick-chemical-library.html
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and pharmacological diversity as well as for their known
bioavailability and safety in humans”. (3) Human metabolites
collected in the HMDB, Human Metabolome Database, version 2.5.
SDF file with the structural formulae of metabolites is available for
download at http://www.hmdb.ca/downloads.

3. Results and discussion

Our strategy of multi-omics “Upstream Analysis” of regulatory
genomic regions comprises of two main step (1) a systematic and
comprehensive promoter and enhancer analysis on the basis of
transcriptomics (differentially regulated genes) and epigenomic
data (locations of regions of active chromatin) to identify
transcription factors (TFs) involved in regulation of the cellular
process under study, and (2) an analysis of the topology of the
signal transduction network upstream of transcription factors to
identify master regulators, which are signaling proteins in the cell
(receptors, their ligands, adapters, kinases, phosphatases, other
enzymes involved in signal transduction) that may regulate the
activity of transcription factors found in the first step of the
analysis. In order to validate this pipeline, previously, we had
analyzed a dataset of TNFa-induced genes in human endothelial
cells [33] and have demonstrated that our approach detects
correctly TNFa as the master regulator and explains activity of
other molecules from the TNFa pathway [11,18]. Also, we applied
this concept in previous studies and have revealed EGF and IGF2 as
regulators during liver tumor development that was experimen-
tally validated [32]. Another experimental validation of this
approach was done in our study of varicose vein disease (paper
in preparation) where we identified and confirmed experimentally
the MFAP5 gene as an important master regulator of the disease
process. These and several other currently running studies give us
the evidence for the high potential of the approach for the drug
target prediction.

3.1. Up- and down-regulated genes in MTX resistant cells

First of all, we identified up- and down-regulated genes from
the comparison of transcriptomics data of resistant versus
sensitive cells. We analyzed publicly available microarray data
[24] and applied Limma (Linear Models for Microarray Data) with a
Benjamini-Hochberg adjusted p-value cutoff (�0.05) to retrieve
differentially expressed genes (DEG). As result we identified 1951
up-regulated and 2185 down-regulated genes.

The up-regulated genes are enriched by the following GO
categories: oxidation-reduction process, lipid metabolic process,
purine deoxyribonucleotide metabolic process, dephosphoryla-
tion, negative regulation of cell adhesion, cell migration; pathways
(TRANSPATH, REACTOME): serotonin degradation, cholesterol
metabolism, release of active TGFbeta, metabolism of estrogens,
regulation of lipid metabolism by peroxisome proliferator-
activated receptor alpha (PPARalpha), extracellular matrix organi-
zation.

The down-regulated genes are in turn enriched by the following
GO categories: cell cycle, apoptosis, response to virus, protein
phosphorylation, organelle fission, response to interferon-alpha, M
phase, response to stress; pathways (TRANSPATH, REACTOME):
Aurora-B cell cycle regulation, E2F network, cyclosome regulatory
network, interferon signaling.

Such GO and pathway analysis gives a general idea of the global
processes that changed their activity after establishing the MTX-
resistance. They coincided very well with the existing knowledge
about the mechanisms of MTX-resistance in cancer cells. According
to the results of multiple studies, the most important resistance
mechanisms to MTX was found to be connected with an increase of
expression of the MTX primary target – enzyme DHFR [1,2]. It is
known that this enzyme induction takes place as a result of
amplification [34] and enhanced expression [35] of its gene. The
increased rate of transcription of this gene is stimulated by
enhanced levels of free E2F, not sequestered by hypophosphory-
lated retinoblastoma protein. The resulting changes in the
expression of this important enzyme of nucleotide metabolism
is associated, on one side, with the massive changes and re-tuning
of the related cellular metabolic pathways that we observed in the
respective enrichment of GO terms among the upregulated genes.
On the other side, the changes in nucleotide metabolism may lead
to changes in the process of cell cycle and apoptosis indicating the
slowing down of the processes of cell death. It is interesting to note
that the term “protein phosphorylation” was also indicative for the
downregulated genes confirming the important role of retinoblas-
toma hypophosphorylation in developing MTX resistance.

However, the mentioned changes of big functional groups of
genes do not provide any key to understand mechanistically how
such cellular transformation to the resistant state is achieved and
maintained and does not provide molecular targets for possible
suppression of the MTX resistance. To answer all these questions
we applied our earlier developed concept of “upstream analysis” to
the data on MTX resistance.

3.2. Analysis of promoters and enhancers to identify potentially active
TFs

In order to identify transcription factors that may be activated
during the transformation of HT29 colon cancer cells into MTX
resistant cells we analyzed several important genomic regions of
the genes that were differentially regulated during this process. For
this, we identified the up- and down-regulated genes using a logFC
cut-off (logarithm of the fold change to base 2) higher than 1.5 for
up-regulated genes or lower than �1.5 for down-regulated genes
(“Yes” sets of genes). As control we used genes expression of which
did not change considerably in this experiment (“No” set of genes).
From all these genes we extracted the promoter regions from
�1000 to +100 bp around TSS (transcription start site). Next, we
applied the F-Match algorithm, which searches for TF binding sites
in the Yes and No sets of promoter sequences applying the non-
redundant set of PWMs from the TRANSFAC library. This program is
able to find those PWMs and corresponding transcription factors
whose sites are overrepresented in the promoters of Yes set
compared to the No set (see Method section). We applied this
method separately for the up- and down-regulated genes to
identify those specific transcription factors that are involved in
activation or inhibition of the expression of these sets of genes. The
results of this analysis are presented in Table 1 below. Also, in Fig. 1
we show a map of predicted TF binding sites in the promoter of the
DHFR gene, the gene encoding the target protein for MTX. Drastic
up-regulation of the DHFR gene is known as one of the most
common mechanisms of the development of MTX resistance [35].

The promoter of this gene has been extensively studied and it
was found that expression of the DHFR gene is tightly regulated
during cell cycle through binding sites for transcription factor E2F
[36]. Moreover, it was shown that at least one E2F site is located
near an Sp1 site forming a composite element and that E2F and SP1
transcription factors act synergistically in activating DHFR
transcription [37,38]. It was proposed earlier that the activation
of the DHFR gene during development of MTX resistance is done
through this E2F site [35]. We hypothesize that other transcription
factors, such as Sp1 and several other factors, may contribute to the
altered activation of DHFR and other genes leading to stable up-
regulation of such genes, which in turn stabilizes the resistance
state of the cells.

Our site frequency analysis indeed revealed sites for E2F and
Sp1 factors as overrepresented in the promoters of up-regulated

http://www.hmdb.ca/downloads


Table 1
The list of transcription factors identified by site frequency search in promoters and potential enhancers of up-regulated and down-regulated genes. Gene symbol and gene
description are given for the genes encoding the respective transcription factors. Expression logFC is the fold change of the expression of these transcription factor genes in the
MTX resistant cells. Up-regulated TF genes are marked in red, down-regulated TF genes are marked in blue. PWM is the identifier of the TRANSFAC position weight matrix
whose sites are overrepresented in the promoters or enhancers of the genes under study. Yes/No ratio and P-value are the values obtained by the site frequency search in the
promoters and enhancers, respectively.
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Fig. 1. Results of TF binding sites prediction in the overlapping promoters of DHFR and MSH3. A) Low resolution map of gene structures. Exons are represented by red thick
lines, introns by thin black lines. (One can see that the first introns of DHFR and MSH3 genes actually overlap). The dotted vertical line indicates the TSS (transcription start site)
for the DHFR gene. Colored triangles show positions of TF binding sites (each color corresponds to one PWM). Clusters of sites can be recognized as peaks of overlapping
triangles. The track with blue arrows corresponds to the ChIP-seq reads from CDK8 experiment mapped to this genome region. The peak of the reads indicates the region of
high regulatory transcription activity. Similar indicators of the open chromatin are the locations of the DNAse hypersensitivity (from ENCODE) shown in the bottom-most
track. Two conserved regions (for 46-way 50% conservation between mammalian genomes) indicate potentially very important regulatory areas in these promoters. B) High
resolution map. Each predicted TF binding site is shown as an arrow with the name of PWM (from TRANSFAC) on top of it. The intensity of the blue color corresponds to the
score of the binding site. The direction of the arrow shows at which DNA strand the site was recognized by the respective PWM. Known sites for E2F and Sp1 are surrounded by
two ovals. The track “yes track” shows composite sites predicted by CMA (see next paragraphs). One can see that predicted TF sites often overlap with each other indicating
very complex potential regulatory switches.
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genes together with sites for several other TFs. In total we found 29
enriched PWMs in the promoters of upregulated genes and 23
enriched PWMs in the promoters of down-regulated genes. Among
them, 22 and 11 PWMs correspond to the transcription factor
genes whose expression was significantly up-regulated (see
Table 1). Among the TFs whose sites found to be most enriched
there are: SRF, POU6F1, RNF96, EGR1, MAZ, E2F1, SP1, KLF. Our
analysis correctly identified the known E2F and Sp1 sites in the
promoter of the DHFR gene and even found a number of clusters of
several E2F and Sp1 sites together with sites for the other
important transcription factors. These site clusters co-localize with
ChIP-seq peaks of the CDK8 mediator complex as well as with
regions of DNase I hypersensitive sites (Fig. 1). Also, we found that
the region of high homology between 46 mammalian genomes
(PhastCons 46-way 50) is also located in the area near the detected
site clusters (Fig. 1), which gives additional evidence about the
functional importance of this regulatory area of the genome.
Interestingly, this regulatory region of the DHFR gene also controls
the expression of another gene, MSH3, which is transcribed in the
opposite direction and which is very important for the pathology of
colon cancer and also known to be involved in drug resistance
mechanisms, since it is involved in DNA repair [39]. As one may see
from the gene expression data of the MTX resistant colon cancer
cells, both genes DHFR and MSH3 showed significant up-regulation
of about 4-fold compared to the MTX sensitive cells.

It is known that regulation of gene expression is controlled not
only through promoter sequences but also through enhancers and
silencers that can be localized in distal upstream regions as well in
introns and in 30 regions of genes. In order to identify most
probable enhancers and silencers acting under the analyzed
conditions we chose the ChIP-seq data on the CDK8, which is
associated with the mediator complex, a central integrator of
transcription proven as a marker of active transcription regulatory
regions in colorectal cancer cells (for the HT29 cell line) [40]. The
central role of the CDK8 kinase complex in the Wnt pathway,
which is very often disregulated in colorectal cancers and
contributes to their growth, invasion and survival [41], renders
it a suitable marker for active enhancers in colon cancer cells.
Identification of the peaks of CDK8 mediator complex binding in
the genome of cancer cells was done with the help of the MACS
algorithm that analyses the NGS reads from the ChIP-seq
experiment and finds the regions most massively covered by the
sequence reads, indicating the areas of most active CDK8 binding
and pointing to the positions of active enhancers in these cells. The
MACS algorithm found 29,400 peaks (see method section) in the
whole genome. These peaks overlap with 17,115 genes in the
genome and located either in their exons, or introns or in 50 or 30

regulatory regions of the genes (2 kb upstream and 2 kb
downstream from the gene borders). The length of the detected
peaks varies quite a lot between 200 bp and 27,000 bp. For further
analysis we have identified summits in each peak (the point in the
peak that has the highest number of overlapping sequencing reads,
which approximately corresponds to the most intense binding of
Table 2
Pairs of TFs found by Composite Module Analyst (CMA) in promoters of differentially e
selected by CMA to be included into the pair. First and second cut-offs are respectively sc
frequent distance between sites in the respective pair.

Pair N First PWM First cut-off 

1 V$GKLF_Q4 0.96 

2 V$RNF96_01 0.9 

3 V$RFX_Q6 0.95 

4 V$CHCH_01 0.99 

5 V$CDPCR1_01 0.91 

6 V$HMGIY_Q3 0.88 
CDK8 complex and respectively the most intense regulatory
activity of the region).

Next, we selected only those CDK8 peaks, whose summits could
be found in or near (+/� 2000 bp) the up- or down-regulated genes.
This way we predicted the approximate location of the HT29 cell
line enhancers and silencers that potentially act to change the
regulation of these genes upon development of MTX resistance. We
analyzed the regions around the summits of the peaks (+/�200 bp
around each summit) for the frequencies of TF sites (predicted by
TRANSFAC PWMs), and compared them with the background
frequency of the sites in randomly selected genomic regions. The
same F-Match algorithm was used here as for the analysis of
promoter sequences. Results of the analysis of enhancers and
silencers for respective up- and down-regulated genes are
summarized in Table 1 below.

As it was mentioned in the introduction, it is important to
understand the interactions between transcription factors during
their regulation of specific gene activity. We have therefore also
applied the CMA algorithm (Composite Module Analyst) for
searching composite modules [16] in the promoters of up – and
down-regulated genes. The core of CMA is a genetic algorithm that
identifies pairs of TF sites that are co-localized on a certain distance
to each other in the analyzed promoters and enhancers. We
identified a composite module consisting of 6 pairs of TFs
(represented by TF PWMs from TRANSFAC) (Table 2) that
statistically significantly separates sequences in the Yes and No
sets (Wilcoxon p-value = 5.41E-24). In Fig. S2 in the Supplementary
material we present a screenshot from geneXplain platform with
detailed information about the pairs of TF sites that were found in
the promoters of up-regulated genes and also the statistical
parameters of the constructed composite module.

Among the TFs whose sites are found in such pairs are: factors
of the TCF/LEF family which are involved in the Wnt signaling
pathway (often deregulated in colorectal cancers); TRIM28/RNF96
co-repressor that is known to be involved in the inhibition of E2F1
activity by stimulating E2F1-HDAC1 complex formation (http://
www.uniprot.org/uniprot/Q13263); Egr1, a known immediate-
early response TF, activated by extracellular signals and mediating
mitogenic responses [42]; GKLF (KLF4), a transcription factor that
regulates proliferation, differentiation, apoptosis and somatic cell
reprogramming. Evidence also suggests that KLF4 is a tumor
suppressor in certain cancers, including colorectal cancer [43] and
several other important transcription factors with known function
of regulation processes of cell cycle, differentiation and apoptosis.
All these transcription factors were also included into Table 1 for
further analysis.

3.3. Find master regulators in networks

The next step of the analysis was the search for potential master
regulators that can regulate the activity of the transcription factors
identified in the previous step. The master regulator search was
done from the list of transcription factors in Table 1 (see above). As
xpressed genes. First and second PWMs are the Position Weight Matrices (PWMs)
ore cut-off for those two PWMs that were optimized by CMA. Distance – is the most

Second PWM Secons cut-off Distance

V$ZIC1_05 0.82 55
V$ZFP161_04 0.74 49
V$LEF1_Q5_01 0.96 51
V$CIZ_01 1 51
V$GKLF_Q4 0.96 56
V$NF1A_Q6_01 0.99 50

http://www.uniprot.org/uniprot/Q13263
http://www.uniprot.org/uniprot/Q13263
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a set of context proteins we used the list of proteins that were
detected by an independent proteomics experiment on the same
colorectal cell line HT29. As described in the Methods section this
set of expressed proteins contains 1107 unique UniProt accession
numbers. We mapped this protein list onto the TRANSPATH
database and detected 2092 protein entities (corresponding to
various protein isoforms of the initial list of the 1107 UniProt
proteins) participating in various signal transduction and meta-
bolic reactions according to the knowledge stored in this database.

The rational of using the proteomics data as the “context
protein” list is in the possibility to direct the algorithm of pathway
reconstruction and master-regulator search towards those paths
through the signal transduction network that go maximally
through those proteins that were detected experimentally to be
expressed in this type of cells. The algorithm does not exclude
completely the other paths through proteins that were not
experimentally detected, just because their concentration might
be below the detection limit. Therefore they may well be active in
the cells and may participate in the transduction of the relevant
signals. Nevertheless, the proteins that were detected in the
proteomics experiment are considered with higher weights in the
algorithm and contribute more in directing the search towards
master regulators.

In the current work we set the maximal distance of the search
for master regulator equal to 10 steps, which gives a good chance to
find regulators that are quite distant in the network and can be at
the level of transmembrane receptors or neighboring adaptor
proteins, or extracellular molecules, which makes them more
accessible for the interactions with the potential drugs.

The next important parameter of the search was the require-
ment that the master regulator proteins should have an elevated
expression in the MTX resistant cells. We checked the fold change
of the genes expressing the proteins that were found by the
algorithm as potential master-regulators. We require that these
genes were statistically significantly up-regulated in the MTX-
resistant cells compared to the sensitive cells. In total we identified
220 genes with LogFC >0.5 that encode potential master regulators
with a master regulator score >0.3.

We hypothesized that MTX resistance might imply the presence
of a positive feedback loop. Such loops may constitute when the
genes expressing master-regulator proteins stimulate their own
expression under the tested conditions and through the signaling
cascade including TF activation events at the bottom end. We
believe that such positive feedback loops can contribute to the
transition of the MTX sensitive to the MTX resistant state of cells.
Therefore, we introduce into the algorithm an important require-
ment that the genes encoding selected master regulators should be
up-regulated, that reflects presence of such positive feedback loop
in the system. Important remark here is that we assume that
change of expression of the genes that encode master-regulator
proteins will influence production of these proteins in the cells and
finally their activity in the network. Generally, as it was shown
before, the correlation between transcriptomics and proteomics
data is not always satisfactory [44], especially considering fast
processes when level of transcription of many genes is quickly
changing whereas the production of the respective proteins is not
changing due to various reasons. Obviously quantitative proteo-
mics data measuring the difference of protein level between MTX
sensitive and resistant cell lines would be a better source for such
identification of potential feedback loops. Since such data are not
available (available proteomics data presents proteins in the
standard HT29 cell line only, but not in the MTX resistant cells) we
use the transcriptome fold changes as the proxy for the possible
difference in the protein levels of the master regulator nodes and
we also use the available proteomics data as the source for the
“context proteins” (see Method section) that are found as multiple
nodes in the revealed signal transduction network transferring
signal from the master regulators to the transcription factors.

In Fig. 2 below we show the network of the top 10 potential
master regulators that were found by the algorithm and which are
present in the target list of the PASS (see below). Genes encoding
these 10 proteins were also significantly up-regulated in the
MTX-resistant cells and therefore can be considered as important
drug targets for possible re-sensitization of such cells towards
action of MTX. We also show in the figure that several proteins that
were experimentally detected in the HT29 by high-throughput
proteomics techniques contributed to the detection of these
master regulators. On the schema those “context proteins” are
shown by gray half-circles decorating these proteins. One can see
that these context proteins often connect the identified master
regulators with several transcription factors, therefore playing an
important role in transducing the signal from the master
regulators to these transcription factors, which in turn regulate
their target genes upon such signal. The yellow half-circles on the
other side show which proteins are encoded by genes that change
their expression most significantly in the MTX-resistant cells
compared to the sensitive cells. One can see that most of the
master-regulators on this schema are up-regulated.

Altogether, we noticed that many of the suggested master
regulators are very important proteins that are known to be
involved in regulating such process as cell cycle, apoptosis, cell
adhesion and metabolism of nucleotides. All those processes that
were detected as changed in MTX-resistant cells in our GO analysis
above. Also, there are many lines of evidences showing the
potential role of some of these proteins in sensitization of anti-
cancer drug resistance mechanisms. For instance, it is known that
such master regulator as PDE4 (part of the extended network (see
full table of master regulator in our paper in Data in Brief [56]), not
shown in Fig. 2) is widely expressed in brain tumors and promotes
their growth and treatment with the PDE4A inhibitor Rolipram
overcomes tumor resistance and mediates tumor regression [45].
TGF-alpha, which is also found in our master-regulator search and
which is one of the most highly up-regulated proteins in MTX-
resistant cells, has been found potentially responsible for acquired
resistance to Trastuzumab in metastatic breast cancer patients
[46]. It was also shown that integrin alpha9 (ITGA9), which
facilitates accelerated cell migration and regulates cancer cell
proliferation and migration, is a target of epigenetic regulation and
its overexpression leads to acquired resistance against 5-aza-dC
treatment in human breast tumors [47]. Recently, it was shown
that inhibition of insulin-like growth factor 1 receptor (IGF1R)
leads to sensitization of head and neck cancer cells to cetuximab
and methotrexate [48]. Therefore it is extremely interesting that
we identified IGFBP7 protein as a potential master regulator, since
this protein is a very potent modulator of IGF binding to its
receptors. All these facts show that the list of targets selected by
the master regulator search algorithm has a very high potential to
serve for re-sensitization of colorectal cancer against MTX
resistance.

3.4. Prediction of compounds potentially reverting the MTX resistance
of cancer cells

To find potential drugs or new chemical compounds that can be
used for reverting the MTX resistance we applied the PASS program
to three libraries of chemical compounds. We searched for
compounds that may serve as inhibitors of master-regulators
found in the previous step of the analysis. We analyzed the
following libraries: (1) Top 200 drugs prescribed in the world.
Among those 200 drugs, 153 are small organic compounds with
known structural formulae; (2) Prestwick chemical library, which
is a collection of 1280 small drug-like molecules; (3) Human



Fig. 2. A part of the predicted signal transduction network of MTX-resistant colorectal cancer cells that is reconstructed with the help of the master-regulator search
algorithm implemented in the geneXplain platform. Transcription factors (blue) are shown at the bottom and in the center. Potential master regulators (pink) are shown at the
top. The direction of signal flow is from top to bottom. Intermediary molecules are green. Gray half-circles indicate proteins identified by the proteomics experiment in HT29
cell line. Yellow half-circles indicate proteins encoded by genes up-regulated in MTX-resistant cells.
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metabolites collected in the HMDB, Human Metabolome Database,
version 2.5.

The list of 30 potential targets identified by the master-
regulator search that correspond to 19 different PASS activities is
shown in Table 3. The PASS activities are represented by inhibitors,
agonists and antagonists of the identified targets.

About 14% of the potential master regulators identified at the
network analysis step we could associate respective PASS activities
(30 out of 220 potential master regulators represented by 19 PASS
activities). We considered these 19 PASS activities as an initial set
to begin our search for promising compounds.

The results of the scanning of the compound libraries are
shown in Table 4. In the library of the top 200 drugs we
identified several drugs that fulfilled the criteria of Pa > Pi for 8
activities from the list of 19 activities. In Fig. S3 (see
Supplementary material) we show a screenshot of the
PharmaExpert program. We identified 5 drugs that all share
prediction for two activities – “Integrin antagonist” and “TGF-
beta agonist” (which are among most up-regulated targets). For
the first drug, divalproex, PASS actually predicted in total 8
activities from our list with Pa > Pi (see the full list of predicted
activities in the center of the screenshot Fig. S3). Divalproex,
which is also known as valproic acid, is an old drug primarily
used to treat epilepsy and bipolar disorder and to prevent
migraine headaches. Recently a number of clinical trials were
performed with this drug and they confirmed its efficacy for
treatment of Acute Myeloid Leukaemia [49], Cervical cancer [50]
and Breast cancer [51]. So, the use of this drug for potential
sensitization of resistant colon cancers towards methotrexate, as
we have predicted in our analysis, makes perfect sense.

Another highly potent compound was found by applying PASS
to the Prestwick chemical library. Among the best hits we found
the known drug zardaverine (see Fig. S4), which is known and
highly specific inhibitor of all five subtypes of the enzyme
phosphodiesterase (PDE) (as is also predicted by PASS – the
Pa = 0.867), which are among our selected targets. PASS also
predicted the potential activity of this drug as IGF1 antagonist (this
activity was additionally selected by us as possible interfering with
one of our targets – IGFBP7 protein) (see Fig. 1). There is a number
of recent studies confirming the potential use of zardaverine in
cancer therapy, against hepatocellular carcinoma [52] and against
Chronic Lymphocytic Leukemia [53].



Table 3
List of 30 potential targets identified by the master-regulator search corresponding to known PASS activities. “Reached from set” – number of transcription factors from the
initial set of 49 TFs (see Table 1) that can receive the signal from the master regulator through the signal transduction network with a number of steps less then 10. “Score” –

score of the master regulator computed as described in the Methods section. “LogFC” – the logarithm to base 2 of the Fold Change of the expression of the gene encoding the
corresponding master-regulator protein in the MTX-resistant versus sensitive cells. “Proteomics” – “yes” means that the respective protein was detected by the proteomics
experiment in the HT29 cells.

Proteins:
Transpath ID

Master
molecule
name

ID Gene description PASS activity Reached
from set

Score logFC Proteomics

MO000034329 alpha9-
integrin(h)

ITGA9 alpha 9,integrin Integrin antagonist 37 0.45 3.14

MO000057624 PKCalpha(h) PRKCA alpha,protein kinase C Protein kinase C inhibitor 37 0.82 2.36
MO000133221 DCR2(h) TNFRSF10D decoy with truncated death domain,member 10d,

tumor necrosis factor receptor superfamily
Tumour necrosis factor
agonist

33 0.31 2.07

MO000002316 cathepsinB
(h)

CTSB cathepsin B Cathepsin B inhibitor 36 0.37 1.77

MO000107702 PKAc-beta-
isoform1(h)

PRKACB beta,cAMP-dependent,catalytic,protein kinase Protein kinase A inhibitor 37 0.75 1.50

MO000021287 TGFbeta1(h) TGFB1 beta 1,transforming growth factor Transforming growth
factor agonist

37 0.58 1.45

MO000126529 MDC9-
isoform1(h)

ADAM9 ADAM metallopeptidase domain 9 Metalloproteinase
inhibitor

36 0.40 1.12

MO000043254 DR5-L(h) TNFRSF10B member 10b,tumor necrosis factor receptor
superfamily

Tumour necrosis factor
agonist

36 0.35 0.97

MO000060291 PKD3-
isoform1(h)

PRKD3 protein kinase D3 Protein kinase C inhibitor 36 0.38 0.86

MO000081115 PDE4A-
isoform1(h)

PDE4A cAMP-specific,phosphodiesterase 4A Phosphodiesterase IV
inhibitor

34 0.31 0.78

MO000021670 T3R-beta1(h) THRB beta,thyroid hormone receptor Thyroid hormone agonist 36 0.39 0.77
MO000130575 PI31(h) PSMF1 macropain) inhibitor subunit 1 (PI31),proteasome

(prosome
Proteasome inhibitor 32 0.31 0.76

MO000080275 TGFalpha-
isoform1(h)

TGFA alpha,transforming growth factor Transforming growth
factor agonist

37 0.62 0.75

MO000115412 PDGFA-long
(h)

PDGFA platelet-derived growth factor alpha polypeptide Platelet growth factor
antagonist

37 0.51 0.74

MO000082169 Hic-5-
isoform1(h)

TGFB1I1 transforming growth factor beta 1 induced transcript
1

Transforming growth
factor agonist

37 0.45 0.72

MO000079390 HDAC5-
isoform1(h)

HDAC5 histone deacetylase 5 Histone deacetylase
inhibitor

37 0.42 0.68

MO000083689 CD26(h) DPP4 dipeptidyl-peptidase 4 Dipeptidyl peptidase IV
inhibitor

36 0.35 0.67

MO000083701 TGFbeta-2A
(h)

TGFB2 beta 2,transforming growth factor Transforming growth
factor agonist

37 0.53 0.66

MO000025589 RAR-
gamma1(h)

RARG gamma,retinoic acid receptor Retinoic acid receptor
agonist

36 0.37 0.65

MO000130058 THANK-
isoform1(h)

TNFSF13B member 13b,tumor necrosis factor (ligand)
superfamily

Tumour necrosis factor
agonist

37 0.39 0.63

MO000082601 Jak3-
isoform2(h)

JAK3 Janus kinase 3 Janus tyrosine kinase 3
inhibitor

37 0.81 0.62

MO000086979 TUBB2(h) TUBB2A beta 2A class IIa,tubulin Tubulin agonist 37 0.41 0.61 yes
MO000078302 FGFR-2-

isoform16(h)
FGFR2 fibroblast growth factor receptor 2 Fibroblast growth factor

antagonist
36 0.40 0.60

MO000025446 T3R-alpha1
(h)

THRA alpha,thyroid hormone receptor Thyroid hormone agonist 36 0.37 0.59

MO000139037 nqo2(h) NQO2 NAD(P)H dehydrogenase,quinone 2 NAD(P)H dehydrogenase
(quinone) inhibitor

36 0.39 0.55

MO000117489 MMP15(h) MMP15 matrix metallopeptidase 15 (membrane-inserted) Metalloproteinase
inhibitor

37 0.44 0.54

MO000079379 HDAC3-
isoform1(h)

HDAC3 histone deacetylase 3 Histone deacetylase
inhibitor

37 0.68 0.53

MO000059956 Beta-4C(h) ITGB4 beta 4,integrin Integrin antagonist 37 0.58 0.53 yes
MO000059062 CD51-

isoform1(h)
ITGAV alpha V,integrin Integrin alphaVbeta3

antagonist
37 0.59 0.52

MO000057416 PKCzeta-
isoform1(h)

PRKCZ protein kinase C,zeta Protein kinase C inhibitor 37 0.75 0.50
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Finally, the application of PASS to the collection of human
metabolites resulted in a number of interesting candidate
compounds that can be used in further experimental studies. As
one may see in Fig. S5, requiring at least two activities from our
list to have Pa > Pi we identified 348 compounds. For the top
one, nicotinamide N-oxide, PASS predicted three activities from
our list of 19 activities. Again, the activity as an inhibitor of
enzyme phosphodiesterase is predicted with very high
Pa = 0.707.
Nicotinamide is known to sensitize a number of rodent tumors
to single dose of radiation [54]. Its combination with carbogen
results in large enhancement of tumor response to certain
treatment and it was confirmed in a clinical trials [55]. So, we
can assume that this compound can be also a very good candidate
for possible sensitization of MTX resistance as we can propose it
using analysis of the experiments with the MTX resistant and
sensitive cell lines.



Table 4
Results of analysis by PASS of three libraries of drugs and chemical compounds. “PASS Activity” is the name of the pharmacological activity that was predicted by the PASS
program for a given compound (under condition Pa > Pi). Pa – probability to be active, Pi – probability to be inactive.

Drug/compound name Library PASS Activity Pa Pi

Divalproex Top 200 drugs Integrin antagonist 0.059 0.017
TGF agonist 0.153 0.04

Zardaverine Prestwick chemical library Insulin like growth factor 1 antagonist 0.156 0.05
Phosphodesterase IV inhibitor 0.867 0.002

Nicotinamide N-oxide Collection of human metabolites NAD(P)H dehydrogenase (quinone) inhibitor 0.063 0.057
Phosphodesterase IV inhibitor 0.707 0.003
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The further study will be necessary in order to confirm these
findings in vivo and potentially translate them to the clinical
applications.

4. Conclusions

In this paper we have applied our earlier developed approach of
“upstream analysis,” [11,18] to multi-omics data including tran-
scriptomics microarray data, proteomics data and data on
epigenomics (ChIP-seq). All these experimental data were
extracted from different publications on experiments that were
done by different groups. An important novel part of the approach
enabling integration of proteomics data in such analysis is the
“Context Algorithm” which is described in this paper. The list of
proteins identified with the help of modern methods of proteomics
are used in our approach as sets of “context proteins” that help the
algorithm to find master regulators in the huge signal transduction
networks of the cells. We also introduced a novel way of
integrating transcriptomics and epigenomic data, when peaks of
active chromatin identified by ChIP-seq experiments are inter-
sected with long 50 upstream and downstream regions of
differentially expressed genes in order to detect the locations of
most important “enhancers” and “silencers” of genes driving the
MTX-resistance. Frequency analysis of TFBS and analysis of
composite regulatory modules in such “enhancer” and “silencer”
regions allows to identify more precisely transcription factors
involved in the mechanism under study. Our approach gives us a
nice possibility to integrate those different types of data helping to
achieve our goal of identification of potent drug targets and
perspective chemical compounds that can be potentially used to
resolve the problem of induced resistance of cancer cells towards
chemotherapy by methotrexate (MTX). The considerable part of
this analysis has been done with a help of automatic workflows in
the geneXplain platform and therefore can be easily reproduced
and can be applied to analysis of other similar tasks. The schema of
this workflow is shown in Fig. S6 in Supplement.

As a result we identified a number of very promising drug
targets, such as, PKC-alpha, TGF-beta, TGF-alpha, cAMP-specific
phosphodiesterase 4A, insulin-like growth factor-binding protein
7, alpha9-integrin and several others and reconstructed a potential
signal transduction network connecting these targets with the
transcription factors triggering activity of the MTX-resistance
genes. Many of these proteins are already known as important
targets for anti-cancer drug therapy and our results suggest them
for the use as anti-resistance targets. Among these targets we also
identified very interesting signaling molecules that most probably
play an important role in the resistance mechanism. For instance,
recently it was shown that integrins (that were suggested by us
among the most prominent targets) play a very important role in
colon cancer cell resistance to methotrexate by controlling low
density of tumor cells [4]. We can speculate that the use of such
important new targets as integrins in combination with other
predicted targets is a promising way to combat drug resistance in
cancer. As the final step of our analysis we applied a chemo-
informatics approach (PASS program) for identification of chemical
compounds that have a potential of inhibiting or activating the
targets predicted at the previous step. This approach demonstrated
a very good potential in computational search for such compounds.
Among identified compounds that can be potentially used to
sensitize the MTX resistance of the studied cell line we suggested
known drugs, such as zardaverine and divalproex as well as human
metabolites such as nicotinamide N-oxide.

We should emphasize again here that of course all our findings
of potential anti-MTX-resistance drug targets and potential
compounds should be further validated by extensive in vivo
studies in order to think about potential translation of this findings
to clinical applications.
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