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The diamondback moth (DBM), Plutella xylostella L., is an important pest of

cruciferous vegetables, and population control mainly depends on chemical

pesticides. Emamectin benzoate is a highly effective insecticide used for

controlling DBM. However, it is unknown how the sublethal effects of low

concentration residues of emamectin benzoate on DBM. So the population

development sublethal effects of emamectin benzoate, at LC5, LC10, and LC20

with concentrations of 0.014 mg/L, 0.024 mg/L and 0.047 mg/L, respectively,

on adult DBM and their progeny were investigated in this study. The pupal

weight, pupal period, female fecundity, and vitellin content of the F0 DBM

generation increased significantly compared to the control. And the single

female oviposition number of DBM was increased by 20.21% with LC20

treatment. The pupation rate, adult longevity and ovariole length of the

treatment groups decreased significantly. The fecundity of DBM in the

treatment groups increased, and this increased the population by a

presumptive 13.84%. Treatment also led to the shortening of ovarioles and

the reduction of egg hatching, and increased pupal weight in the F1 generation.

We concluded that the effects of sublethal/low concentration emamectin

benzoate on the different life stages of DBM were variable, and the

reproductive hormesis on DBM adults were attractive findings.
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Introduction

The diamondback moth (DBM), Plutella xylostella L., is a widely distributed

lepidopteran pest that causes serious damage to cruciferous vegetables. It has strong

adaptability of host, long-distance migration, and overlapping generations (Furlong et al.,

2013). DBM control relies on chemical insecticides. However, excessive pesticide use has

selected for DBM resistance to more than 90 pesticides (Whalon et al., 2019).

Studies have found that pesticide applications usually induce strong lethal effects in

most of arthropods. It primarily through direct mortality of exposed arthropods and a

variety of sublethal physiological biological, and/or behavioral effects on arthropod
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individuals (Desneux et al., 2007; Shan et al., 2020). Arthropods

may experience exposure to sublethal doses because of

suboptimal spray coverage during applications and owing to a

decrease in residue concentrations after the initial application

(Guedes et al., 2016). Pesticide applications can significantly

impact the effectiveness of biocontrol agents in most

agroecosystems (Lu et al., 2012; Huang et al., 2020). It may

also influence habitat shifts, induces hormesis in insect pests,

resistance development, and direct and indirect interactions

between species within food webs. Some insecticides may also

disrupt biological control of secondary pests, leading to a

secondary pest outbreak (Wang et al., 2017; Liang et al., 2021;

Zhang et al., 2021a). Pesticide exposure can stimulate

reproductive hormesis of Nilaparvata lugens and lead to N.

lugens population outbreaks (Wu et al., 2019). All of the cases

bring great challenges to the rational use of pesticides and pest

control, which require extensive attention from entomologist and

agrochemical scientists all of world.

Emamectin benzoate (4″-epi-methylamino-4″-
deoxyavermectin B1) is a highly efficient, broad-spectrum,

semi-synthetic insecticide used for control of agricultural and

forestry insect pests. It is especially useful for controlling

lepidoptera including Spodoptera exigua, Helicoverpa zea, P.

xylostella, and Spodoptera littoralis (López et al., 2010; El-

Sheikh, 2015). Field residues of emamectin benzoate gradually

decrease to sublethal concentrations due to chemical, biological

and/or natural degradation in the environment (Biondi et al.,

2012; Khan et al., 2018). The half-life of emamectin benzoate on

cabbage was determined to be 3.81 days (Wang et al., 2009). The

LC5 and LC15 of emamectin benzoate prolonged the

development time and longevity of Spodoptera littoralis and

reduced the population (Mokbel and Huesien, 2020). The

LC30 of emamectin benzoate had a significant negative impact

on egg laying, ovarian development, mating rate, and survival of

Conopomorpha sinensis (Yao et al., 2018).

It was found that the third-instar larvae of DBM were treated

by LC10 and LC25 of chlorantraniliprole. Which of the insecticide

could reduce pupation, pupal weight, adult emergence rates,

increase the duration of female preoviposition period, decrease

fecundity and egg hatch, and decrease survival rates of the

offspring. And, the mean values of the net reproductive rate

(R0), intrinsic rate of increase (rm), and finite rate of increase (λ)
were also significantly decreased in LC10 and LC25 treatment

(Han et al., 2012). The negative effects by indoxacarb,

metaflumizone, methylthio-diafenthiuron, spinetoram,

broflanilide and fluxametamide with sublethal dose/

concentration were also studied (Wang et al., 2011; Zhang

et al., 2012; Su and Xia, 2020; Tamilselvan et al., 2021; Gope

et al., 2022; Sun et al., 2022). However, a few of insecticides, e.g.

fenvalerate, chlorpyrifos, chlorfenapyr (LC1) and abamectin with

sublethal dose/concentration (Fujiwara et al., 2002; Deng et al.,

2016; Rodríguez-Rodríguez et al., 2021; Jia et al., 2022) could

stimulate or lead to hormesis effect on DBM. The LC1 (0.274 mg/

L) of chlorfenapyr significantly increased female pupa weight of

F0 and F1 generations, and F0 fecundity as well as F1 gross

reproduction rate of DBM. And, the LC1-elicited rise in

emergency rate and fecundity was significantly greater in F0
than in F1 (Jia et al., 2022). How does the sublethal effects of

emamectin benzoate on DBM remains unknown until now. In

this paper, we studied the effects of sublethal/low concentrations

of emamectin benzoate, at LC5, LC10, and LC20 with

concentrations of 0.014 mg/L, 0.024 mg/L and 0.047 mg/L,

respectively, on the population development of DBM, and

hope carry out a science assessment of its application on

DBM, avoid or delay resurgence of DBM in the field.

Materials and methods

Insect

P. xylostella was collected from the experimental station of

the South campus of Shandong Agricultural University in

2006 and cultured indoors on radish seedlings and cabbage

leaves without pesticide exposure. The insect rearing room

was maintained at 25 ± 2°C, relative humidity 60%–70%, and

a photoperiod of 14:10 h (L:D). The adults were fed on 10%

honey: water.

Insecticides and reagents

Emamectin benzoate (95.0%) was provided by Qingdao

Dingfeng Biotechnology Co., Ltd. Shandong Province, China.

Acetone, ether, and other solvents were analytical grade and were

purchased from Tianjin Damao Chemical Reagent Factory,

Tianjin, China.

Bioassay of acute toxicity

Acute toxicity was determined by the leaf dipping method

(Liang et al., 2003). Emamectin benzoate was dissolved in

acetone to prepare a concentrate of 200 mg/L. The concentrate

was serially diluted with 1% Tween 80 aqueous solution to

obtain emamectin benzoate solution concentrations of 0.05,

0.10, 0.20, 0.40 and 0.80 mg/L. Fresh cabbage leaves were cut

into 5.0 ± 0.5 cm disks, dipped in the solution for 10 s and held

vertically to allow excess solution to drip off, and placed on a

rack to dry. Twenty third-instar DBM larvae were added to

each culture dish containing a treated leaf disk. An aqueous

solution without emamectin benzoate used as the negative

control. After 72 h exposure on the cabbage leaves treated with

the different concentration of emamectin benzoate, counted

the surviving larvae that moved when touched slightly, and

transferred to fresh leaves for subsequent experiments.
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Bioassay of sublethal effects on DBM

Thirty third-instar DBM larvae were treated with

emamectin benzoate for 72 h use the same leaf dip method

as described above at sublethal/low concentrations of LC5,

LC10, and LC20, respectively. The effects of the sublethal/low

concentrations of emamectin benzoate on DBM development

were determined. These effects included pupation rate, pupal

weight, pupal period, adult emergence rate, adult survival

number, single female oviposition number, adult longevity,

eggs hatching rate, larval survival rate, and larval development

duration. Both F0 and F1 generations were studied. An

aqueous solution without emamectin benzoate was used as

the control.

After the emergence of the treated insects, select one couple

of male and female adults randomly eclosing on the same day,

and put the couple into a can bottle with fresh cabbage leaves,

providing with 10% honey solution. When the female adult

begins to lay, count the number of eggs laid and the number

of eggs hatched every 24 h until the adult died. Each treatment

was 5 couple of adults and repeated 3 times independently.

Ovary anatomy and vitellin content
determination

Third-instar DBM larvae were exposed to emamectin

benzoate for 72 h use the leaf dip method mentioned above

at sublethal/low concentrations of LC5, LC10, and LC20 and

surviving female adults were collected. The female adults were

anesthetized with CO2 and the thorax/abdomen was removed

with ophthalmic surgical scissors. The abdomen was placed on

a glass slide coated with physiological saline. Then, the end of

the abdomen was squeezed gently with an insect pin and the

ovaries were removed. The fat particles adhering to the

ovarioles were removed with dissecting forceps and the

ovarioles were stained with safranine dye solution for

5 min. Excess dye solution was then washed off the

ovarioles. The ovarioles were observed and photographed

with a continuously variable magnification

stereomicroscope (SZX 10). The length or width diameter

of mature eggs and ovarioles lengths were measured with

ImageJ image processing software.

The vitellin content at 0–96 h female emergence was

determined using an insect vitellin linked immunoassay

(ELISA) kit (Shanghai Meilian Biotechnology Co., Ltd.,

Shanghai China) according to the directions of the kit.

Data analysis

Three independent replicates were used for each test.

Probit analysis was used to determine the value of lethal

concentration. All biological traits data were processed using

SPSS V16.0 (SPSS, Inc., Chicago, IL, USA), and the results

are shown as the mean ± standard deviation (SD, n = 3). All

biological traits data were subjected to the analysis of

variance (ANOVA) test, and mean differences were

evaluated by Tukey’s multiple comparison test (p = 0.05).

Significance was indicated at p < 0.05.

Results

Toxicity

The toxicity of emamectin benzoate to the third-instar

DBM larvae was determined by the leaf dip method. After

72 h exposure the LC50 was 0.173 mg/L, and the LC5, LC10,

and LC10 values were also obtained (Table 1).

Sublethal effects of emamectin benzoate
on the F0 generation of DBM

Third-instar DBM larvae were treated with emamectin

benzoate at the sublethal/low concentrations of LC5, LC10, and

LC20. The corrected larvae survival rate was 93.3%, 88.7% and

81.3%, respectively. The pupation rate of DBM larvae

decreased with increased treatment concentration. The

pupation rate of the LC10 and LC20 treatments was

significantly (F = 7.47, df = 11, p = 0.010) lower than the

control group (Figure 1A). The pupa weight of LC10 and LC20

treatment groups increased significantly (F = 16.49, df = 79,

p = 0.0001) by 10.53% and 14.63%, respectively (Figure 1B),

compared to the control. The pupal period of DBM in the LC10

treatment was significantly (F = 3.70, df = 79, p = 0.015) longer

than the control group (Figure 1C). However, the three

treatment groups had no significant (F = 2.60, df = 11, p =

0.125) effect on the adult emergence rate (Figure 1D). After

TABLE 1 Toxicity of emamectin benzoate to third-instar larvae of P. xylostella (72 h).

Insecticides Regression equation LC5 LC10 LC20

(mg/L)
LC50 (mg/L) 95% CL (mg/L) Correlation coefficient r χ2 df

Emamectin benzoate y = 1.134 + 1.489x 0.014 0.024 0.047 0.173 0.125–0.223 0.986 44.39 16

Frontiers in Physiology frontiersin.org03

Liu et al. 10.3389/fphys.2022.1025959

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1025959


pupation and adult emergence, single female oviposition

number in the LC20 treatment group was 192.7 ± 3.37. It

was increased 20.21% compared with the control (Figure 1E).

The eggs laying peak in the LC20 group was the same as that of

the control, but the daily oviposition number increased and

the egg laying hours was prolonged by 7.31% (Figure 1F).

When compared to the control, the egg hatching rate

decreased by 4.08%; however, the average number of larvae

in the F1 generation increased by 22.19, which ultimately led

to DBM quantity presumptive increase of 13.84%.

Third-instar DBM larvae were exposed to deposits of emamectin

benzoate applied at LC5, LC10, and LC20. After survivors developed

into adults, the longevity of female adults in the LC20 group was

determined to be significantly (F = 7.05, df = 39, p = 0.0008) shorter

than control longevity. The male adult longevity in the three

treatments was shortened to various degrees (Figure 2A). The

vitellin content in adult females was determined by ELISA. With

extension of the time after eclosion, the vitellin content in the LC20

treatment groupwas significantly (72 h: F = 24.17, df = 11, p = 0.0002)

higher than in the control, and the maximum increase was 19.00%.

The vitellin content of the other groups were significantly (LC10 24 h:

F = 47.59, df = 11, p = 0.0001) changed with the eclosion time

(Figure 2B).

Sublethal effects of emamectin benzoate
on the F1 generation of DBM

Emamectin benzoate treatment affected the length or width

diameter of adult mature eggs. Compared to the control, the

FIGURE 1
Effects of emamectin benzoate sublethal/low concentrations on pupation rate (A), pupal weight (B), pupal period (C), emergence rate (D), single
female oviposition number (E), and single female oviposition number daily (F) of P. xylostella F0 generation.

FIGURE 2
Effects of sublethal/low concentrations of emamectin benzoate on adult longevity (A) and vitellin content (B) in females of the P. xylostella F0
generation.
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FIGURE 3
Effect of sublethal/low concentrations of emamectin benzoate on the ovary of adult female P. xylostella. (A–D) are the Control, LC5, LC10, and
LC20 treatment group.

TABLE 2 Effects of sublethal/low concentrations of emamectin benzoate on mature eggs, ovarian canal, and larvae of F1 generation of P. xylostella.

Treatment Mature egg
length diameter
(μm)

Mature egg
width diameter
(μm)

Ovariole length
(μm)

Mature egg
ratio (%)

Egg hatchability
(%)

Larval survival
(%)

Control 141.38 ± 7.34 a 90.38 ± 4.11 a 2406.41 ± 108.0 a 63.75 ± 2.90 a 88.80 ± 0.67 a 54.44 ± 1.01 a

LC5 141.75 ± 7.17 a 95.97 ± 3.72 a 2454.08 ± 70.27 a 58.87 ± 3.01 a 85.98 ± 1.15 b 55.22 ± 3.07 a

LC10 133.80 ± 2.76 a 89.30 ± 2.04 a 2489.03 ± 74.44 a 62.63 ± 3.13 a 87.00 ± 0.67 b 52.41 ± 1.27 a

LC20 133.42 ± 4.65 a 86.48 ± 2.33 a 2030.87 ± 62.04 b 58.25 ± 2.95 a 84.72 ± 0.67 b 53.66 ± 2.06 a

Different letters on right side of the same column indicate significance (p< 0.05).

TABLE 3 Effects of sublethal/low concentrations of emamectin benzoate on pupae and adults of F1 generation of P. xylostella.

Treatment Pupation
rate (%)

Pupae
weight (mg)

Pupal
period (d)

Emergence
rate (%)

Single female
oviposition
number (eggs)

Female
oviposition
time (d)

Adult longevity (d)

Female Male

CK 90.00 ± 1.15 a 6.01 ± 0.18 b 4.47 ± 0.10 a 92.22 ± 1.12 a 180.70 ± 9.98 a 8.00 ± 0.21 a 10.70 ± 0.37 a 11.20 ± 0.25 a

LC5 88.11 ± 1.23 a 5.98 ± 0.17 b 4.55 ± 0.09 a 93.15 ± 1.84 a 185.20 ± 11.21 a 7.70 ± 0.15 a 10.40 ± 0.40 a 10.90 ± 0.23 a

LC10 89.18 ± 1.26 a 6.47 ± 0.18 ab 4.70 ± 0.10 a 92.49 ± 1.33 a 183.70 ± 9.63 a 8.10 ± 0.18 a 10.20 ± 0.39 a 10.80 ± 0.33 a

LC20 87.74 ± 1.24 a 6.57 ± 0.15 a 4.60 ± 0.09 a 91.27 ± 1.65 a 190.10 ± 8.80 a 7.80 ± 0.29 a 10.20 ± 0.25 a 10.70 ± 0.30 a

Different letters on right side of the same column indicate significance (p< 0.05).
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length of mature ovarioles in the LC20 group was shortened by

15.60% (Figure 3). Emamectin benzoate treatment did not

significantly (F = 0.16, df = 39, p = 0.925) affect the mature

egg ratio of the F1 generation, but it significantly (F = 8.611, df =

11, p = 0.006) decreased egg hatchability. The treatments had no

significant (F = 0.353, df = 11, p = 0.789) effects on larval survival

(Table 2).

The pupa weight of the F1 offspring in LC20 group was

significantly (F = 3.187, df = 79, p = 0.028) increased. However,

there was no significant effect on the pupation rate, pupal period,

pupal emergence rate, single female oviposition number, female

oviposition period, and adult longevity of the F1 offspring

(Table 3).

Discussion

Only a small proportion of chemical pesticide applied

directly kills target pests. Most pesticide residue remains in

the environment and it may exert sublethal effect on surviving

insects. A sublethal/low dose of residual insecticide can effect

insect development, morphology, pupa weight, longevity, and

fecundity (Zhang et al., 2022). The sublethal effects of pesticides

influence the biological characteristics and population

development of insects and can provide insight into optimal

pesticide use.

Treatment of second-instar Spodoptera litura larvae with

sublethal doses of chlorantraniliprole or indoxacarb increased

the pupal period and increased pupal weight (Moustafa et al.,

2021). The fecundity of Laodelphax striatellus was significantly

decreased by imidacloprid LC30 treatment. However, the

fecundity was significantly increased when the test insects

were treated with an LC10 dose of imidacloprid (Zhang et al.,

2021b). When the third-instar DBM larvae were treated with a

LC20 dose of emamectin benzoate in this study the development

time of larvae was prolonged by 17.0 ± 3.0 h, the pupation rate of

F0 larvae was decreased by 9.40%, the pupa weight was increased

by 14.63%, the average single female oviposition number

increased by 30.9 eggs, and the longevity of female adults was

shortened by 10.10%. The egg hatch rate decreased by 4.08%, but

the number of larvae in the F1 generation increased. The survival

rate, pupation rate and pupae emergence rate of the F1 generation

were similar to the control, and this could ultimately lead to a

presumptive population increase of 13.84%. Sublethal

concentration (LC10 and LC30) exposures of emamectin

benzoate had a significant negative impact on the larval,

protonymph, and deutonymph developmental periods on

Panonychus citri (Khan et al., 2021). Female fecundity of P.

citriwas decreased, and the adult pre-oviposition period and total

pre-oviposition periodwere increased in the sublethal treatments.

The age-stage specific survival rates (Sxj), age-specific fecundity

(Mx), net reproductive rate (R0), age-stage specific life expectancy

(Exj), and age-stage reproductive value (Vxj) was reduced by LC10

and LC30 exposure (Khan et al., 2021), that of the results were

different from this study. The reason need to be further study.

A low concentration nitenpyram induced transgenerational

hormesis effects in terms of fitness-related traits and insecticide

tolerance in Nilaparvata lugens after exposure to the LC20

concentrations for six generations (Gong et al., 2022), but, we

did not find transgenerational hormesis in DBM by emamectin

benzoate treated. It was found that insecticide-induced hormesis

in life history traits may augment the development of insecticide

tolerance or resistance in pest insects, allowing fitter individuals

to survive and reproduce, with significant management and

environmental implications (Guedes et al., 2016). The

reproduction hormesis of parental generation maybe one of

reasons of DBM resurgence. Based on this case, a few of

control policies conform to IPM strategies could be used, e.g.,

combination use of compatible insecticides and biological

control agents, ‘attract-and-kill’ control strategies,

development of new safer, environmentally friendly and

target-specific insecticides or cultivation safety transgenic crops.

Insect fecundity is mainly regulated by the synthesis of

vitellogenin (Vg) and vitellin (Vn) (Jing et al., 2021).

Vitellogenin is synthesized in the fat body of adult females

and released into the hemolymph. It is then absorbed by

oocytes through special channels to synthesize vitellin to

provide essential nutrients for egg development (Tufail

et al., 2014). The expression of vitellogenin and vitellogenin

receptor genes were significantly increased in a flubendiamide

resistant DBM strain compared to a susceptible strain, and

vitellin content also increased in the resistant strain (Sun et al.,

2020). The LC30 of emamectin benzoate can reduce the

transcription of CsVg and CsVgR at 24-h, 48-h, and 72-h

exposure and decrease the egg production of C. sinensis (Yao

et al., 2018). After injecting 20-hydroxyecdysone into

silkworm larvae, the Vg content in the hemolymph

increased, and the Vn content in the ovary also increased.

This led to a significant increase in the total egg weight (Shen

et al., 2014), this is similar to the results of the present study.

When DBM larvae were treated with the LC20 of emamectin

benzoate, the number of eggs laid by single adults was

significantly increased compared to the control. The Vn

content of the LC20 DBM treatment after adult eclosion

was significantly higher than that of the control. This

indicated a direct correlation between the Vn content and

egg production. Similar results have been elaborated in many

other insecticide-exposed insects (Zhou et al., 2020).

In conclusion, the effects of sublethal/low concentration

emamectin benzoate on the different life stages of DBM were

variable, and the reproductive hormesis on DBM adults were

attractive. However, the reason of hormesis deserve further

detailed study on insect biology and genetics in combination

with DBM resistance. This case makes it necessary for us to re-

understand the population development of P. xylostella. In

addition, combination use of compatible insecticides and
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biological control agents, ‘attract-and-kill’ control strategies,

development of new safer, environmentally friendly and

target-specific insecticides, one or more these policies can

be selected for the control of DBM in fields.
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