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Abstract

The development of multigene classifiers for cancer prognosis, treatment prediction, molecular subtypes or
clinicopathological groups has been a cornerstone in transcriptomic analyses of human malignancies for nearly two
decades. However, many reported classifiers are critically limited by different preprocessing needs like normalization and
data centering. In response, a new breed of classifiers, single sample predictors (SSPs), has emerged. SSPs classify samples in
an N-of-1 fashion, relying on, e.g. gene rules comparing expression values within a sample. To date, several methods have
been reported, but there is a lack of head-to-head performance comparison for typical cancer classification problems,
representing an unmet methodological need in cancer bioinformatics. To resolve this need, we performed an evaluation of
two SSPs [k-top-scoring pair classifier (kTSP) and absolute intrinsic molecular subtyping (AIMS)] for two case examples of
different magnitude of difficulty in non-small cell lung cancer: gene expression–based classification of (i) tumor histology
and (ii) molecular subtype. Through the analysis of ∼2000 lung cancer samples for each case example (n = 1918 and
n = 2106, respectively), we compared the performance of the methods for different sample compositions, training data set
sizes, gene expression platforms and gene rule selections. Three main conclusions are drawn from the comparisons: both
methods are platform independent, they select largely overlapping gene rules associated with actual underlying tumor
biology and, for large training data sets, they behave interchangeably performance-wise. While SSPs like AIMS and kTSP
offer new possibilities to move gene expression signatures/predictors closer to a clinical context, they are still importantly
limited by the difficultness of the classification problem at hand.
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Introduction

Gene expression profiling by high-throughput methods like
microarrays and, more recently, RNA sequencing has been
used for nearly two decades in cancer research. Two of the
most central aims have been to derive the following: (i) gene
expression–based predictors of patient risk of disease relapse
(prognostic predictors) or benefit of a specific treatment
(treatment response predictors) or (ii) predictors for novel
molecular disease subtypes or for established histological
subgroups of a disease. A general hope has been that molecular-
driven disease stratification could positively affect patient
treatment and outcome for cancer patients, ultimately providing
a more personalized cancer care. The most well-known example
of gene expression–driven disease stratification is likely the
now, in clinical routine, established molecular subtypes of breast
cancer first reported in early 2000 [1] that stratifies breast cancer
into five subtypes.

Over the years, a plethora of different risk predictors as well
as molecular subtype predictors have been reported for nearly
all human malignancies. However, only a small number has
actually been independently validated, and even fewer have
made it to a stage of clinical use. Two of several reasons for
this lack of clinical translation or reproducibility are likely the
predictor development and implementation process itself, as
well as lack of sufficiently large and unbiased training cohorts
that properly mirror the relevant population-based clinicopatho-
logical demographics. In many instances, predictors of risk and
molecular subtype proposed for classifying independent cases
have been developed in a way that requires gene centering of
input data to assure comparable relative gene expression levels
across samples. Typical early steps in microarray-based gene
expression data processing have included background correc-
tion, normalization (different methods for different platforms)
and probe filtering (e.g. to remove cross-hybridizing probes).
For RNA sequencing data, preprocessing includes alignment,
quality filtering and summarization into transcript counts (e.g.
Fragments per kilo base per million mapped reads (FPKM)).
For both data types, gene/transcript centering across samples
is often performed as a 2nd step, which creates gene expres-
sion estimates relative to the cohort processed, and no longer
absolute in its nature. A classical example of this is the near-
est centroid classification (NCC) method. In NCC, each class is
characterized by its vector of means (centroid) derived from
a training set, to which a similarity score is computed for an
unknown sample to identify the class with the best (nearest)
match. Many other examples exist with the common theme
that classification of independent samples becomes related to
both the training set from which the predictor was derived and
to the composition of the cohort from which the new sample
originates [2–5].

Predictors based on gene rules (gene pairs) have been pro-
posed as a possibility to circumvent the sensitivity of predictors
dependent on gene centering and also to be more platform
independent [2, 4, 6, 7]. This type of predictor consists of a set
of gene decision rules optimized through training versus an
endpoint variable (e.g. histological subtype). A decision rule can
be explained as ‘if expression of gene A < expression of gene B’,
the sample is assigned as class X, otherwise as non-X. Clas-
sification may then be performed by a straightforward voting
scheme or by other algorithms integrating the results. Predictors
of this type may be referred to as (true) single sample predictors
(SSPs), as they propose robust classification of new cases truly
independent of others. While reports of this predictor type are

becoming more frequent [2, 4, 6, 8, 9], to date there has not been
a thorough comparison of different SSP predictors for the same
classification problem, representing an unmet methodological
need in cancer bioinformatics.

In the present study, we aimed to evaluate the classification
performance, robustness, platform independence and predic-
tion agreement of two SSPs [absolute intrinsic molecular sub-
typing (AIMS) [2] and the k-top-scoring pair classifier (kTSP) [6]]
for two classification problems of different difficulty, using non-
small cell lung cancer (NSCLC) as the context, involving 3213
unique samples from 19 independent studies. AIMS and kTSP
represent two different types of SSPs (albeit with a similar final
gene rule approach), with AIMS (based on Naïve Bayes statistics)
standing out compared to kTSP and similar rank-based methods
(e.g. [4, 7]) for its ability to be trained to predict >2 classes. NSCLC
is a highly heterogeneous disease at the molecular level, broadly
stratified into different histological subtypes [predominantly
adenocarcinoma (AC) and squamous cell carcinoma (SqCC)] rep-
resenting distinct biological entities (albeit with high intergroup
heterogeneity).

In this setting, we chose to evaluate the SSPs for two types
of classification problems commonly found in transcriptomic
studies of cancer: (i) a prediction of histopathological tumor
histology (AC or SqCC) and (ii) a prediction of proposed molecular
subtypes within a specific tumor histology/subgroup, in our case,
exemplified by the terminal respiratory unit (TRU) and non-TRU
subtypes [10, 11] within AC. The former case represents a hypo-
thetically easy classification problem based on the biologically
distinct AC and SqCC types (including disparate transcriptional
patterns, [12–14]). The latter case represents a hypothetically
more challenging problem in solid cancers. This is partly due
to common intra-tumor heterogeneity with infiltration of dif-
ferent nonmalignant cell populations, coupled with the usually
strong relationship of molecular subtypes to generic biological
processes such as cell proliferation as well as differences (occa-
sionally subtle) in the tumor microenvironment.

Materials and methods
Data sets

Publicly available gene expression data from 19 independent
studies (n = 3213 unique samples), generated between 2001
and 2016, were collected from public repositories or authors’
websites. The cohort collection reflects different ethnicity, with
cohorts from both the western world and Asian countries. The
individual cohorts varied in the number of samples, gender dis-
tribution, tumor stage proportion and histology. Histopathologi-
cal assessment (e.g. stage and histology) was conducted accord-
ing to the World Health Organization (WHO) guideline relevant at
the time of each respective study, representing a potential source
of bias between studies. Overall, cohort characteristics have
been summarized in Table 1. For each cohort, detailed clinical
information can be found in the original studies. Irrespectively
of pronounced variations across cohorts, individual cohorts were
assigned in respective entirety as either a ‘training’ or ‘test’ data
set. Cohorts were used in two separate case study arms (each
comprising both training and test data sets): (i) the histology
case study arm (n = 1918; 7 training and 5 test data sets) and (ii)
the molecular subtype case study arm (n = 2106; 7 training and
6 test data sets; Table 1 and Figure 1). Six data sets were shared
between both case study arms. To avoid sample overlap between
the Shedden et al. [15] and Zhu et al. [16] cohorts in our analyses,
these data sets were intentionally placed in different arms.
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Table 1. The data sets analyzed in this study

Data sets Total
(N)

Accession Platform Sex males
(%)

Stage I
(%)

Histology
AC (%)

Molecular
TRU (%)

Case arm
histology

Case arm
molecular

Sato et al. [29] 263 GSE41271 Illumina 54 50 70 38 Train Train
Der et al. [30] 170 GSE50081 Affymetrix 53 70 75 39 Train Train
Botling et al. [12] 172 GSE37745 Affymetrix 53 64 62 35 Train Test
Hou et al. [31] 72 GSE19188 Affymetrix 65 NA 62 31 Train
Clinical Lung Cancer
Genome Projecta [14]

191 CLCGP Illumina 63 47 51 34 Train

Djureinovic et al. [32] 183 GSE81089 RNAseq 47 58 63 50 Train
Karlsson et al. [33] 99 GSE60644 Illumina 46 90 78 40 Train
Lee et al. [34] 138 GSE8894 Affymetrix 75 NA 46 38 Test
Bhattacharjee et al. [19] 211 GSE83227 Affymetrix 36 40 90 37 Test Test
Tarca et al. [35] 150 GSE43580 Affymetrix 80 50 51 42 Test Test
Rousseaux et al. [21] 146 GSE30219 Affymetrix 84 90 58 34 Test Test
Zhu et al.b [16] 123 GSE14814 Affymetrix 67 54 58 35 Test
Wilkerson et al. [10] 116 GSE26939 Agilent 46 53 100 41 Train
Cancer Genome Atlas
Research Networkc [11]

230 TCGA LUAD RNAseq NA NA 100 39 Train

Shedden et al. [15] 444 Shedden Affymetrix 50 62 100 38 Train
Fouret et al. [36] 103 E MTAB 923d Affymetrix 16 58 100 42 Train
Okayama et al. [37] 226 GSE31210 Affymetrix 46 74 100 43 Train
Tomida et al. [38] 117 GSE13213 Agilent 51 68 100 40 Test
Chitale et al.e [39] 102 Chitale U133 2plus Affymetrix 41 69 100 41 Test

aCLCGP: The Clinical Lung Cancer Genome Project (http://www.uni-koeln.de/med-fak/clcgp/).
bPresent data set overlaps with Shedden et al. [15] (43 samples).
cThe Cancer Genome Atlas Network (TCGA).
dData obtained from the ‘ArrayExpress’ database (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-923/).
eSamples were divided into two cohorts based on the different Affymetrix platforms, U133A and U133 2plus. Only the latter subset was included in the analysis.

Figure 1. Flowchart of analyses in the study. (A) Histology case arm. (B) Molecular subtype case arm.

http://www.uni-koeln.de/med-fak/clcgp
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-923
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Preprocessing and centroid classification of gene
expression data

In the histology case study arm, non-normalized (raw) gene
expression data were used with inclusion of AC and SqCC sam-
ples (Figure 1). Two exceptions existed, related to two data sets
without publicly deposited raw data (see Supplementary Data).
For these data sets, we used the deposited normalized only data.
Probes corresponding to RefSeq features were retained and, for
duplicated probes, the most varying probe was kept in the data.
Each gene was represented by the mean of multiple probes for
that specific gene. Common genes across the 12 data sets in this
arm were extracted (n = 7466 genes). These steps were taken
to create a uniform expression matrix with common identifiers
across all cohorts for simplicity of the analysis.

In the molecular subtype case study arm, the same procedure
was followed but restricted to only AC cases. In addition, to
generate training/reference classes for this arm, samples were
classified according to the scheme laid out in Wilkerson et al. [10]
(including normalization and gene centering of data) into one
of the three molecular AC subtypes, TRU, proximal-proliferative
(PP) and proximal-inflammatory (PI) [11], for each data set sepa-
rately (see Supplementary Data for details). A two-group class
comprising of TRU versus non-TRU cases was generated and
used as training/reference class in subsequent analyses (as e.g.
kTSP can only be trained for binary outcome). Common genes
across the 13 data sets in this arm were extracted (n = 7373
genes).

kTSP single sample predictor

The R package ‘switchBox’ (version 1.16.0) was obtained from
the open source software project Bioconductor (http://www.
bioconductor.org) [17]. Functions provided by the package
were used for training, i.e. building the classifiers based on a
histopathological assessment (AC/SqCC) or molecular classi-
fication (TRU/non-TRU) in training data sets, and subsequent
evaluation of the classifiers in independent test data sets
(Table 1). For a detailed description, see Supplementary Data.

AIMS single sample predictor

For implementation of AIMS [2], we used source scripts available
from the project’s GitHub repository (https://github.com/meoyo/
trainAIMS). A detailed description of the used procedure is found
in the Supplementary Data.

Statistical analyses

All statistical analyses were performed using R [18] (two-sided
tests). Kruskal–Wallis tests were performed to compare the clas-
sification performance (accuracy) of trained classifiers in test
data sets both within and between the two classification meth-
ods used (kTSP and AIMS).

Platform independence was examined by stratifying by plat-
form origin of training data sets and merging the outcome
(accuracy) of test data sets. Balanced accuracy was defined as
(TP/P + TN/N)/2 where TP = true positives, P = positives, TN = true
negatives and N = negatives.

Results
Study cohorts and baseline classifications

In the present study, gene expression data from 19 independent
studies (Table 1), performed on different gene expression plat-

forms, were divided into ‘training’ and ‘test’ data sets as whole
entities in two separate case study arms: a histology case arm
based on standard WHO histopathological assessment (AC or
SqCC) and a molecular subtype case arm based on previously
reported AC molecular subtypes in a binary constellation, i.e.
TRU versus non-TRU [3, 10, 11] (Figure 1 and Table 1). In the
histology case study arm, both AC and SqCC samples were
included. The proportion of AC samples varied between 46–
90% across the 12 included data sets, which also varied in size
from 72 to 263 samples (Figure 2A and Table 1). In the molecular
subtype case study arm, only AC samples were considered. The
fraction of TRU classified samples according to the originally
reported classifier [10, 11] varied between 34–43% across the
13 data sets included, which also varied in size from 77 to
444 samples (Figure 3A and Table 1). Both experimental arms
were subjected to two SSPs, kTSP and AIMS, using all available
gene expression data, to elucidate their classification perfor-
mance on pre-classified data of clinicopathological or molec-
ular character representing different degrees of classification
difficulty. For both AIMS and kTSP, we used unprocessed raw
expression data, without any within sample or across sam-
ple normalization or gene centering (see Supplementary Data).
Preprocessed gene expression data was only used to gener-
ate molecular subtype predictions in the corresponding case
study arm.

Predicting lung cancer histology by single sample gene
expression classifiers

In the histology case study arm, the classification accuracy
of the seven kTSP classifiers trained from individual training
data sets ranged from 0.80 to 0.99 [median accuracy = 0.91;
interquartile range (IQR) = 0.07] across the five test data sets
(Figure 2B; Supplementary Figure 1A). Corresponding balanced
accuracies ranged from 0.50 to 0.98 (median = 0.89; IQR = 0.08;
Supplementary Figure 1B). The optimized number of gene deci-
sion rules behind the classifiers, also called top-scoring pairs,
ranged from 1 to 18 (Figure 2B). The trained kTSP classifiers
performed equally well on assigning patients in test data sets
into histological subtypes [P = 0.7 (accuracy) or P = 0.8 (balanced
accuracy not shown), Kruskal–Wallis test; Figure 2B].

The classification accuracy of the corresponding seven
AIMS classifiers from the individual training data sets ranged
from 0.11 to 0.99 (median = 0.87; IQR = 0.11; Figure 2B;
Supplementary Figure 2A). Balanced accuracies ranged from
0.51 to 0.98 (median = 0.88; IQR = 0.09; Supplementary Figure 2B).
The number of optimized gene rules behind the different
AIMS classifiers ranged from 3 to 50 (Figure 2B). There was no
difference in classification performance between the trained
AIMS classifiers [P = 0.3 (accuracy) or P = 0.4 (balanced accuracy,
not shown), Kruskal–Wallis test; Figure 2B].

Notably, one test data set, Bhattacharjee et al. [19], revealed
poorer performance for both classifier types for accuracy (AIMS)
or balanced accuracy (kTSP and AIMS) for several different train-
ing data sets (Supplementary Figure 1B and 2). This data set was
analyzed by the old HG U95Av2 Affymetrix platform [19] and not
the much more commonly used HG U133 platform, which could
potentially affect the results.

When comparing the overall result obtained by kTSP and
AIMS using the individual seven training data sets, a signif-
icant difference was observed in accuracy (P = 0.02) favoring
kTSP, but not in balanced accuracy (P = 0.5, not shown), (Mann–
Whitney–Wilcoxon test; Figure 2B). However, when increasing
the size of the training data set to 1150 cases by merging all

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://www.bioconductor.org
http://www.bioconductor.org
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
https://github.com/meoyo/trainAIMS
https://github.com/meoyo/trainAIMS
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
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Figure 2. Histology case results. (A) Distribution of tumor type by histopathology (representing the endpoint variable) across training and test data sets. Top axis lists

data set sizes. AC, adenocarcinoma; SqCC, squamous cell carcinoma. (B) Accuracy results in test data sets for models trained in the seven individual training data sets

plus a pooled training data set of all individual data sets (7DS) and applied to the five test data sets for kTSP and AIMS, respectively. Values below 0.7 are not shown.

(C) Top: agreement in SSP predictions between kTSP and AIMS for the models derived from respective training data sets (individual bars, corresponding to, e.g. the

classification agreement of a kTSP model versus AIMS model both developed in the Sato et al. [29] Illumina cohort applied to the Tarca et al. [35] test data set) for each

of the five test data sets (group of bars). Agreement is calculated as the proportion of all samples having the same SSP prediction by kTSP and AIMS, irrespective of

the histopathological classification. Bottom: corresponding Cohen kappa estimates for the comparison in C. (D) Averaged accuracies for individual test data sets in

a platform-wise manner based on training data origin. For classifiers trained on gene expression data run on the same platform, the outcomes (accuracies) across

individual test data sets were averaged for kTSP and AIMS, respectively. P-values are calculated using Kruskal–Wallis test for the set of groups defined within the hard

brackets. For comparisons between two groups each defined by hard brackets, e.g. in panel B, the Mann–Whitney test was used.

7 individual training data sets, no difference in classification
performance between the two methods was found (P = 0.8, accu-
racy; P = 0.8, balanced accuracy; Mann–Whitney–Wilcoxon test).
The merged kTSP classifier ranged in classification accuracy
from 0.85 to 0.97 (median = 0.91; IQR = 0.006) and balanced
accuracy from 0.84 to 0.97 (median = 0.91; IQR = 0.02) across the

five test data sets (Figure 2B; Supplementary Figure 1), whereas
the merged AIMS classifier ranged from 0.86 to 0.98 (accuracy
and balanced accuracy: median = 0.91; IQR = 0.02; Figure 2B;
Supplementary Figure 2).

Next we investigated whether kTSP and AIMS predicted sam-
ples similarly (irrespectively of underlying histopathology). The

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz008/-/DC1
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Figure 3. Molecular subtype case results. (A) Distribution of molecular subtype (representing the endpoint variable) across training and test data sets based on original

centroid classification according to Wilkerson et al. [10]. Top axis lists data set sizes. (B) Accuracy results in test data sets for models trained in the seven individual

training data sets plus a pooled training data set of all individual data sets (7DS) and applied to the six test data sets for kTSP and AIMS, respectively. (C) Top: agreement

in SSP predictions between kTSP and AIMS for the models derived from respective training data sets (individual bars, corresponding to, e.g. the classification agreement

of a kTSP model versus AIMS model both developed in the Sato et al. [29] Illumina cohort applied to the Tarca et al. [35] test data set) for each of the six test data sets

(group of bars). Agreement is calculated as the proportion of all samples having the same SSP prediction by kTSP and AIMS, irrespective of the basic centroid-based

molecular subtype classification. Bottom: corresponding Cohen kappa estimates for the comparison in C. (D) Averaged accuracies for individual test data sets in a

platform-wise manner based on training data origin. For classifiers trained on gene expression data run on the same platform, the outcomes (accuracies) across

individual test data sets were averaged for kTSP and AIMS, respectively. P-values are calculated using Kruskal–Wallis test for the set of groups defined within the hard

brackets. For comparisons between two groups each defined by hard brackets, e.g. in panel B, the Mann–Whitney test was used.

level of agreement (% of samples predicted similarly) was gen-
erally very high (>85%) for classifiers derived from individual
training data sets, except in the Bhattacharjee et al. [19] test data
set (Figure 2C). For the merged training data set (7DS), agreement
was strikingly high (>95%) between the two methods across the
five test data sets. Similar findings were found when computing

kappa values, with classifiers from the merged training data set
having extraordinarily high kappa values (Figure 2C).

To investigate gene expression platform dependency, the
outcomes (accuracy or balanced accuracy metrics) for each
trained classifier were merged (averaged) in a platform-wise
manner based on the training data origin, for each classifier
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method separately. Distribution of the seven training data sets
into three platform origins was as follows: Illumina, n = 3
data sets; Affymetrix, n = 3 data sets; RNAseq, n = 1 data set
(Table 1). Both kTSP and AIMS showed platform independency
for accuracy metrics (P = 0.7 or P = 0.6, respectively) and balanced
accuracy (P = 0.8 or P = 0.4, respectively) (Mann–Whitney–
Wilcoxon test; Figure 2D; Supplementary Figure 3). These results
imply that both methods can provide classifiers trained on gene
expression data derived from any platform to predict test data
of an unrelated platform.

Predicting molecular subtypes in lung adenocarcinoma
using single sample gene expression classifiers

In the molecular subtype case study arm, the classification accu-
racy of the seven kTSP classifiers trained from individual train-
ing data sets ranged from 0.37 to 0.91 (median = 0.82; IQR = 0.15)
across the six test data sets (Figure 3B; Supplementary Figure 4A).
Corresponding balanced accuracies ranged from 0.50 to 0.90
(median = 0.80; IQR = 0.15; Supplementary Figure 4B). The
number of gene decision rules behind the classifiers ranged
from 7 to 20 (Figure 3B). The trained kTSP classifiers performed
equally well on assigning test data sets into molecular subtypes
for both accuracy (P = 0.6) and balanced accuracy (P = 0.4, data
not shown) (Kruskal–Wallis test; Figure 3B).

Corresponding classification accuracy of the seven trained
AIMS classifiers ranged from 0.38 to 0.92 (median = 0.79;
IQR = 0.15) across test data sets (Figure 3B; Supplementary
Figure 5A). Balanced accuracies ranged from 0.51 to 0.91
(median = 0.76; IQR = 0.20; Supplementary Figure 5B). The
number of gene rules behind the classifiers ranged from
4 to 50 (Figure 3B). There was no difference in classification
performance between the trained AIMS classifiers for accuracy
(P = 0.3) or balanced accuracy (P = 0.2, data not shown)
(Kruskal–Wallis test; Figure 3B). Again, several of the trained
molecular subtype classifiers revealed a lower classification
performance when predicting the Bhattacharjee et al. [19] data
set (Supplementary Figure 4 and 5).

Comparison of the accuracy metrics obtained by the two
classification methods using the seven training data sets
revealed no significant difference between the methods for
accuracy (P = 0.4) or balanced accuracy (P = 0.2, data not
shown) (Mann–Whitney–Wilcoxon test; Figure 3B). Again, when
increasing the size of the training data set to 1429 cases by
merging all individual training data sets, no difference in
classification performance across the methods was found
for accuracy (P = 0.7) or balanced accuracy (P = 0.7) (Mann–
Whitney–Wilcoxon test). The merged kTSP classifier ranged
in classification accuracy from 0.44 to 0.91 (median = 0.80;
IQR = 0.12) and from 0.55 to 0.93 for balanced accuracy
(median = 0.81; IQR = 0.10) across the six test data sets (Figure 3B;
Supplementary Figure 4), whereas the merged AIMS classifier
varied between 0.44 to 0.91 in accuracy (median = 0.88; IQR = 0.09)
and from 0.55 to 0.92 for balanced accuracy (median = 0.85;
IQR = 0.14; Figure 3B; Supplementary Figure 5). The agreement
in predicted molecular subtype status between kTSP and AIMS
(irrespective of centroid status) was generally high in most test
data sets, again with the merged training data set showing stable
results in all test data sets (Figure 3C).

kTSP and AIMS both showed gene expression platform
independency when comparing accuracy (P = 0.2 or P = 0.5,
respectively) or balanced accuracy metrics (P = 0.09 or P = 0.3,
respectively) (Mann–Whitney–Wilcoxon test; Figure 3D; Supple-

mentary Figure 6). In this comparison, distribution of the seven
training data sets into four platform origins was as follows:
Illumina, n = 1 data set; Affymetrix, n = 4 data sets; Agilent,
n = 1 data set; RNAseq, n = 1 data set (Table 1). Here, only the
Affymetrix platform included averaged data points.

Comparison of derived gene pairs and rules between
AIMS and kTSP—histology case

When comparing the individual genes included in the derived
gene decision rules from the AIMS and kTSP methods for the
histology case example, we found that all rules used in the
AIMS classifiers came from 272 unique genes, whereas 53
unique genes were used to build all rules in the kTSP classifiers
(Figure 4A). The number of genes overlapping between the kTSP
and AIMS methods was 44 in total, with 83% (44/53) of the
kTSP genes and 16% (44/272) of the AIMS genes overlapping
(Figure 4A). Across all developed models for each method, only a
small number of genes were consistently selected in all models
(Figure 4A). This may not be surprising given the redundancy
and expression correlation of many genes within a specific
biological pathway allowing different genes with the same
biological function to be selected.

To focus specifically on one model, we chose the high-
performing merged training cohort model (Figure 2, 7DS). For
this model, 10 (KRT5, DSG3, DSC3, CLCA2, PKP1, ALDH3B1,
PLEKHA6, FMO5, PNMA2 and RORC) of 12 (83%) selected AIMS
genes overlapped with the kTSP genes (vice versa, 10/18, 56%;
Figure 4B). A total of 8 of the 10 genes were also significantly
overlapping with a previously reported expression signature for
histological classification of NSCLCs [20] (P = 1e-19). A functional
enrichment analysis (http://pantherdb.org) for the 10 genes
identified cornification as an enriched main biological process
with keratinization as subcategory (Supplementary Table 1).
This finding is in perfect agreement with KRT5 being a
diagnostic immunohistochemistry (IHC) marker of SqCC and
that keratinization is a hallmark of squamous cell types.

Next we turned to the expression pattern of the selected
gene pairs, specifically the effect size (difference in expression)
within a gene pair for the selected 7DS models. For each model
and gene pair (e.g. gene A > gene B), we formed the ratio of gene
A/gene B using the raw unprocessed gene expression estimates
for each sample and plotted these values for each sample in the
7DS training cohort and in an independent test set (GSE30219
[21]). Strikingly, all gene pairs formed an apparent bimodal
effect size distribution in both the training and independent
test data set for both kTSP and AIMS (Figure 4C and D and
Supplementary Figure 7 and 8 for all data). The bimodal
distribution was present also when stratifying patients by
technical gene expression platform (Supplementary Figure 11).
The identified gene pair rules, especially the KRT5<ITGA3
(AIMS) and the KRT5<ALDH3B1 (kTSP) rules, may also be
used to investigate cases that are misclassified by both SSPs
compared to the histopathological endpoint. Interestingly, a
large proportion of such cases, especially tumors that were
classified as AC by both SSPs but SqCC by histopathology,
appears to have a gene pair ratio expression in line with the
overall histopathological population of tumors with the same
class as predicted by the SSPs (Figure 5). This observation
suggests that such cases may actually be of the wrong endpoint
or possibly of mixed histological subtypes like adenosquamous
NSCLC. Taken together, these results support the biological
distinction between the endpoint classes (histology) and the
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Figure 4. Characteristics of optimized SSP gene pairs for the histology and molecular subtype cases. (A) Left: Venn diagram of overlap between kTSP and AIMS for all

genes identified in any of the created models for the histology case arm. Right: number of times a gene was identified in any of the models created in the histology

case arm for kTSP and AIMS, respectively. (B) Specific gene overlap of SSP genes between AIMS and kTSP for the SSP models created from the pooled training data set

(7DS) in the histology case arm. (C) Left: gene pair expression ratio for all samples in the pooled training data set (7DS) for one kTSP SSP gene pair (KRT5<ALDH3B1) for

the histology model. Right: gene pair expression ratio for the same gene pair in the independent test set GSE30219. In both instances, a bimodal distribution is seen.

(D) Similar data as in (C), but now for AIMS for the CLCA2<PNMA2 gene rule. Again, bimodal distributions are seen. (E) Left: Venn diagram of overlap between kTSP

and AIMS for all genes identified in any of the created models for the molecular subtype case arm. Right: number of times a gene was identified in any of the models

created in the molecular subtype case arm for kTSP and AIMS, respectively. (F) Specific gene overlap of SSP genes between AIMS and kTSP for the SSP models created

from the pooled training data set (7DS) in the molecular subtype case arm. (G) Left: gene pair expression ratio for all samples in the pooled training data set (7DS) for

one kTSP SSP gene pair (AURKA<CLIC5) for the molecular subtype model. Right: gene pair expression ratio for the same pair in the independent test set GSE30219. In

both instances, a unimodal distribution is seen. (H) Similar data as in (G), but now for AIMS for the CCNB2<SCTR gene rule. Again, unimodal distributions are seen.

‘simplicity’ of the classification problem and explain the high
performance of the different classifier models.

Comparison of derived gene pairs and rules between
AIMS and kTSP—molecular subtype case

In the molecular subtype case, 243 unique genes were found
across all AIMS models, whereas 140 unique genes were used

to build all rules in the kTSP classifiers (Figure 4E). The number
of genes overlapping was 116 in total, with 83% (116/140) of the
kTSP genes and 48% (116/243) of the AIMS genes overlapping
(Figure 4E). Similarly as for the previous case example, only a
small number of genes were consistently selected in all mod-
els for both methods across all developed models (Figure 4E).
To focus specifically on one model, we again chose the high-
performing merged training cohort model (Figure 3, 7DS). For this
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Figure 5. Characteristics of misclassified tumors in the histology case study arm. Gene pair rules were obtained from respective 7DS training data set for AIMS and

kTSP. (A) Gene pair ratios for the AIMS KRT5<ITGA3 gene rule stratified by tumor histology and SSP class. (B) Gene pair ratios for the kTSP KRT5<ALDH3B1 gene rule

stratified by tumor histology and SSP class. Density plots were created using the density() function in R.

model, 41 genes overlapped between both methods (Figure 4F),
strongly enriched for biological processes associated with cell
proliferation, cell division and mitotic spindle organization, e.g.
CCNA2, CCNB1, CDC20 and AURKA consistent with reports of
expression of proliferation-related genes being a main divider
between TRU and non-TRU cases [3, 22] (Supplementary Table 1).
Moreover, 27 out of the 41 genes were also overlapping with the
centroids originally published by Wilkerson et al. [10] and used
in this study for classification of AC into intrinsic molecular
subtypes (P = 1.55e-25).

A similarly performed effect size analysis using the raw
unprocessed gene expression estimates for each sample
revealed a different overall pattern for selected gene pairs
for both methods (7DS training, test set GSE30219 [21]).
Instead of a bimodal distribution, gene pair effect distributions
appeared more unimodal in both training and test data sets
(Figure 4G and H and Supplementary Figure 9 and 10 for all
data). This pattern remained also when stratifying samples
for technical platforms (Supplementary Figure 11). Together,
these observations are in line with our previous studies on the
Wilkerson subtypes and that proliferation when measured by
gene expression represents a unimodal distribution of values
[3]. These results highlight the difficulty of this classification
problem in that the subtypes are not equally distinct, providing
a background to the lower classifier performance observed
(Figure 3).

Discussion
In the present study, we have investigated an unresolved
methodological question in cancer bioinformatics, related to
the usage of (true) gene expression–based SSPs. Based on
two lung cancer classification scenarios, selected to represent
different levels of classification difficulty, we assess two SSP
methods (kTSP and AIMS) for performance, robustness, platform
independence and agreement.

The 1st classification scenario, a prediction of lung cancer AC
or SqCC histology, represents a hypothetically easy classification
problem, due to classes with separate and distinctive biology
(and hence different active transcriptional programs). For this
case example, we observed high accuracy (median ∼0.87–0.92)
in predictions across five test data sets for both SSP methods
versus the endpoint variable (tumor type by histopathology) for

nearly all developed models (Figure 2). These accuracies are in
line with what has been reported for non-SSP–based machine
learning/prediction methods in smaller studies [20]. Notewor-
thy, in this case example, both training and test data sets dif-
fer greatly in histological subtype proportions, cohort size and
also technical platforms used to generate the expression data.
Despite the high agreement, it should be noted that histopatho-
logical assessment of histology for both training and test sets
was conducted according to the WHO guideline relevant at the
time of the original studies, representing a source of varia-
tion/discrepancy. It may be expected that if histology predictions
had been reevaluated using the current WHO 2015 guidelines
through central histopathological review, a proportion of cases
would have been reclassified (e.g. in [23] ∼5% of cases were
reclassified between WHO 2004 and 2015 guidelines). This may
account for some of the discrepancy between histopathological
and gene expression–based predictions.

While it appears feasible to derive accurate SSPs from small
cohorts for this case example (involving distinct biological enti-
ties), we do note a greater stability (less variation) in accuracy for
test data sets when combining cohorts into larger meta-sets for
training for both SSP methods (Figure 2B), despite differences in
cohort size, technical platform and endpoint proportions. This
implies that the distinct transcriptional programs in the SSP
training override technical platform differences. One support for
this claim is the technical platform insensitivity of the gene ratio
distributions calculated for each method in both case study arms
(Supplementary Figure 11). This platform robustness is further
illustrated by the performance of the pooled models but also
the high performance of models derived from, e.g. unprocessed
RNAseq data, which predicts histology in microarray cohorts
generated on different commercial platforms with good accu-
racy (Figures 2C and 3C). Notably, pooling of gene expression
data sets has proven problematic since the early days of the
technique for more conventional types of analysis (involving
analysis of relative expression across samples). Besides provid-
ing an apparent option for pooling cohorts for training, SSP
models may also provide a more transparent option to also
pool validation cohorts to provide greater power in, e.g. outcome
analyses, as no consideration of validation cohort composition
is needed in the actual prediction. Hence, SSP methods, rely-
ing on relative expression within samples only, may thus have
a competitive edge for deriving stable classifiers. In addition,
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when pooling data sets for training, we observe that the two
SSP methods display extraordinary agreement in their individual
sample classification (Figure 2C). Interestingly, there is a large
overlap of genes selected for the gene rules between the two
different methods, especially considering that >7000 genes were
available for training. The overlap becomes even more striking
considering the biology of the selected genes, exemplified by
the models derived from the pooled training data set (combining
seven individual data sets). In these models, overlapping model
genes are highly enriched for biology related to keratinization, a
hallmark of SqCC, and also includes a diagnostic marker gene
(cytokeratin 5, KRT5) used in clinical practice today for IHC-
driven classification of NSCLC histology. Moreover, our deepened
analysis of the selected gene pairs for this case example reveals
that the type of gene pairs selected displays expression ratios
with an apparent bimodal distribution independent of technical
platform. The latter greatly facilitates prediction. Taken together,
for a gene expression classification problem of similar degree
of difficulty, it appears that if a sufficiently large training set
exists, the two tested methods perform very robust, are platform
independent, identify actual biology and are interchangeable.

The 2nd case example was chosen to be more challenging for
predictor development, namely a prediction of (reported) gene
expression–based molecular subtypes of AC [10, 11]. In contrast
to the 1st case example, we now operate within a single histo-
logical subgroup of lung cancer (AC). Although transcriptional
patterns of lung ACs have been studied for a long time (and
found to be heterogeneous), it is still debatable whether specific,
robust gene expression subtypes exist, and if so which they
are (see e.g. [22] for a metastudy-like comparison of different
reported subtypes). In this case example, we encounter mul-
tiple difficulties in predictor development, all of which likely
contribute to and explains the generally lower performance of
SSP methods versus the endpoint variable. Firstly, the technical
training endpoint class (TRU/non-TRU) itself is problematic as
it is defined from gene-centered data by NCC, a classification
approach shown by us and others to be sensitive to cohort
composition [2, 3, 24–27], if special considerations like exter-
nal/internal centering cohorts are not taken. Figure 3A illustrates
this problem by showing the highly similar endpoint class pro-
portions across data sets, something that would not be expected
given the difference in clinicopathological characteristics of the
individual cohorts (Table 1). Thus, the endpoint in the training
data sets is already from the start likely skewed/biased. Secondly,
the proposed molecular subtypes are not as distinct biological
entities compared to tumor histology types (see e.g. [3, 22] for
an in-depth analysis of the TRU/non-TRU subtypes). Typically,
classification of similar molecular subtypes, or for that matter
other subgroups defined from unsupervised analyses or a priori
defined patient groups, often involves making cut-points in
gene sets related to biological processes that are usually not
bimodal in expression. Examples of such processes include cell
proliferation or expression of immune-related genes (related to
e.g. the degree of immune cell infiltration in the tumor microen-
vironment) [3]. Indeed, in our gene rule effect size analysis
in this case example, we observed exactly this phenomenon.
Thus, we believe this case example represents an important
and frequent scenario that researchers often encounter when
attempting to transfer findings from, e.g. unsupervised analysis
into a predictor for supervised validation. Taken together, it thus
needs to be appreciated that a predictor cannot be better than
the underlying uncertainty in the training endpoint and that
this issue should be properly investigated prior to choosing the
validation approach.

Despite the challenges connected to this case example, we
do note median accuracies of the different developed models
between 0.76–0.88, although with a more pronounced variation
compared to the histological case example (Figure 3B). However,
it needs to be stressed that the underlying ‘biological’ truth in
the classification (prediction or endpoint variable) is difficult to
assess due to the nature of the problem at hand. Interestingly,
when comparing our median accuracies for the TRU/non-TRU
example versus results reported for the AIMS method in a similar
prediction setting in breast cancer (PAM50 subtypes, original
AIMS study [2]), they are in the same range (∼76% agreement).
Again, it does appear reasonable to develop predictors in/or
across combined data sets with different technical platforms
with high agreement in sample classification between methods
and overlapping genes in selected gene rules (Figure 3). Again,
this indicates a generally similar concept of interchangeability
between the methods provided a sufficient number of training
samples.

In addition to the presented results, one can pose multiple
additional questions about the impact of different low-level data
analysis steps versus SSP performance. We analyzed three such
questions through exploratory analyses. Firstly, one question
not originally addressed in our evaluation is whether different
number of input genes affects performance, i.e. feature selec-
tion prior to model optimization. To investigate this, we per-
formed a simple exploratory analysis for the 2nd case exam-
ple, repeating the entire model training scheme, but restrict-
ing the number of genes for training to only the overlapping
genes present in the original subtype centroids (n = 383 of
in total 506 original centroid genes). When comparing accu-
racy metrics obtained from models from the seven training
data sets across the test data sets, we did not see any clear
trend favoring the original or restricted (directed) gene approach
(Supplementary Figure 12). Secondly, we tested the impact of
standard normalization (as described in Supplementary Data)
versus no normalization by training kTSP SSPs on normalized
data instead of non-normalized data, followed by a prediction of
non-normalized validation sets. We observed similar accuracy
metrics as the original SSPs for both the histology and molecular
subtype case study arms (Supplementary Figure 13), indicating
that conventional normalization procedures (without gene cen-
tering) do not substantially influence SSP performance on a
group level. Thirdly, we investigated whether higher centroid
correlation resulted in higher prediction accuracies for AIMS
and kTSP in validation samples in the molecular subtype case
arm. A higher centroid correlation implies a more subtype-like
sample, and intuitively such cases could be thought to be more
easily (correctly) predicted. However, raising the centroid corre-
lation cut-off from the original highest value up to 0.4 changed
the overall prediction accuracy modestly, while simultaneously
causing up to ∼50% of the validation cases to be unclassi-
fied (i.e. without a subtype class due to too low correlation;
Supplementary Figure 14). While a trend of higher prediction
accuracy is clearly seen with more stringent centroid correlation
cut-off, the results indicate that SSPs can handle also cases with
lower similarity (correlation) to a subtype centroid.

In summary, we demonstrate that the two tested SSP meth-
ods performed as expected generally better for the hypothe-
sized simpler prediction problem. Importantly, we show that the
methods displayed good to very good platform independency,
they appear largely interchangeable for larger training cohorts,
they do appear to select gene rules with relevant biology and that
larger training sets (irrespective of expression platform) appear
to be beneficial for robustness. Clearly, the overall performance
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of these predictors appears mostly limited to the difficultness
of the classification problem at hand and likely less to the type
of model (as also noted previously by MAQC-II for other classi-
fier types [28]). An interesting future development in the field
would be rule-based SSPs accounting for effect size between
gene pairs. Our study shows that one can find combinations of
single small/large data set for training and test that would allow
either underestimation or overestimation of a developed clas-
sifier. Clearly, assessing traits of molecular predictors appears
more robust when using a combined training set and multi-
cohort evaluation as best practice. Irrespectively, we argue that
development of SSPs for promising gene signatures represents
an important way forward to bring gene expression–based pre-
dictions closer to clinical use.

Key Points
• SSPs represent an alternative to reduce problems

associated with classical predictor algorithms in a
gene expression–based prediction of various endpoints,
including molecular subtypes and risk predictors.

• SSPs benefit of large training data sets and appear to be
platform independent.

• For large training data sets, available prediction meth-
ods appear interchangeable regarding results for both
simpler and more difficult classification problems.

• SSPs are no remedy for difficult prediction problems
with less distinct endpoints to predict.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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