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Abstract
Purpose: Reducing X-ray dose increases safety in cardiac electrophysiology
procedures but also increases image noise and artifacts which may affect
the discernibility of devices and anatomical cues. Previous denoising methods
based on convolutional neural networks (CNNs) have shown improvements in
the quality of low-dose X-ray fluoroscopy images but may compromise clinically
important details required by cardiologists.
Methods: In order to obtain denoised X-ray fluoroscopy images whilst pre-
serving details, we propose a novel deep-learning-based denoising framework,
namely edge-enhancement densenet (EEDN), in which an attention-awareness
edge-enhancement module is designed to increase edge sharpness. In this
framework, a CNN-based denoiser is first used to generate an initial denois-
ing result. Contours representing edge information are then extracted using
an attention block and a group of interacted ultra-dense blocks for edge fea-
ture representation. Finally, the initial denoising result and enhanced edges are
combined to generate the final X-ray image. The proposed denoising frame-
work was tested on a total of 3262 clinical images taken from 100 low-dose
X-ray sequences acquired from 20 patients. The performance was assessed
by pairwise voting from five cardiologists as well as quantitative indicators. Fur-
thermore, we evaluated our technique’s effect on catheter detection using 416
images containing coronary sinus catheters in order to examine its influence as
a pre-processing tool.
Results: The average signal-to-noise ratio of X-ray images denoised with
EEDN was 24.5, which was 2.2 times higher than that of the original images.
The accuracy of catheter detection from EEDN denoised sequences showed no
significant difference compared with their original counterparts.Moreover,EEDN
received the highest average votes in our clinician assessment when compared
to our existing technique and the original images.
Conclusion: The proposed deep learning-based framework shows promising
capability for denoising interventional X-ray fluoroscopy images. The results
from the catheter detection show that the network does not affect the results
of such an algorithm when used as a pre-processing step. The extensive qual-
itative and quantitative evaluations suggest that the network may be of benefit
to reduce radiation dose when applied in real time in the catheter laboratory.
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1 INTRODUCTION

Minimally invasive cardiovascular catheterization proce-
dures, in which catheters are inserted through small inci-
sions, have an increasing role in the management of
cardiovascular diseases (e.g.,coronary,congenital,adult
structural, and arrhythmias) due to their high success
rates and low patient morbidity.1 X-ray fluoroscopy is
an indispensable tool in such interventional procedures,
as it offers continuous screening and desirable visual-
ization of catheters. However, X-ray imaging inevitably
involves ionizing radiation and exposure to this radia-
tion poses a non-negligible threat to both patients and
healthcare staff.2 To increase safety, the X-ray radia-
tion hazards can be reduced by decreasing the X-ray
output. Low-dose X-ray fluoroscopy is the most com-
mon approach to monitor the progress of interven-
tions. Fluoroscopy images obtained using lower X-ray
doses have decreased risks but increased noise and
artifacts. Excessive noise and artifacts can compromise
vital information in the images, which can impair clinical
decision-making.

To ensure acceptable image quality while keeping the
X-ray dose as low as possible, it is possible to use
denoising techniques. An effective denoising algorithm
for X-ray fluoroscopy imaging should increase signal-to-
noise ratio (SNR) whilst preserving structures of inter-
est, such as anatomical borders and devices. It should
also be fast enough to allow real-time implementation.
There have been several attempts for X-ray fluoroscopy
denoising, ranging from conventional filter-based meth-
ods to more recent learning-based methods. Conven-
tional filter-based denoising methods can be applied in
both the spatial and temporal domains. For example,
the authors in references 3 and 4 proposed the use of
Karhunen–Loève and wavelet transforms, respectively,
in the temporal domain for denoising X-ray fluoroscopy
images. In reference 5, an adaptive spatio-temporal fil-
ter based on the local conditional average of similar
pixels was designed and showed acceptable perfor-
mance on both synthetic and real data. Furthermore, to
improve the segmentation of the objects in multi-view
fluoroscopy frames, the authors in reference 6 proposed
a denoising algorithm based on directional binary masks
to enhance the separability of curvilinear structures. A
curvelet-based spatial filter associated with a first-order
temporal filter was developed in reference 7, however,
the obtained X-ray fluoroscopy sequences sustained a
motion blur during real-time denoising which would limit
the real-word applicability. In order to make better use
of both spatial and temporal information, they further

proposed a spatio-temporal filter which operates in a
multi-scale dimension.8 Despite the small computational
cost of these methods, they are prone to produce over-
blurry sequences due to limited samples for reference.
To make better use of prior knowledge, learning-based
methods have been further proposed and developed.
After the rise of deep learning theory in recent years,
convolutional neural networks (CNNs) have gradually
begun to dominate the image denoising field due to their
impressive potential for learning representation from
visual data.9–12 For example, the Denoising Convolution
Neural Network (DnCNN) proposed in reference 10 is
a benchmark for denoising of photographic and video-
graphic images. Recently, CNN-based frameworks13,14

have been proposed for X-ray fluoroscopy denoising.
For example, the authors in reference 13 proposed a
simple CNN-based framework to simulate the nonlin-
ear mapping between low-dose and higher-SNR X-
ray fluoroscopy image patches. The authors in refer-
ence 14 compared different existing CNN-based frame-
works on clinical and phantom data. Although, these
methods lose some detail, quantitative and qualitative
analyses have demonstrated that deep learning-based
approaches outperform well-established conventional
X-ray image denoising methods.

Inspired by the progress of the use of dense
connections15 on information reuse in CNN frameworks,
we proposed a multiple-path residual block, namely
ultra-dense block (UDB), for feature representation and
designed a denoising framework stacked with multi-
ple UDBs, namely the ultra-dense denoising network
(UDDN) in our previous work.16 We demonstrated that
this framework can visually remove noise on low-dose
X-ray fluoroscopy images and obtain a higher SNR
when compared to several state-of -the-art denoising
methods, for example, DnCNN. However, in our assess-
ments, the high-frequency details (e.g., image edges)
in the denoised images were reported as too smooth
by cardiologists. To alleviate this problem, more atten-
tion should be given to edge information during CNN-
based denoising. Attention mechanisms which aim to
extract specific features for various image processing
applications have become a topic of interest in the cur-
rent deep learning research field and have been widely
used in many medical image segmentation tasks.17–19

For image denoising problems, the authors in reference
20 integrated an attention mechanism into a CNN to
remove blind noise.So far there have been few attempts
to apply attention mechanisms to medical image denois-
ing tasks such as low-dose X-rays, and edge infor-
mation has not been paid special attention during
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model optimization. Motivated by this, in this paper,
we design an attention-awareness edge-enhancement
module to increase edge sharpness and propose a
novel CNN-based denoising framework, namely edge-
enhancement densenet (EEDN). This framework con-
sists of two main subnetworks: an initial denoiser and
an edge-enhancement network which is constructed
to enhance the image contours by optimizing the
edge map via an attention mechanism. Accordingly,
the initial denoised result and the enhanced edge
map can be combined to generate a composite output
image.

Unlike segmentation algorithms, where effectiveness
can be evaluated through accuracy, the evaluation of
denoising performance on real-world data is a challeng-
ing problem with high subjectivity. Besides visual per-
ception, peak signal-to-noise ratio (PSNR) and struc-
tural similarity index measure (SSIM) are usually used
as quantitative evaluation metrics to assess the model
performance on image denoising tasks.9–14,20 However,
both of these need reference/ground truth/clean images
to validate the effectiveness of the obtained model. In
real interventional procedures, we have only X-ray flu-
oroscopy images with no corresponding ground truth.
We chose local SNR to evaluate the denoising perfor-
mance of our network on a total of 3262 frames from 100
low-dose X-ray fluoroscopy sequences acquired during
20 cardiac pacing studies. Next, to evaluate the edge
restoration ability of EEDN, we compared the results
of EEDN to the previous UDDN using frequency spec-
trum analysis. We performed a clinical evaluation using
assessment by cardiologists via pairwise fluoroscopy
sequence voting and feedback. In addition, we have
applied catheter detection to the output of our frame-
work using 416 images frames from 8 X-ray fluoroscopy
sequences acquired during 5 left atrial radio-frequency
ablations. These images contained coronary sinus (CS)
catheters which were automatically detected to assess
the effect of our network as a pre-processing step for
algorithms that rely on high-frequency content.

2 METHODS

The goal of this framework is to learn a nonlinear
mapping function f between X-ray image patches from
low- to pseudo-high-dose X-ray images. Accordingly, to
establish this nonlinear mapping, sufficient low- and
high-dose X-ray image pairs are required as input and
output, respectively, and an effective framework can be
designed. In this section, we present the methodology
for our X-ray fluoroscopy sequence denoising frame-
work, including the preparation of training data, the over-
all framework of EEDN and details on its attention-
awareness edge-enhancement module. We provide
four complementary evaluation methods to assess this
framework.

2.1 Noise simulation

There are several sources of noise in an X-ray image
obtained using a digital detector.These include quantum
noise (both from primary and scattered photons), elec-
tronic noise, and digitization noise. At the lowest image
dose settings that are typically seen in cardiovascular
catheterization procedures, the noise is quantum lim-
ited and follows a Poisson distribution. We first add syn-
thetic Poisson noise to relatively high-dose X-ray images
(ground truth) I’ to generate their low-dose X-ray coun-
terparts as follow:

Iinput (u, v) = I′ (u, v) + Poisson (𝜆) (1)

where Iinput (u, v) is a pixel in the noisy image, I’ (u, v) is
the corresponding pixel in the ground truth image; Pois-
son(λ) is a random number generated from a Poisson
distribution with mean λ = μα/100; μ is the percentage
noise level and α is the mean intensity value of all pix-
els in I’. Figure 1 shows a chest X-ray image taken from
a publicly available chest X-ray dataset, ChestX-Ray821

(CXR), with additive synthetic noise going from the orig-
inal image (α = 0%) to α = 60%.

On a cardiac catheterization X-ray system, there are
two-foot pedals used to control which exposure is used.
In this paper, we refer to the low-dose exposure as fluo-
roscopy and the other, higher-dose exposure, as acqui-
sition. The actual dose settings are pre-programmed
by the service engineer and are particular for differ-
ent procedures and operator preferences. According to
an empirical observation at our institution, the differ-
ence seen between the acquisition and the fluoroscopy
mode for cardiac electrophysiology procedures would
correspond to appropriately 60% additive noise. Previ-
ous denoising methods for natural images presented
in references 9–11 and 20 usually use random or fixed
noise levels for training, which does not match the noise
level of the X-ray fluoroscopy sequences used in clini-
cal practice. Therefore, to promote the clinical applica-
bility of our CNN-based framework to a variety of X-
ray systems and system settings, Gaussian-distributed
noise variation was proposed in reference 16, and we
also adopt this training strategy for our current work. We
generated synthetic Poisson noisy images with the num-
ber of images, Nx, at different noise levels, x%, follow-
ing a Gaussian distribution centered on the mean noise
value of 60%:

Nx = NT

x+𝛿∕2

∫
x−𝛿∕2

1√
2𝜋𝜎

e−
(x−60)2

2𝜎2 dx (2)

where NT is the total number of training images, δ is the
interval width, and σ is the standard deviation of the dis-
tribution, which was set to 20%.
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F IGURE 1 An example of adding simulated noise to a chest X-ray image. Left: Image acquired at a relatively high dose. Right: Image with
60% simulated added noise

F IGURE 2 Outline of the proposed EEDN

2.2 Network architecture

As illustrated in Figure 2, the proposed framework con-
sists of an initial denoiser and an edge-enhancement
subnetwork. First, an initial denoiser is used to generate
an intermediate denoised result Iinter. This block is sim-
ilar to our previous UDDN but simplified in complexity
to keep the overall network complexity the same. Sec-
ond, we extract and enhance image contours of Iinter by
compensating for fine edge information with an atten-
tion block and a group of interacted UDBs for edge fea-
ture representation. Finally, the intermediate result and
enhanced edges can be combined to generate a new
edge-enhanced denoised image.

For the initial denoiser, we take the UDDN architec-
ture design in reference 16 as a reference. Since the

feature extraction performance of UDDN will reach a
ceiling with the increase of UDBs, our initial denoiser
has half the number of UDBs to reduce the com-
putational burden. UDDN enables our framework to
generate a denoised but marginally edge-smoothed
intermediate result as our edge extraction base. For
edge enhancement, the Laplacian operator22 is used
to extract the edge map Iedge of our intermediate
result Iinter. Then this edge map Iedge is enhanced to
produce Iedge+ through an attention-awareness edge-
enhancement module. Finally, we generate a new
denoised result Ioutput based on the previous result Iinter
as follows:

Iinter +
(
Iedge+ − Iedge

)
= Ioutput (3)
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F IGURE 3 Outline of the attention block based on edge map

2.3 Edge enhancement

Edge enhancement aims to extract and enhance edge
features instead of paying equal attention to all fea-
tures. We design a specific attention mechanism based
on the obtained edge map and propose an attention-
awareness edge-enhancement module. The Laplacian
operator is first utilized to label the image edges in Iinter
before enhancement. The Laplacian L (x, y) of Iinter (x,
y) can be defined from its second derivatives and is for-
mulated as follows:

L (x, y) =
𝜕2 Iinter (x, y)

𝜕2x
+
𝜕2 Iinter (x, y)

𝜕2y
(4)

The Laplacian operator possesses isotropy and rota-
tional invariance and produces a steep zero-crossing
point at edges. Accordingly, the edges can be deter-
mined and the edge map Iedge can be generated by
convolving Iinter (x, y) with the Laplacian given in Equa-
tion (2). Then two stride convolution layers are added
to map the extracted edge map to a low-dimensional
domain for reducing the calculation burden. Symmet-
rically, two deconvolution layers are added to map the
edge features, jointly generated by multiple UDBs and
an attention block,back to a high-dimensional domain to
obtain Iedge+. On the one hand, UDBs designed in refer-
ence 16 are concatenated to extract the fine information
based on the edge map. On the other hand, we simulta-
neously construct an attention block, as shown in Fig-
ure 3, to learn features with discrimination so that our
module can be guided to focus on the real edge infor-
mation. Our attention block has six stacked convolution
layers (filter size is 3 × 3) followed by the activations,

and this design enables a further feature extraction on
edge information. After that, there is a sigmoid function
worked as a threshold to provide learning discrimina-
tion. The weight matrix generated is used to highlight
the edges and can be merged with the extracted results
of the UDBs to generate a new map. At the end of our
framework, we replace the over-smooth edges in Iinter
with the enhanced edge maps to obtain a more realistic
denoising result.

2.4 Model optimization

According to previous CNN-based image denoising
methods,9–14,20 model optimization depends on itera-
tively minimizing the distance between the output image
and the ground truth based on the feature level. As illus-
trated in Figure 1, Ioutput is our final denoising result
and I’ represents the corresponding ground truth. In this
framework, we use a loss function as follow:

Lcontent = arg min
n∑

i=1

𝜌
(
I′ (i) − Ioutput (i)

)
(5)

where 𝜌(x) =
√

(x2 + 𝜀2) represents the Charbonnier
penalty function23 (a differentiable variant of the l1-
norm) and the compensation parameter ε is empirically
set to 10−3 according to reference 16.

2.5 Evaluation

For image denoising, the evaluation of model perfor-
mance on real-world data is a difficult task, as image
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quality measurement is greatly affected by subjective
opinions. Besides visual perception, extensive qualita-
tive and quantitative evaluations should be performed
to demonstrate the validity of a proposed method.

2.5.1 Quantitative indicators

Similar to many previous representative denoising
works,9–14,16,20 we select two commonly used evalua-
tion metrics, PSNR and SSIM, to validate the effective-
ness of EEDN. Both need ground truth images for com-
parison, and the calculation of PSNR is based on mean
squared error (MSE).For an n-bit image I and its ground
truth I’, its MSE and PSNR (in dB) can be calculated as

MSE =
1

M × N
||||I − I′||||2 (6)

PSNR = 10log10
(2n − 1)2

MSE
(7)

where M and N represent the width and height of I (x,
y), respectively. SSIM can be calculated as

SSIM
(
I, I′

)
=

(2𝜇I𝜇I′ + c1) (2𝜎II′ + c2)(
𝜇I

2 + 𝜇I′
2 + c1

) (
𝜎I

2 + 𝜎I′
2 + c2

) (8)

where μ is the mean pixel intensity, σ is the standard
deviation/covariance, and c1 = k1(2n-1) and c2 = k2(2n-
1), with k1 = 0.01 and k2 = 0.03 by default.

These evaluation metrics can only be used for the val-
idation of model effectiveness based on synthetic X-ray
datasets which have ground truth, and we have only X-
ray fluoroscopy images with uncertain noise levels dur-
ing interventions. In this paper, we chose local SNR for
clinical dataset evaluation. The local SNR using image
patches is calculated by taking the ratio of the mean
pixel intensity,μ, to the standard deviation,σ, of the pixel
intensity in each patch

SNR =
𝜇

𝜎
(9)

we then compute the mean local SNR by averaging
all the patches in an image. The patch size was chosen
to be 16 × 16 pixels.

2.5.2 Frequency spectrum analysis

The frequency spectrum is commonly used to character-
ize the spatial frequency content of images. To further
evaluate the edge restoration ability of our framework,
we compared the results of EEDN to the results pro-
duced by the previous UDDN using frequency spectrum

analysis. To compute the frequency spectrum of a sin-
gle frame I (x, y), we first apply the Fourier transform to
this image to obtain its representation in the frequency
domain as:

F (u, v) =
M−1∑

0

N−1∑
0

I (x, y) e
−j
(

ux
M
+

vy
N

)
(10)

where M and N represent the width and height of I (x,y),
respectively. After this, we obtain the frequency power
spectrum by

S (r) =
1
n

∑
v

∑
u

|F (u, v)| ∀ r ≤ √
u2 + v2 < r + 1,

(11)
where S represents the average magnitude of spatial
frequency r in I (x, y) and n is the number of elements
in the annulus going from r to r+1. We then rescale the
frequencies to cycles per millimeter using the Nyquist
frequency determined from the X-ray image DICOM
header (using the detector element spacing, the source-
to-image distance and the source-to-entrance distance).
We compare the frequency spectra of X-ray images
generated by the different algorithms to understand their
frequency transfer properties and examine their ability
to preserve useful information. The useful information
consists of anatomical cues, especially features of ver-
tebrae, ribs, and the heart borders, and also the various
devices that are being manipulated. In order to assess
where in the frequency spectrum this information lies,
we selected a sample of 10 clinical images (from the
CL2 dataset, see Table 1) that contained a range of
these features and asked five experienced observers
to select lower and upper spatial frequency limits for
each image that resulted in preservation of these fea-
tures after bandpass filtering. A visual interactive inter-
face was developed using Matlab that presented the
original image,allowed the observers to select the lower
and upper spatial frequencies of the bandpass filter and
showed the image after bandpass filtering (Figure 4).
The frequency limits were saved for all observers and
processed to yield the overall range (minimum and max-
imum spatial frequencies of the entire dataset) and a
range where all observers agreed,which we call the con-
sensus band.

2.5.3 Clinician assessment

To evaluate and compare the denoising performance
of the proposed EEDN with the previous UDDN, 10 X-
ray fluoroscopy sequences (consisting of 407 frames in
total) from our clinical datasets (CL2, see Table 1) were
used for clinical assessment by five cardiologists at St.
Thomas’ hospital and the Brompton hospital, London.
Three types of sequences were involved in the clinician
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TABLE 1 Experimental dataset summary

Dataset Description
Devices/features of
interest Mean local SNR

Average
Nyquist
frequency
(cycles/mm) Network training Network testing

CXRa Standard diagnostic chest
X-ray

Standard features seen
in a chest X-ray

23.5 1.26 5000 images used
to generate

300 images

24 30 805 patients
112 120 images
1024 × 1024

Frontal view

A mixture of no findings
and pathologies

calculated from 100
random images

30 443 random
patches
(96×96)+Synthetic
noise

300 central
patches (576 ×

576)+Synthetic
noise

CL1b Left atrial radio-frequency
ablation23 patients

23 fluoroscopy sequences
3.75-7.5 fps
1013 images
512 × 512
PA, LAO30◦

Coronary sinus
catheter, standard
radio-frequency
ablation catheter,
lasso catheter,
trans-septal puncture
needle

13.4Calculated from
100 random
images

1.0 800 images used
to generate10 554
random patches
(96 × 96) +
synthetic noise

Not used

CL2b Pacing study20 patients100
fluoroscopy sequences

3.75 fps
3262 images
512 × 512
PA, RAO30◦, LAO30◦

Pacemaker box,
standard pacing lead,
temporary pacing
wire, multi-polar
pacing wire, contrast
injection

11.3Calculated using
the entire dataset

1.0 Not used 3262 images3262
central patches
(400×400)

CDb Left atrial radio-frequency
ablation5 patients8
fluoroscopy sequences

3.75-7.5 fps
416 images
512 × 512
PA

Coronary sinus
catheter, standard
radio-frequency
ablation catheter,
lasso catheter,
trans-septal puncture
needle

12.2 calculated
using the entire
dataset

1.0 Not used 416 images416
central patches
(384∼432 ×

384∼432)

Abbreviations:CD, catheter detection data; CL1, catheter laboratory data 1; CL2, catheter laboratory data 2; CXR, chestX-Ray8.
aThe CXR dataset were acquired on various systems.
bThe CL1, CL2, and CD images were acquired on a Philips Allura Xper FD10 system.

F IGURE 4 Example images from observer study to determine spatial frequencies of useful content. Left column: two examples from the
CL2 dataset. Second column: log magnitude of Fourier transform of the original image. Third column: Results of bandpass filtering. Right
column: User-adjustable bandpass filter. The observer selected 0.051-0.254 cycles/mm for the top image and 0.079-0.289 cycles/mm for the
lower image. The scales are the pixel coordinates from the top left corner
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assessment: the original X-ray fluoroscopy sequences
and the denoised results of UDDN and the new EEDN.
This evaluation had to be performed remotely during
the covid-19 pandemic and was standardized as far as
possible. Each sequence was formulated into a non-
compressed AVI file and pairs were presented side-by-
side using a Microsoft Powerpoint presentation, each
slide having the paired videos running synchronously.
On the first slide there were a set of instructions. The
cardiologists were told to view the images on 15-inch
screen at a distance of 1 m in a darkened room, that
each pair of fluoroscopy sequences was generated
using the same X-ray dose, and that they should select
the preferred sequence from the pair or select both if
equally preferred. If one sequence was more accept-
able a score of 1 was assigned to it and a score of 0
to the other. If both were given equal preference or no
difference was observed,a score of 0.5 was assigned to
each. There was a total of 40 paired comparisons. Ten
pairs of sequences were identical to check for reliability
in the cardiologists’ opinion. The remaining 30 pairs had
cross-comparison of each of the three different types
of sequences, with each type appearing 20 times in
total.

2.5.4 Catheter detection evaluation

To validate that UDDN and the proposed EEDN do not
deteriorate the performance of commonly applied com-
puter vision algorithms, the catheter detection method
in reference 24 was applied to 416 denoised X-ray
images (from the CD dataset, see Table 1) to extract
the centerline of the CS catheter which was visible
in each of these images. Figure 5 gives an example
of catheter detection applied to denoised images. The
detection error is defined as the average of shortest dis-
tances from points on the detected centerline to the cor-
responding annotated line, which was manually anno-
tated by a clinical expert.24 The same catheter detection
method then was applied to the original X-ray images
and the detection errors were also computed against the
annotated lines.

3 EXPERIMENTS

In this section, we first introduce the basic experimental
environment, including the experimental settings, X-ray
datasets,and model parameters (Section 3.1).After that,
we compare EEDN with the previous UDDN using a syn-
thesized Poisson noise dataset and PSNR and SSIM
as quantitative indicators (Section 3.2). Then, our net-
works are tested on a clinical dataset using mean local
SNR, frequency spectrum analysis, and clinician voting
as quantitative indicators (Sections 3.3 and 3.4). Finally,
we evaluate catheter detection applied on X-ray images

denoised by EEDN and UDDN as well as the original
images (Section 3.5).

3.1 Datasets and setup

We performed our experiments using a publicly-
available dataset of chest X-ray images, CXR,21 and
three clinical X-ray image datasets acquired at St.
Thomas’ hospital during cardiac electrophysiology pro-
cedures. Table 1 shows the details of the data used for
experiments. The clinical datasets were obtained during
studies for which the patients gave informed consent
for allowing the images to be used for research. The
clinical images contained the usual anatomical struc-
tures seen in the thorax as well a variety of med-
ical devices, such as pacing wires, electrophysiology
catheters, pacemaker leads, pacemakers, sternal wires,
ECG electrodes, and so on. The CL1 dataset consisted
of 23 fluoroscopy sequences taken during left atrial
ablation procedures. The CL2 dataset consisted of 100
fluoroscopy sequences taken during pacing studies.The
CD dataset consisted of eight fluoroscopy sequences
taken during left atrial ablation procedures, each having
a CS catheter visible. Moreover, we calculated the mean
SNR using Equation (9) to give an indication of relative
dose for each of the datasets.

Based on the settings presented in reference 25, we
inputted one batch consisting of 16 patches with the size
of 96 × 96 from the training datasets (CXR & CL1) to our
network each time. The CXR data was used for training
because it has a high SNR and serves as a surrogate
for clean images. The training was diversified by using
a range of noise levels, as outlined in Section 2.1. and
by including the clinical data from CL1. Although adding
more and diverse training data is advantageous, it is lim-
ited by execution time. The learning rate was initialized
to 10−3 for all layers and halved for every 2000 steps up
to 10−6 and we selected PReLU26 as our activation fol-
lowing each convolution layer. To ensure a fair compari-
son, the number of UDBs in UDDN and EEDN are both
6 in total. In our experiments, we used a computer with
an NVIDIA GTX1060Ti GPU with 6.0 Gb RAM, an Intel
I7-8700K CPU @ 3.20 GHz with 16.0 Gb RAM for train-
ing and testing. Our model was implemented on Tensor-
Flow with Python3.6 under Windows10, CUDA9.0 and
CUDNN5.1.

3.2 Validation

In this part, we compared EEDN with UDDN,16 our pre-
vious network, which is a symmetrical architecture net-
work stacked with six UDBs. The denoising results on
two of the test chest X-ray images created by adding
fixed 60% noise are displayed in Figure 6. The ability
of both networks to denoise is clearly evident but the
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F IGURE 5 An example of catheter detection applied to a denoised X-ray image by UDDN. The yellow line is the centerline of the detected
CS catheter. Left: The denoised image. Right: The result of catheter detection

F IGURE 6 An example of the denoising results on the CXR test data using the noise level of 60%

differences are not easy to visually interpret. The dif-
ference image shows that networks do not differ in low
spatial frequency regions, such as within the liver and
the heart shadow, but do differ in edge regions. For the

evaluation metrics (PSNR and SSIM) on the entire 60%
added noise dataset, EEDN achieved a better PSNR
and SSIM (41.50 dB and 0.9161), which were 0.15 dB
and 0.002 higher than those of UDDN.
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F IGURE 7 The PSNR and SSIM comparison of denoising results on the CXR test dataset at varying input noise levels using two
CNN-based methods: UDDN16 and the new EEDN. The number of sample images used to calculate each mean value was 30 and the error
bars show the 95% confidence intervals

Furthermore, to validate the ability of the CNN-based
algorithms, we tested these denoising models with a
range of noise levels from 10% to 100%. Figure 7
shows the results in terms of PSNR and SSIM. It is
seen that EEDN exhibited higher PSNR and SSIM
than UDDN. The differences in PSNR were signifi-
cant over the entire noise level range but the differ-
ences in SSIM were only significant at the lower noise
levels.

3.3 Clinical applications and analysis

The run time of EEDN is 0.17s/frame on average under
the conditions of our equipment, which similar to that
of UDDN. Four examples of denoised images from the
CL2 dataset are shown in Figure 8. The ability of both
networks to denoise the original images can clearly
be seen. However, differences in denoising capability
are difficult to interpret visually on single images and
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F IGURE 8 A visual comparison of denoising results on CL2 for UDDN and EEDN for four example images

therefore these differences are better understood via
the quantitative analysis and the clinical observations
on dynamic denoised sequences. Table 2 shows the
denoising results on the entire CL2 dataset in terms
of the mean local SNR results and relative dose, and
the relative dose is based on the assumption that SNR
is proportional to the square root of dose. Both EEDN
and UDDN showed statistically significant (p < 0.01)
improvements in SNR when compared to the original
images but there was no statistical difference between
the EEND and UDDN results.

The performance of these CNN-based denoising
methods cannot be evaluated comprehensively by using
the mean local SNR metric alone. Therefore, we cal-
culated the frequency spectrum for each image in the
CL2 dataset, including input X-ray fluoroscopy images,
UDDN results and EEDN results.The Nyquist frequency
for these images ranged from 0.93 to 1.22 cycles/mm.
We computed the mean frequency spectrum by aver-

TABLE 2 Denoising results on the CL2 dataset

Algorithm Mean SNR ± 1SD Relative dosea

EEDN 24.5 ± 5.7 4.7

UDDN 24.6 ± 5.7 4.7

Original image 11.3 ± 1.5 1.0

Abbreviation:SNR, signal-to-noise ratio.
aThe relative dose is based on the assumption that SNR is proportional to the
square root of dose.

aging over the entire 3262 images. We then computed
the frequency magnitude ratios to characterize the fre-
quency transfer of the UDDN and EEDN networks.From
our observer study, we determined that useful infor-
mation, in terms of anatomical cues and devices, lies
between 0.02 and 0.39 cycles per mm (grey line on Fig-
ure 9). These were the extrema of the limits selected by
our observers.All observers agreed that useful informa-
tion lies between 0.10 and 0.23 cycles per mm (black
line on Figure 9). Figure 9 shows the frequency trans-
fer function of UDDN and EEDN when compared to the
input data (orange and blue lines, respectively) and also
the relative transfer function between UDDN and EEDN
(green line). Both UDDN and EEDN cause increasing
suppression of frequencies up to the Nyquist frequency.
The green line shows that EEDN preserves frequen-
cies in the useful band by providing a relative increase
of up to 5% when compared to UDDN. This effect is
likely due to the addition of the edge-enhancement block
in EEDN. There is relatively better suppression of fre-
quencies above the useful band by EEDN when com-
pared to UDDN. The trend in the error bars shows
that there is more per-image variability as spatial fre-
quency increases.This would indicate that the frequency
response of the networks is more consistent at lower
spatial frequencies when compared to higher spatial fre-
quencies. This would also indicate that the networks
could not readily by modeled using a frequency transfer
function and the response is image content dependent.
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F IGURE 9 Mean frequency spectrum ratios. Error bars are shown for EEDN/UDDN using ±1SD. Note that the 95% confidence intervals for
the mean values would be too small to be visible on these graphs since 3262 samples were used to calculate each mean ratio. The dotted black
line is magnitude ratio = 1

TABLE 3 Reliability and voting results on CL2 dataset per
cardiologist

Reliability (%) Voting results

UDDN: 14.5

Cardiologist 1 80 EEDN: 15.5

Original image: 0

UDDN: 11

Cardiologist 2 90 EEDN: 14

Original image: 5

Cardiologist 3 UDDN:11

90 EEDN: 14.5

Original image: 4.5

Cardiologist 4 UDDN: 13

90 EEDN: 15

Original image: 2

Cardiologist 5 UDDN: 14

80 EEDN: 15.5

Original image: 0.5

Average UDDN: 12.7

86 EEDN: 14.9

Original image: 2.4

3.4 Clinician assessment

The voting scores were totaled across the five cardiol-
ogists at St. Thomas’ and the Brompton hospitals, and
are presented in Tables 3 and 4.The reliability in Table 3
was assessed by using the percentage of correctly iden-

TABLE 4 Voting results per sequence

Original
sequence UDDN EEDN

Original Image 0.60±0.50 UDDN > Input
p < 0.001

EEDN > Input
p < 0.001

UDDN 3.18 ± 1.29 EEDN>UDDN
p = 0.07

EEDN 3.73 ± .99

Notes:The leading diagonal in shows the mean±1SD voting score per sequence
pair for each of original sequence, UDDN, and EEDN (n = 20), and the off -
diagonal elements show the results of hypothesis testing for difference in mean
values using t-tests.

tified pairs of sequences that were identical. All car-
diologists were deemed to have provided reliable vot-
ing,with the minimum reliability score being 80%.EEDN
and UDDN were statistically preferred over the input
sequences (p < 0.001). EEDN sequences were statisti-
cally preferred over UDDN sequences but with less sig-
nificance (p = 0.07).

3.5 Catheter detection

We further tested our models on a clinical catheter
detection dataset (CD).The results are shown in Table 5.
There was no statistical difference in any of the met-
rics, that is, mean error, failure rate, and detected length,
between the original images and the denoised images
from UDDN and EEDN.This indicates that application of
these networks does not aid the task of catheter detec-
tion but also that it does not adversely affect this task.
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TABLE 5 Catheter detection results on CD dataset

Error ± 1SD (mm) Failure rate (%) Detected length (%)
Sequence Original UDDN EEDN Original UDDN EEDN Original UDDN EEDN

1 0.40 ± 0.07 0.36 ± 0.11 0.35 ± 0.10 0 0 0 92 94 95

2 0.51 ± 0.16 0.49 ± 0.24 0.52 ± 0.29 0 0 0 89 91 90

3 0.59 ± 0.23 0.55 ± 0.32 0.56 ± 0.31 0 0 0 95 96 96

4 0.73 ± 0.28 0.78 ± 0.34 0.77 ± 0.30 11 7 9 86 81 83

5 0.62 ± 0.17 0.64 ± 0.17 0.64 ± 0.23 7 7 7 84 88 82

6 0.74 ± 0.27 0.73 ± 0.25 0.76 ± 0.33 8 4 8 82 84 81

7 0.50 ± 0.09 0.50 ± 0.17 0.49 ± 0.14 0 0 0 94 95 94

8 0.53 ± 0.10 0.47 ± 0.17 0.43 ± 0.07 0 0 0 90 93 95

Mean 0.58 ± 0.22 0.57 ± 0.28 0.57 ± 0.28 3 2 3 89 90 90

4 CONCLUSION AND DISCUSSION

Recently,some attempts for X-ray fluoroscopy sequence
denoising have shown the potential for deep learn-
ing methods. In our previous work, we proposed a
CNN-based image denoising method, UDDN, which
has achieved superior performance on catheter lab-
oratory X-ray data in terms of image SNR and clin-
ician assessment when compared to other methods,
for example, DnCNN. However, there were limitations
to this method. According to the cardiologists inter-
viewed, the denoised images by UDDN are some-
times too smooth,especially the edge information,which
makes the X-ray fluoroscopy sequences looks slightly
artificial. To obtain X-ray fluoroscopy sequences with
less loss of useful information, we proposed a novel
denoising framework, EEDN, in which an attention-
awareness edge-enhancement module was designed
to increase the edge sharpness. This framework was
designed to extract and enhance the contours of X-
ray fluoroscopy images by optimizing their edge maps
through an attention mechanism. Compared to our pre-
vious framework, EEDN provides an edge boost to
an initial UDDN denoising result without increasing
the total computational cost. To validate the effective-
ness of EEDN, extensive qualitative and quantitative
evaluations have been performed. For the synthesized
Poisson noise dataset (CXR), EEDN achieved higher
PSNR and SSIM than previous CNN-based denois-
ing method, UDDN, but the differences in SSIM were
only significant at the lower noise levels. For clini-
cal data (CL2), EEDN achieved a comparative SNR
to UDDN, but it showed greater ability for preserva-
tion of useful information, as indicated by the fre-
quency spectrum analysis. According to the percep-
tion of cardiologists, sequences denoised by EEDN are
preferred than those denoised by the previous UDDN.
For the catheter detection dataset (CD), EEDN does
not significantly alter the results of this type of image
processing.

Our current results are limited to application in car-
diac electrophysiology procedures and application to
other procedures where the X-ray images may be from
different X-ray systems and with different dose set-
tings, remains to be assessed. We hypothesize that
this framework could be applied in other settings, espe-
cially since the network training can be diversified
and adapted. We also aim to test the approach in
real time in the catheter laboratory by implementing
the moderate increase in execution speed that would
be required to meet the typical frame rates that are
used during electrophysiology procedures. Overall, this
architecture provides a potentially useful approach to
dose reduction for X-ray guided cardiac interventional
procedures.

ACKNOWLEDGMENTS
We would like to thank all the cardiologists at St.Thomas’
and Brompton hospitals who participated in the clini-
cal assessment and all patients who allowed their X-
ray fluoroscopy sequences to be used for this research.
This work was supported by the King’s College London-
China Scholarship Scheme, the National Institute for
Health Research Biomedical Research Centre at Guy’s
and St. Thomas’ NHS Foundation Trust and King’s
College London and the Wellcome/EPSRC Centre for
Medical Engineering [WT 203148/Z/16/Z]. The views
expressed are those of the authors and not necessar-
ily those of the NHS, the NIHR, or the Department of
Health.

CONFL ICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1. Manda YR, Baradhi KM. Cardiac catheterization risks and com-

plications.In:StatPearls [Internet].Available:https://www.ncbi.nlm
.nih.gov/books/NBK531461: StatPearls Publishing; 2021 Jan–.
PMID: 30285356; 2020.

2. Shope TB. Radiation-induced skin injuries from fluoroscopy.
Radiographics. 1996;16(5):1195-1199.

https://www.ncbi.nlm.nih.gov/books/NBK531461
https://www.ncbi.nlm.nih.gov/books/NBK531461


EEDN X-RAY SEQUENCE DENOISING 1275

3. Wang J, Zhu L, Xing L. Noise reduction in low-dose X-Ray flu-
oroscopy for image-guided radiation therapy. Int J Radiat Oncol
Biol Phys. 2009;74(2):637-643.

4. Tomic M, Loncaric S, Sersic D. Adaptive spatio-temporal denois-
ing of fluoroscopic X-ray sequence.Biomed Signal Process Con-
trol. 2012;7(2):173-179.

5. Cesarelli M,Bifulco P,Cerciello T,Romano M,Paura L.X-ray fluo-
roscopy noise modeling for filter design. Int J of Comp Ass Radiol
Surg. 2013;8(2):269-278.

6. Wagner M, Yang P, Schafer S, Strother C, Mistretta C.
Noise reduction for curve-linear structures in real-time fluo-
roscopy applications using directional binary masks. Med Phys.
2015;42(8):4645-4653.

7. Amiot C, Girard C, Chanussot J, Pescatore J, Desvi-
gnes M. Curvelet based contrast enhancement in fluoro-
scopic sequences. IEEE Trans Med Imaging. 2015;34(1):
137-147.

8. Amiot C, Girard C, Chanussot J, Pescatore J, Desvignes M.
Spatio-temporal multiscale denoising of fluoroscopic sequence.
IEEE Trans Med Imaging. 2016;35(6):1565-1574.

9. Mccann MT, Jin KH, Unser M. Convolutional neural networks for
inverse problems in imaging:a review. IEEE Signal Process Mag.
2017;34(6):85-95.

10. Zhang K, Zuo W, Chen Y, et al. Beyond a Gaussian denoiser:
residual learning of deep CNN for image denoising. IEEE Trans
Image Process. 2017;26(7):3142-3155.

11. Su Y, Lian Q, Zhang X, Shi B, Fan X. Multi-scale cross-path con-
catenation residual network for Poisson denoising. IET Image
Proc. 2019;13(8):1295-1303.

12. Zhao T, Mcnitt-Gray M, Ruan D. A convolutional neural network
for ultra-low-dose CT denoising and emphysema screening.Med
Phys. 2019;46(9):3941-3950.

13. Matviychuk Y, Mailhé B, Chen X, et al. Learning a multi-scale
patch-based representation for image denoising in X-ray fluo-
roscopy. IEEE International Conference on Image Processing
(ICIP). 2016:2330-2334.

14. Hariharan SG, Kaethner C, Strobel N, Kowarschik M. Learning-
based X-ray image denoising utilizing model-based image simu-
lations. MICCAI. 2019(6):549-557.

15. Huang G,Liu Z,Van Der Maaten L,et al.Densely connected con-
volutional networks. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017:2261-2269.

16. Luo Y,Majoe S,Kui J,Qi H,Pushparajah K,Rhode K.Ultra-dense
denoising network: application to cardiac catheter-based X-ray
procedures. IEEE Trans Biomed Eng. 2021;68(9):2626-2636.

17. Mishra D, Chaudhury S, Sarkar M, Soin AS. Ultrasound
image segmentation: a deeply supervised network with atten-
tion to boundaries. IEEE Trans Biomed Eng. 2019;66(6):1637-
1648.

18. Zhang S, Fu H, Yan Y, et al. Attention guided network for retinal
image segmentation. MICCAI. 2019:797-805.

19. Wu H,Pan J,Li Z,Wen Z,Qin J.Automated skin lesion segmenta-
tion via an adaptive dual attention module. IEEE Trans Med Imag-
ing. 2021;40(1):357-370.

20. Tian C, Xu Y, Li Z, et al. Attention-guided CNN for image denois-
ing. Neural Netw. 2020;124:117-129.

21. Wang X,Wang X,Peng Y,et al.ChestX-Ray8:hospital-scale chest
X-ray database and benchmarks on weakly-supervised classifi-
cation and localization of common thorax diseases. IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
2017:3462-3471.

22. Kamgar-Parsi B, Kamgar-Parsi B, Rosenfeld A, et al. Opti-
mally isotropic Laplacian operator. IEEE Trans Image Process.
1999;8(10):1467-1472.

23. Lai W, Huang J-B, Ahuja N, Yang M-H. Deep Laplacian pyra-
mid networks for fast and accurate super-resolution. IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
2017:5835-5843.

24. Ma Y, Alhrishy M, Narayan SA, Mountney P, Rhode KS. A novel
real-time computational framework for detecting catheters and
rigid guidewires in cardiac catheterization procedures.Med Phys.
2018;45(11):5066-5079.

25. Tao X, Gao H, Liao R, Wang J, Jia J. Detail-revealing deep video
super-resolution. IEEE International Conference on Computer
Vision (ICCV). 2017:4482-4490.

26. He K,Zhang X,Ren S,Sun J.Delving deep into rectifiers:surpass-
ing human-level performance on ImageNet classification. IEEE
International Conference on Computer Vision (ICCV).2015:1026-
1034.

How to cite this article: Luo Y, Ma YL, O’ Brien
H, et al. Edge-enhancement densenet for X-ray
fluoroscopy image denoising in cardiac
electrophysiology procedures. Med Phys.
2022;49:1262–1275.
https://doi.org/10.1002/mp.15426

https://doi.org/10.1002/mp.15426

	Edge-enhancement densenet for X-ray fluoroscopy image denoising in cardiac electrophysiology procedures
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Noise simulation
	2.2 | Network architecture
	2.3 | Edge enhancement
	2.4 | Model optimization
	2.5 | Evaluation
	2.5.1 | Quantitative indicators
	2.5.2 | Frequency spectrum analysis
	2.5.3 | Clinician assessment
	2.5.4 | Catheter detection evaluation


	3 | EXPERIMENTS
	3.1 | Datasets and setup
	3.2 | Validation
	3.3 | Clinical applications and analysis
	3.4 | Clinician assessment
	3.5 | Catheter detection

	4 | CONCLUSION AND DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	REFERENCES


