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HiCancer: accurate and complete 
cancer genome phasing with Hi‑C 
reads
Weihua Pan*, Desheng Gong, Da Sun & Haohui Luo 

Due to the high complexity of cancer genome, it is too difficult to generate complete cancer genome 
map which contains the sequence of every DNA molecule until now. Nevertheless, phasing each 
chromosome in cancer genome into two haplotypes according to germline mutations provides 
a suboptimal solution to understand cancer genome. However, phasing cancer genome is also a 
challenging problem, due to the limit in experimental and computational technologies. Hi-C data 
is widely used in phasing in recent years due to its long-range linkage information and provides an 
opportunity for solving the problem of phasing cancer genome. The existing Hi-C based phasing 
methods can not be applied to cancer genome directly, because the somatic mutations in cancer 
genome such as somatic SNPs, copy number variations and structural variations greatly reduce the 
correctness and completeness. Here, we propose a new Hi-C based pipeline for phasing cancer genome 
called HiCancer. HiCancer solves different kinds of somatic mutations and variations, and take 
advantage of allelic copy number imbalance and linkage disequilibrium to improve the correctness and 
completeness of phasing. According to our experiments in K562 and KBM-7 cell lines, HiCancer is able 
to generate very high-quality chromosome-level haplotypes for cancer genome with only Hi-C data.

Human genomes are diploid with two homologous sets of chromosomes. Each pair of homologous chromosomes 
share high similarity but are different in genetic variants such as single nucleotide polymorphism’s (SNPs) and 
insertions/deletions. The sequences of the variants on single chromosomes are called haplotypes, which provide 
us with more information of genetic makeup in an individual genome. The reconstruction of haplotypes, called 
phasing, plays important roles in different areas of biology such as genome-wide association1–3 and population 
genetics studies4,5 and is critical for advancing precision medicine6,7. Due to the extensive somatic variations such 
as somatic SNPs, structural variations (SVs) and copy number variations (CNVs), cancer genome is much more 
complicated than normal human genome. Although the complete map of cancer genome should contain the 
sequence of every single DNA molecule, with the existing technologies, it is believed too difficult to distinguish 
the copies of chromosomes on the same allele (from the same parent) generated by CNVs according to somatic 
SNPs. Nevertheless, phasing each cancer chromosome into two haplotypes according to germline mutations as 
done for normal genome provides a suboptimal solution to understand cancer genome.

However, phasing cancer genome is also a challenging problem, due to the limit in experimental and computa-
tional technologies. As far as we know, among the widely used cancer cell lines, only K562 and Hela have compara-
tively high quality chromosome-level phased genome available which are constructed by integrating multiple types 
of data8,9. The existing technologies of phasing can be divided into three main categories. The trio-based methods 
such as TetraOrigin10 and Merlin11 generate the haplotypes which are most consistent with pedigree structure 
and Mendelian segregation. These methods work well when the parent-child relationship is available. The popula-
tion-based methods such as Beagle12 and SHAPTIT13 estimate haplotypes of an individual genome through linkage 
disequilibrium measures learned from a population of unrelated known haplotypes. These methods can accurately 
infer haplotypes up to ~300 kb, but are not able to generate chromosome-level haplotypes14. The sequencing-baseed 
methods such as HapTree15 and HapCompass16 take advantage of sequenced long reads or paired-end short reads 
to link variants into haplotypes directly. Compared with the trio-based and population-based methods which use 
extra information to estimate haplotypes, the sequencing-based methods take advantage of the information (reads) 
directly obtained from the genome to be phased, and thus are able to generate more reliable haplotypes and have 
a broader range of applications. Nevertheless, due to the lack of long-range linkage information for linking distant 
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SNPs, it is still difficult for the traditional sequencing-based methods to generate chromosome-level haplotypes for 
normal human genome with only one type of sequence information, not to mention cancer genome.

The Hi-C based methods are a new type of sequencing-based methods which provide an opportunity to 
solve the problem of cancer genome phasing. Hi-C technology was originally developed for mapping the spatial 
structure of genome. In recent years, Hi-C paired-end reads have been widely used in phasing, due to the lower 
cost than long reads and the much longer-range linkage information. For instance14, applied Hi-C reads to phase 
human genome and mouse genome for the first time. And17 improved a phasing tool HAPCUT​18 into version 2 
by enhancing its performance on Hi-C reads . However, the existing Hi-C based phasing methods like HAPCUT2 
can not be applied to cancer genome directly for at least two reasons. First, cancer specific genome features such 
as somatic mutations and loss of heterozygosity (LOH) may reduce the correctness of phasing if not specially dealt 
with. Specifically, LOH regions are believed to lose one of the two alleles and will be phased into two haplotypes 
by mistake if treated same as other regions. Also, somatic SNPs will disturb phasing if treated as germline SNPs. 
Second, due to the influence of CNVs and SVs, the haplotypes are generated with low completeness. For exam-
ple, according to our experiments, when phasing K562 (human immortalized chronic myeloge-nous leukemia 
(CML) cell line) genome, HAPCUT2 lost about 20% of the SNPs and nearly all LOH regions in the genome, and 
the haplotypes contain switching errors in the middle of some chromosomes.

In this paper, we propose a new Hi-C based pipeline for phasing cancer genome called HiCancer, using 
HAPCUT2 as a module inside. HiCancer uses Hi-C paired-end reads and called SNPs as input and outputs 
chromosome-level haplotypes of cancer genome. HiCancer filters somatic SNPs and phase the LOH regions 
in a correct way. At the same time, HiCancer takes advantage of allelic copy number imbalance in aneuploid 
regions and linkage disequilibrium information to improve the completeness and accuracy by assembling frag-
mented haplotypes, adding the lost SNPs back into haplotypes (imputation) and correcting the switching errors. 
According to our experiments on K562 cell line, HiCancer significantly improves the phasing performance 
of HAPCUT2 on cancer genome in both completeness and correctness. We believe that HiCancer is able to 
generate high quality cancer haplotypes using only Hi-C data .

Methods
HiCancer is composed of four steps: pre-phasing processing, phasing, post-phasing processing and complet-
ing. In the pre-phasing processing, somatic SNPs are filtered, and the genome is divided into LOH regions 
and non-LOH regions. In the phasing step, non-LOH regions are phased into haplotypes. In the post-phasing 
processing step, a series of strategies are used to improve the completeness and correctness of haplotypes. In the 
completing step, sequences in LOH regions and phased haplotypes in non-LOH regions are assembled into the 
chromosome-level haplotypes. The pipeline of the proposed method is illustrated in Fig. 1.

Step1–2: pre‑phasing processing and phasing.  In the pre-phasing processing step, we filter somatic 
SNPs and detect LOH regions in the genome. The SNPs not appearing in the SNP list provided by 1000 Genomes 
Project Phase 319 are seen as somatic SNPs and removed. LOH regions are detected by comparing the density 
of heterozygous SNPs on the cancer genome with that on a normal genome in the same region. Specifically, the 
human genome is partitioned into segments of fixed length (typically 1 Mbp) and a statistical test is used on each 
segment to decide whether it is a LOH region on cancer genome. For each segment, we obtain the proportions 
of heterozygous and homozygous SNPs pnormal

hetero  and pnormal
homo = 1− pnormal

hetero  from a normal cell line GM12878. 
Given the total number of SNPs N on cancer genome in the same region fixed, the number of heterozygous SNPs 
Ncancer
hetero  is assumed to be binomial distributed with parameters N and pnormal

hetero  . With one-tailed test carried out, 
this region will be recognized as LOH region if p-value is smaller than some threshold (typically 0.05), which 
means the proportion of heterozygous SNPs in this region on cancer genome significantly lower than that on 
normal genome. The SNPs in the recognized LOH regions are seen as false positive and removed before phasing.

Next, the Hi-C reads are aligned to the human reference genome with BWA mem20 and the alignments 
uniquely aligned with MAPQ higher than some threshold (e.g, 30) are kept. Specifically, the paired-end reads 
are split into two groups, one for each pair, and the two groups are aligned separately and then combined by a 
Perl script “two_read_bam_combiner.pl” downloaded from https://​github.​com/​dixon​lab/​bwa_​mem_​hic_​align​
er. Then, the SNPs in each continuous non-LOH region are phased by HAPCUT2 with default parameters using 
Hi-C paired-end reads. According to our experiments, the phased haplotypes of each continuous non-LOH 
regions usually contain one or a few main haplotype fragments and a large number of tiny fragments with one 
or more SNPs (see Fig. 1D). And some haplotypes contain fatal switching errors (see Fig. 1D,E).

Step3: post‑phasing processing.  Due to the CNVs, many regions on cancer genome are aneuploid 
regions with different copy numbers on two alleles, leading to different read coverages between alleles after map-
ping Hi-C reads. According to our observations, when assembling two adjacent phased haplotype fragments, 
the haplotypes with similar read coverages are more likely on the same allele. In the post-phasing processing 
step, this regulation is used to improve the completeness and correctness of the phased haplotypes. First, the 
allelic read coverage imbalance are leveraged to correct the switching errors. Second, the allelic read coverage 
imbalance and linkage disequilibrium information are used to assemble the fragmented haplotypes and fill the 
gaps in haplotypes by adding the lost SNPs back into haplotypes. We describe these strategies in detail as follows.

Switching error correction.  We search for the potential switching points on the haplotypes of each non-LOH 
segment. At each position between adjacent SNPs, four counts cbefore1  , cafter1  , cbefore2  and cafter2  are obtained. cbefore1  

https://github.com/dixonlab/bwa_mem_hic_aligner
https://github.com/dixonlab/bwa_mem_hic_aligner
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represents the number of SNPs before this position whose read coverage on haplotype h1 is higher than hap-
lotype h2 and the other three counts have similar meanings correspondingly. With these counts, two ratios 
rbefore = c

before
1 /c

before
2  and rafter = c

after
1 /c

after
2  can be obtained. We define a position as a potential switching 

point if the two ratios are significantly different. In detail, if one of these two ratios is larger than some threshold 
(e.g, 2) and at the same time the other one is smaller than some threshold (e.g, 0.5), this position is seen as a 
potential switching point. Since usually many qualified potential switching points exist, we pick the one with the 
lowest ratio of ratios

and switch the haplotypes at it. This process is repeated until no potential switching point can be found.
Dynamic programming vectors are used to obtain counts for all positions efficiently. Let cbefore1 [i] be the 

number of SNPs whose read coverage on haplotype h1 higher than haplotype h2 before ith SNP. First we initialize 
c
before
1 [0] to be 0. The rest part of the dynamic programming vector can be filled using the following recurrence 

relation:

where cov1[i] and cov2[i] represent read coverages of ith SNPs on haplotype h1 and haplotype h2 respectively. The 
other counts can be calculated in the similar way with the following recurrence relations:

rr =
min{rbefore , rafter}

max{rbefore , rafter}

c
before
1 [i] = c

before
1 [i − 1] + �{cov1[i] > cov2[i]}

Figure 1.   Pipeline of HiCancer. (A) The input unphased SNPs. Each blue-orange pair represents the two 
alleles of one SNP. Blue and orange represent two haplotypes of each chromosome. (B) Somatic SNPs are 
detected and removed from the input SNPs. (C) LOH regions are detected and SNPs in LOH regions are 
removed. (D) Pre-processed SNPs in non-LOH regions are phased by HapCut2. After phasing, in addition to 
main haplotype fragments, a large number of small fragments with one or a few SNPs exist. And main haplotype 
fragments contain some switching errors. (E) Switching errors are corrected. (F) The small haplotype fragments 
are merged into main haplotype fragments. (G) The sequences in LOH regions and the haplotyes in non-LOH 
regions are connected to chromosome-level haplotypes. (H) The final output chromosome-level haplotypes.
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Assembly of haplotype fragments and gap filling.  We developed a graph model called coverage matching graph 
(CMG) to assemble main haplotype fragments and fill the gaps with tiny haplotype fragments at the same time. 
A CMG G is an undirected weighted graph in which each vertex represents one of the two haplotypes of a single 
SNP. Given two SNPs si and sj belonging to different fragments with haplotypes sai  , s

b
i  and saj  , s

b
j  respectively, we 

create four undirected edges (sai , s
a
j ) , (s

a
i , s

b
j ) , (s

b
i , s

a
j ) , (s

b
i , s

b
j ) in G if (1) the genomic distance between si and sj does 

not exceed some threshold (e.g, 1 Mbp); (2) si is one of the n (e.g, 5) closest SNPs to sj and sj is same to si ; (3) at 
least one of si and sj belong to the the block exceeding a minimum number of SNPs (e.g, 100) and (4) the read 
coverage on each of (sai  , s

b
i ) , (s

a
j  and sbj ) is higher than some threshold (e.g, 10).

Each of these four edges is assigned a weight w(sxi , s
y
j ) which represents the likelihood of the two vertices con-

nected belonging to the same haplotype. In detail, the calculation of edge weights is based on the probabilistic 
model below. Let’s take w(sai , s

a
j ) and w(sbi , s

b
j ) which represent the likelihood of haplotypes “aa|bb” for instance.

Given the read coverages c(sai ) and c(sbi ) of sai  , sbi  , the read coverage proportions can be calculated as 

pai = c(sai )/(c(s
a
i )+ c(sbi )) and pbi = c(sbi )/(c(s

a
i )+ c(sbi )) . In the case of “aa|bb”, we assume the read coverage 

c(saj ) (or c(sbj ) ) on saj  (or sbj  ) is Bionomial distributed with parameters N = c(saj )+ c(sbj ) and p = pai  (or pbi  ). With 

this assumption, the log-likelihood is calculated as l(aa|bb) = c(saj )log(p
a
i )+ c(sbj ) log(p

b
i ) . We assign these two 

terms c(saj ) log(p
a
i ) and c(sbj )log(p

b
i ) to edges (sai , s

a
j ) and (sbi , s

b
j ) respectively. Since the Hi-C read coverage is usually 

biased by many factors such as GC-content, mappability and the density of restriction sites, these two terms are 
normalized by the total coverage c(sj) of sj to transfer absolute coverages to proportions. Since the normalized 
terms p(saj )log(p

a
i ) and p(sbj ) log(p

b
i ) are both negative, to reduce the complexity of computation in later steps, 

reciprocals of opposite numbers of them wi(s
a
i , s

a
j ) = −1/[p(saj )log(p

a
i )] and wi(s

b
i , s

b
j ) = −1/[p(sbj ) log(p

b
i )] are 

used as components of weights w(sai , s
a
j ) and w(sbi , s

b
j ) . On the other hand, by estimating the log-likelihood of 

“aa|bb” given the read coverage proportions paj  and pbj  of saj  , s
b
j  , the other components wj(s

a
i , s

a
j ) and wj(s

b
i , s

b
j ) 

can be calculated in the same way. Thus, the weights of edges (sai , s
a
j ) and (sbi , s

b
j ) are the summation of two com-

ponents as w(sai , s
a
j ) = wi(s

a
i , s

a
j )+ wj(s

a
i , s

a
j ) and w(sbi , s

b
j ) = wi(s

b
i , s

b
j )+ wj(s

b
i , s

b
j ) . With the same approach, the 

weights w(sai , s
b
j ) and w(sbi , s

a
j ) of other two edges can be obtained by calculating the likelihood of the alternative 

haplotypes “ab|ba”. We normalize these four weights to make sure their summation to be 1. We measure the 
reliability of the edges between si and sj by comparing “aa|bb” supporting weight summation w(sai , s

a
j )+ w(sbi , s

b
j ) 

with “ab|ba” supporting weight summation w(sai , s
b
j )+ w(sbi , s

a
j ) . If the ratio of the smaller summation and larger 

summation exceeds some threshold (e.g, 0.4), these four edges are all removed from G. For two adjacent SNPs 
si and sj belonging to the same block, we create two edges in G connecting the vertices known to be on the same 
alleles with infinite weights.

Once the CMG G is built, we assemble haplotypes and fill the gaps. In each connected component Gi of G 
obtained by Breadth First Search (BFS)21, vertices are partitioned into two groups (two haplotypes) by cutting 
a subset of edges, satisfying that each pair of vertices corresponding to same SNP much be assigned to different 
groups. Since there could be many feasible solutions, according to maximum parsimony strategy, we pick the 
partition which cuts a subset of edges with minimum total weights. With this approach, the assembled haplo-
types will not be conflict with the any of the old haplotype fragments, due to the infinite weight assignments to 
edges between vertices known to be in the same haplotype. This problem can be seen as a variant of the regular 
Minimum s-t cut problem in graph theory, and thus we call it Minimum Multiple s-t Cut problem. The 
formal definition is as follows.

Definition 1  (Minimum Multiple s-t Cut problem) Input: A weighted undirected graph G = (V ,E) , with V 
be a set of n pairs of vertices. Output: A minimum cut S, that is, a partition of the nodes of G into S and V \ S 
such that (1) exactly one of each pair of vertices belongs to S, (2) the total weights of the edges going across the 
partition is the minimum among all the partitions of the nodes satisfying (1).

In Theorem 1 below, we show that the Minimum Multiple s-t Cut problem is NP-hard by reduction from 
Max-Cut problem with non-negative edge weights which is known to be NP-hard22. In Max-Cut problem, we are 
given a weighted undirected graph, and we need to find a cut whose total weight is maximum among all feasible cuts.

c
after
1 [i] =c

after
1 [i + 1] + �{cov1[i] > cov2[i]}

c
before
2 [i] =c

before
2 [i − 1] + �{cov1[i] < cov2[i]}

c
after
2 [i] =c

after
2 [i + 1] + �{cov1[i] < cov2[i]}.
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Theorem 1  Min-Multi-Cut is NP-hard.

Proof  Given an instance G′ = (V ′,E′) of Max-Cut with non-negative edge weights, we build an instance 
G = (V ,E) of Min-Multi-Cut as follows. For each vertex v′i ∈ V ′ , create a pair of vertices vai  and vbi  in V. For 
each edge (v′i , v

′
j) ∈ E′ ( i < j ) with weight w, create an edge (vai , v

b
j ) in E with weight w. Then it’s easy to see 

that a Max-Cut solution {S′,V ′ − S′} to G′ is equivalent to a Min-Multi-Cut solution {S,V − S} to G with 
S = {vai | v′i ∈ S′} + {vbi | v′i ∈ V ′ − S′} , and a Min-Multi-Cut solution {S,V − S} to G is equivalent to a Max-
Cut solution {S′,V ′ − S′} to G′ with S′ = {v′i | v

a
i ∈ S} . 	�  �

Given the complexity of Min-Multi-Cut problem, we revise one of the most popular heuristic algorithm for 
regular Min-Cut problem called Karger’s algorithm23 to solve it. Instead of determining the minimum cut for all 
pairs of vertices at same time, the revised Karger’s algorithm iteratively determine the cut for two pairs of vertices 
at each time. We decide the order of the two pairs picked by an association graph A built from original graph G. 
The association graph is an undirected graph in which each vertex represents a pair of vertices in G and an edge 
indicates there are at least one edge between the two pairs of vertices in G. For an edge (u, v) in A which connects 
two pairs of vertices ua , ub and va , vb in G, the weight wA(u, v) is calculated as follow.

where

and r2 = 1− r1 are the proportions of weights supporting two feasible cut “ ua, va/ub, vb ” and “ ua, vb/ub, va ” in G 
respectively. If one or more of these four edges don’t exist in G, the weights of missing edges are used as 0. With 
association graph A, our heuristic algorithm can be carried out by iteratively randomly picking an edge from A 
with probabilities proportional to the edges weights and determine the cut for the corresponding two pairs of 
vertices in G. After each iteration, the association graph is updated by removing this edge picked and merging the 
two vertices. Since the edge weights in A represent the reliability, this process is in accordance with the intuition 
that the two pairs whose cut can be determined more reliably should be picked earlier.

We repeat this process for M times and pick the best solution, where M is a parameter specified by user which 
represents a tradeoff between the goodness of solution and running speed.

In this algorithm, the time efficiency directly affects the goodness of solution. To speed up, instead of sam-
pling edge and merging vertices at each time in association graph, we generate a random permutation of edges 
with probabilities proportional to edge weights at once. Then the edges are picked in order of permutation to 
generate the cut. With the use of disjoint set21 data structure, the whole algorithm takes O((|E| + |V |)M) time.

Algorithm 1 Revised Karger’s algorithm for Minimum Multiple s-t Cut problem

1: procedure REVISED_KARGER_ALGORITHM(G= (V,E))
2: build association graph A= (VA,EA) from G
3: m= 0
4: while m<M do
5: generate a random permutation P of edges
6: for each v ∈VA do
7: MAKE-SET(v)
8: end for
9: for each (u,v) ∈ EA ordered by P do
10: if FIND-SET(u) �= FIND-SET(v) then
11: determine the cut of ua, ub, va and vb in G
12: merge this cut into global cut C
13: UNION(FIND-SET(u), FIND-SET(v))
14: end if
15: end for
16: end while
17: if score(C) < score(best_C) then
18: best_C =C
19: end if
20: m= m+1
21: return best_C
22: end procedure

wA(u, v) = 1/(−r1 log r1 − r2 log r2)

r1 =
(wG(ua, va)+ wG(ub, vb))

(wG(ua, va)+ wG(ub, vb)+ wG(ua, vb)+ wG(ub, va))
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Gap filling in balanced allelic copy number regions using linkage disequilibrium information.  After assembling 
and gap filling haplotypes with coverage information, there are still some tiny haplotype fragments not merged 
into main haplotypes yet. These tiny fragments mostly belong to the genomic regions with balanced copy num-
bers on two alleles, so that the coverage information fails to merge them to main haplotypes.

For these regions, we leverage the linkage disequilibrium information. The main haplotypes of each continu-
ous non-LOH region are chosen as the cluster center, and the tiny fragments are assigned to the closest cluster 
according to the genomic distances. In each cluster, the main haplotypes are used as “seed haplotypes” to guide 
the phasing of the whole cluster by Beagle (v5.1) software24 with linkage disequilibrium information learned 
from a population of haplotypes generated by 1000 Genomes Project.

Step4: completing.  Finally, we complete the reconstruction of chromosome-level haplotypes by connect-
ing the sequences of LOH regions with haplotypes in non-LOH regions. This process is not trivial because a 
chromosome may contain multiple continuous LOH and non-LOH regions, and for every pair of LOH and 
non-LOH regions, one of the two haplotypes of the non-LOH regions need to be decided at the same allele as 
the LOH sequence. Intuitively, among all the possibilities of the chromosome-level haplotypes, the one with 
the most supporting Hi-C paired-end reads should be chosen. For each chromosome, we use a graph model 
in which each vertex indicates a LOH region or a haplotype of a non-LOH region. Between every pair of LOH 
vertex and a haplotype vertex, there is an edge with weight representing the number of paired-end reads with one 
end on the LOH region and the other end on the SNPs of the haplotype. The graph needs to be partitioned into 
two subgraphs (as two chromosome-level haplotypes) by removing a subset of edges which satisfies (1) two hap-
lotype vertices of the each non-LOH region belong to different subgraphs (2) the total weights of the removed 
edges are minimum among all the partitions satisfying (1). Since the graph is small (fewer than 10 vertices) in 
most cases, all feasible solutions are enumerated and the optimal solution is obtained.

Results
We tested the performance of HiCancer in K56225 and KBM-726 which are two human immortalized chronic 
myelogenous leukemia (CML) cell lines. K562 was derived from a 53-year-old Caucasian female in 1970 and 
KBM-7 was from a 39-year-old man. Although the two cell lines were both from CML patients, their genomes 
are significantly different. According to the previous study, K562 genome is near-triploid and most genomic 
regions are non-LOH, while KBM-7 genome is near-haploid25,26.

Experimental results in K562 cell line.  We chose K562 cell line because it has the highest quality phased 
haplotype sequences and detected LOH regions available which can be used as “ground truth” among the widely 
studied cancer genomes8. Nevertheless, the “ground truth” K562 haplotypes still have at least two shortcomings. 
First, the haplotypes in LOH regions are generated in the same way as non-LOH regions, which is incorrect in 
our opinion. Second, the haplotypes lose a large number of input SNPs and only 15 chromosomes have high-
quality haplotypes availiable. However, we still believe the “ground truth” haplotypes of the 15 chromosomes are 
able to prove the high correctness of HiCancer if the HiCancer haplotypes in non-LOH regions processed 
by removing SNPs not existing in “ground truth” haplotypes are highly consistent with the “ground truth” hap-
lotypes. We first tested the correctness and completeness of haplotypes in non-LOH regions. Then we verified 
the accuracy of LOH regions detected. Overall, the chromosome-level haplotypes generated by HiCancer are 
tested.

For convenience of comparison with “ground truth” haplotypes, the input SNPs were also downloaded from8. 
The in situ Hi-C reads in K562 were downloaded from27 and reference genome (hg19) was downloaded from 
UCSC Genome Browser website (https://​genome.​ucsc.​edu/). When running HiCancer, all the built-in tools 
including BWA20, HAPCUT217 and Beagle (v5.1)24 were all run with default parameters. The threshold of 
MAPQ for filtering alignments was set to be 30. All the other parameters were default (given in parenthesis in 
“Methods” section).

HiCancer can phase cancer chromosomes correctly and completely in K562 cell line.  In this section, we tested 
the performance of HiCancer in terms of completeness and correctness by comparing with HAPCUT2 and 
WhatsHap28 which are two most widely-used phasing tools using paired-end short reads (although WhatsHap 
is not specially designed for Hi-C data). Since HAPCUT2 and WhatsHap do not deal with LOH regions and 
thus are not able to generate chromosome-level haplotypes for many chromosomes of K562, to be fair, we only 
focus on the non-LOH regions in comparison. Two measurements were used to evaluate the completeness of 
non-LOH haplotypes for each chromosome. The first one was the number of phased large haplotype blocks with 
at least 100 SNPs in non-LOH regions, and the second one was the proportion of non-LOH SNPs contained in 
these large haploytpe blocks in total. To evaluate the correctness of haplotypes, absolute error rate (AER) of the 
largest phased block of each chromosome was used. The calculation of AER is as follows. For one chromosome, 
let S be the intersection of SNPs in HiCancer haplotypes and “ground truth” haplotypes. For each SNP s in S, let 
s
phased
a  and sphasedb  be the two alleles of s on the phased haplotypes, and strutha  and struthb  be the two alleles of s on the 

“ground truth” haplotypes. After obtaining the count counto of SNPs in S with (sphaseda , s
phased
b ) = (strutha , struthb ) 

and count countr of SNPs in S with (sphaseda , s
phased
b ) = (struthb , strutha ) , the AER is calculated as

AER =
min{counto, countr}

counto + countr
.

https://genome.ucsc.edu/
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In this experiment, HAPCUT2 and WhatsHap were run with default parameters.
Table 1 shows that HiCancer and HAPCUT2 both are able to phase the non-LOH regions of the vast majority 

of chromosomes into one single fragment of haplotypes. On chromosome 9 and 14, they both provide two large 
fragment of phased haplotypes because these two chromosomes both contain very long LOH regions between 
non-LOH regions. Chromosome 3 and X do not need to be phased because the whole chromosomes are LOH 
regions (see Table 2 for details). Compared with HAPCUT2 which generates haplotypes with about 70-80% of 
SNPs, HiCancer is able to phase haplotypes with 100% or almost 100% SNPs. With the step of completing, 
HiCancer is able to generate a complete single pair of haplotypes for every chromosome. At the same time, 
HiCancer outperforms HAPCUT2 in correctness on 12 of the 15 chromosomes with “ground truth” haplotypes 
available. On the other 3 chromosomes, HiCancer gives comparable correctness. On chromosome 7, HAPCUT2 
generates haplotypes with extremely high AER (46.8894%) caused by a switching error appearing at the middle 
of the chromosome. HiCancer successfully corrects the switching error and reduces the AER to 1.5327% which 
is at the same level as the AER of other chromosomes. Compared with HAPCUT2 and HiCancer, WhatsHap 
is only able to generate short haplotype fragments, which lead to the extremely low completeness in the whole 
genome and high accuracy in some chromosomes.

HiCancer can detect LOH regions accurately in K562 cell line.  We also tested the accuracy of LOH regions 
detected by HiCancer. LOH regions detected by 10x genomics reads in8 were used as “ground truth”. The accu-
racy was evaluated by the precision and sensitivity calculated as follows. For each chromosome, we obtained the 
total length “length_call” of detected LOH regions , total length “length_truth” of LOH regions in “ground truth” 
and the length “length_overlap” of their overlaps. The precision is the ratio of “length_overlap” and “length_call” 
, and sensitivity is the ratio of “length_overlap” and “length_truth”.

Observed from Table 2 that HiCancer detects LOH regions with high accuracy. On the 11 chromosomes 
with total length of LOH region higher than 4Mb in “ground truth”, HiCancer obtains sensitivities from 94.4 
to 100% and most of them are higher than 98%. On 10 of these 11 chromosomes, the precisions are from 70.2 to 
83.0% and the precision of chromosome X is 50.9%. For the whole genome, the precision is 70.58% and sensitivity 

Table 1.   Comparing the phasing performance of HiCancer with HAPCUT2 and WhatsHap on K562 
genome. “Chrom” is the abbreviation of “Chromosome”; “HiCancer−” represents the output of HiCancer 
without doing the step of completing. Numbers in boldface highlight the best completeness and correctness. 
For the chromosomes whose whole or almost whole chromosomes are LOH regions, ‘N/A’ is used for some 
statistics cannot be calculated.

Chrom

# large blocks (>100 SNPs) in non-LOH regions % non-LOH SNPs in large blocks AER of largest block

HAPCUT2 WhatsHap HiCancer− HiCancer HAPCUT2 WhatsHap HiCancer− HAPCUT2 WhatsHap HiCancer−

1 1 1 1 1 81.6848% 0.0699% 100% 1.1594% 38.6796% 0.5679%

2 1 0 1 1 76.3653% 0 100% 5.3739% 0 4.7767%

3 N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A

4 1 12 1 1 72.4314% 2.2483% 100% 1.3834% 7.1174% 1.0614%

5 1 3 1 1 75.6427% 0.6845% 100% 0.82224% 5.2632% 0.5879%

6 1 25 1 1 78.5579% 4.6763% 100% 3.5155% 29.1116% 1.4087%

7 1 2 1 1 80.8724% 0.3504% 100% 46.8894% 4.4456% 1.5327%

8 1 1 1 1 77.2177% 0.1241% 100% 0.78361% 0 0.6451%

9 2 0 2 1 89.9577% 0 99.5765% N/A N/A N/A

10 1 1 1 1 82.1379% 0.2219% 99.9148% 2.6609% 1.3605% 2.5126%

11 1 7 1 1 77.1570% 1.7480% 100% 1.2725% 0 0.6315%

12 1 1 1 1 78.4648% 0.1580% 100% 0.6190% 0 0.5313%

13 1 0 1 1 86.2647% 0 100% N/A N/A N/A

14 2 1 2 1 67.2566% 17.4165% 100% N/A N/A N/A

15 1 0 1 1 80.9122% 0 100% 0.9005% 0 0.7181%

16 1 2 1 1 85.7108% 0.5946% 100% 1.2779% 5.9575% 1.3441%

17 1 7 1 1 83.3136% 5.4616% 100% 0.5356% 46.5448% 0.6016%

18 1 1 1 1 71.7267% 0.2081% 100% N/A N/A N/A

19 1 1 1 1 87.1062% 0.2503% 100% 0.7356% 27.2727% 0.6443%

20 1 1 1 1 84.6577% 0.4818% 100% 0.2465% 2.4591% 0.3847%

21 1 2 1 1 81.7515% 0.7517% 100% N/A N/A N/A

22 1 0 1 1 92.9897% 0 99.9742% N/A N/A N/A

X N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A
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is 98.22%. We further investigated the reason that the precisions are not as high as sensitivities. We found that 
on many chromosomes such as chromosome 3, 9, 13, 14, 22 and X, HiCancer treats almost the all regions as 
LOH while the “ground truth” only treats parts of the chromosomes as LOH regions. However, from Figure 1 
of their paper8, it is easy to see that almost all regions of these chromosomes are short of heterozygous SNPs. 
We believe this is caused by the different definitions of LOH regions. Some regions with very small number of 
heterozygous SNPs were seen as non-LOH regions in8 but detected by HiCancer as LOH regions because they 
should not be treated as two allele when building chromosome-level haplotypes.

Experimental results in KBM‑7 cell line.  In addition to K562 cell line, we also tested the performance 
of HiCancer in KBM-7 cell line. The Since KBM-7 cell line does not have high-quality phased haplotypes to 
verify the correctness, we only tested the completeness using the same criteria in K562 experiments. The in 
situ Hi-C reads in K562 were downloaded from27 and reference genome (hg19) was downloaded from UCSC 
Genome Browser website (https://​genome.​ucsc.​edu/). BWA mem and GATK HaplotypeCaller (v4.1) were 
used to map Hi-C reads and call the SNPs respectively, both with default parameters. HiCancer, HapCut2 and 
WhatsHap were all run with default parameters. The default parameters of HiCancer are given in parenthesis 
in “Methods” section.

Table 3 shows that, same as K562 cell line, HiCancer generates complete chromosome-level haplotypes 
with almost all SNPs in KBM-7 cell line. However, the results of HapCut2 and WhatsHap are different from 
those in K562 cell line in two aspects. First, the “% non-LOH SNPs in large blocks” values of HapCut2 fluctu-
ate from 35.1531 to 99.0394% while the values are mostly around 80% in K562. Second, the “% non-LOH SNPs 
in large blocks” values of WhatsHap are significantly higher than those in K562, although they are still much 
lower than HapCut2 and HiCancer. We believe these differences result from the low proportion of non-LOH 
regions in KBM-7 genome.

Discussion
We presented HiCancer, a new computational pipeline for phasing cancer genome with Hi-C reads. We found 
that HiCancer is able to generate chromosome-level haploytypes for cancer genome with very high complete-
ness and correctness using only Hi-C paired-end reads.

Table 2.   Performance of LOH detection of HiCancer on K562 genome. Numbers in boldface highlight the 
best completeness and accuracy. “Chrom” is the abbreviation of “Chromosome”; “Calls”, “Ground truth” and 
“True positive” represent the total length of called LOH regions, total length of LOH regions in “ground truth” 
and their overlapped length respectively; “# LOH” and “# non-LOH” represent the numbers of continuous 
LOH and non-LOH regions respectively.

Chrom # LOH # non-LOH Calls (bp) Ground truth (bp) True positive (bp) Precision Sensitivity

1 0 1 0 0 0 N/A N/A

2 4 4 59,000,000 43,080,000 41,440,000 70.2373% 96.1931%

3 2 1 196,000,000 143,160,000 143,160,000 73.0408% 100%

4 1 2 3,000,000 3,200,000 2,480,000 82.6667% 77.5000%

5 3 4 4,000,000 0 0 0 N/A

6 2 3 3,000,000 0 0 0 N/A

7 0 1 0 0 0 N/A N/A

8 0 1 0 0 0 N/A N/A

9 8 7 103,000,000 77,080,000 73,880,000 71.7282% 95.8485%

10 1 1 47,000,000 36,400,000 35,640,000 75.8298% 97.9121%

11 0 1 0 0 0 N/A N/A

12 4 4 26,000,000 21,600,000 20,400,000 78.4616% 94.4444%

13 3 3 92,000,000 77,640,000 76,360,000 83.0000% 98.3514%

14 1 1 86,000,000 69,240,000 68,280,000 79.3953% 98.6135%

15 0 1 0 0 0 N/A N/A

16 0 1 0 40,000 0 N/A 0

17 2 2 22,000,000 17,600,000 17,040,000 77.4545% 96.8182%

18 0 1 0 0 0 N/A N/A

19 0 1 0 0 0 N/A N/A

20 1 1 26,000,000 19,920,000 19,840,000 76.3077% 99.5984%

21 0 1 0 0 0 N/A N/A

22 1 1 28,000,000 22,120,000 21,720,000 77.5714% 98.1917%

X 2 2 151,000,000 76,880,000 76,880,000 50.9139% 100%

Total 35 45 846,000,000 607,960,000 597,120,000 70.5816% 98.2170%

https://genome.ucsc.edu/
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There are a number of areas that our methods and approaches can be further improved. First, the current ver-
sion of HiCancer needs SNPs called as input. Since the SNP list is not available for all cancer genome, it limits 
the application of HiCancer. It remains to be explored to improve HiCancer by adding a step of SNP calling 
using Hi-C reads. The difficulty is that the Hi-C read coverage is greatly affected by factors such as mappability, 
GC content and density of restriction sites which may reduce the accuracy of called SNPs. But we believe the 
appropriate normalization will be able to solve this problem. Second, HiCancer can only phase cancer genome 
using SNPs as markers for now, but the future work needs to be done to add the function of dealing with small 
insertions and deletions. Third, HiCancer only generates two haplotypes for each chromosome now, but future 
work is required to further distinguish multiple copies of each haplotype according to somatic mutations. Due to 
the complexity of cancer genome, this could be too challenging using only Hi-C reads. However, by combining 
Hi-C reads with the newest third-generation sequencing long reads such as Pacbio HiFi reads (high-fidelity long 
reads) and Oxford Nanopore ultra-long reads, we believe there is a chance to solve this problem and generate 
complete cancer genome map.

Code availability
The source code of HiCancer can be accessed at: https://​github.​com/​alanp​whhero/​HiCan​cer
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