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Drug resistance in cancer treatments is a frequent problem that, when it

arises, leads to failure in therapeutic efforts. Tumor heterogeneity is the

primary reason for resistance emergence and a precise treatment design

that takes heterogeneity into account is required to postpone the rise of

resistant subpopulations in the tumor environment. In this paper, we pre-

sent a mathematical framework involving clonal evolution modeling of

drug-sensitive and drug-resistant clones. Using our framework, we examine

delaying the rise of resistance in heterogeneous tumors during control

phase of therapy in a containment treatment approach. We apply pharma-

cokinetic/pharmacodynamic (PKPD) modeling and show that dosage

strategies can be designed to control the resistant subpopulation. Our

results show that the drug dosage and schedule determine the relative

dynamics of sensitive and resistant clones. We present an optimal control

problem that finds the dosing strategy that maximizes the delay in resis-

tance emergence for a given period of containment treatment.

Introduction

The emergence of resistance is a major challenge and

one of the main barriers to the success of cancer treat-

ment strategies. The microenvironment associated with

a tumor, as well as its heterogeneity, is the leading

contributor to cancer relapse because they foster treat-

ment resistance. Drug resistance in cancers is the abil-

ity of a group of cells within a tumor to survive a

therapy due to a genetic alteration or new mutations.

Tumor evolution and the rise of multiple subpopula-

tions of cancer cells, each with a potentially different

response to therapeutics, play a key role in tumor drug

resistance.

Different treatment strategies have been explored to

combat the emergence of resistance. Combination ther-

apies are a leading approach toward this goal [1,2].

However, conventional treatment methods that are

based on the continuous administration of fixed

dosages of single or multiple drugs have been shown

to be less effective than treatment methods that con-

sider the current state of the tumor. While using

maximum tolerated dose (MTD) is thought to achieve

maximum therapeutic benefit by killing a large number

of cancerous cells, there is increasing evidence that

undermines this approach and the basis for its applica-

tion [3]. The authors in [4] propose an optimization

problem for determining a dosage strategy in combina-

tion therapy to combat drug resistance in tumor pro-

gression. The authors in [3] introduce a submaximal

therapeutic protocol that is designed based on the

complex trade-offs between the death of cancerous

cells, the emergence of resistance, and metastases. They

provide evidence that a more personalized treatment,

which integrates patient-specific evolutionary dynam-

ics, would be more effective than the MTD regimen.

The effectiveness of administering high dosages for a

long period of time as an aggressive treatment versus a

moderate strategy with low dosages in short duration

has been compared through empirical studies [5]. In

[6], the authors propose an adaptive therapy that is

optimized based on an evolutionary game theoretic
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model for cancer dynamics. The method presented

optimizes the total drug usage and time to recovery

and is shown to outperform the standard treatment,

which is based on a continuous use of maximum toler-

ated doses. The authors in [7] present a treatment

method for metastatic castrate-resistant prostate can-

cer based on a multidrug adaptive therapy. They

illustrate the tumor evolution through frequency-

dependent cycles that lead the tumor into a control-

lable loop and provide a path for repeatable multidrug

adaptive therapy. The authors in [8] investigate cancer

treatment as a contest between the treatment and resis-

tance strategies and present a game theoretic approach

for designing successful treatment protocols. They

argue that by constantly administering the same drugs

or by changing the treatment only in response to

tumor progression, treatment failure would be inevita-

ble. However, by integrating the evolutionary dynam-

ics into the treatment protocols and exploiting

adaptive therapeutic methods, the outcome can be

improved.

To design effective treatment protocols that manage

resistance [9] considers the effect of different therapeu-

tic methods on the fitness of resistant and sensitive

types. The authors suggest that competitive release,

defined as the increase in absolute fitness of a resistant

clone and which occurs when the sensitive type is

removed by therapy, enhances the probability and rate

of resistance emergence. In other words, the treatment

methods that aim at eliminating the drug-sensitive sub-

populations lead to tumor microenvironment alter-

ation that favors the drug-resistant subpopulation [10].

Eradicating the sensitive clone results in a rapid,

unchecked growth of the resistant subpopulation and

a reduction in heterogeneity toward forming an

entirely resistant tumor.

On the other hand, a natural force that can suppress

or delay the rise of resistance is the competition

between sensitive and resistant subpopulations, such as

for nutrient resources [10]. Therefore, when the size of

a tumor is tolerable but it is rapidly mutating, a con-

tainment treatment strategy is advantageous as it

allows the sensitive clonal population to survive and

compete with the resistant subpopulation [10–12]. The
purpose of such a treatment is to keep the tumor at

the tolerable burden and to delay the emergence of

resistance. For this method, the goal is not to eradi-

cate the whole population of sensitive cells that

respond to chemotherapy, but instead keep a portion

of this population alive to compete with drug-resistant

cells and keep them from reproducing unchecked, tak-

ing over the entire tumor and thereby leading to a

competitive release that could have more dire

consequences for the patient. Figure 1A graphically

compares the aggressive and containment treatment

strategies. In the case that the patient immune

response increases over time, delaying the emergence

of resistance might provide sufficient time for immu-

nity to help in preventing the resistance [11].

Delaying the rise of resistance is an important out-

come of the containment treatment strategy in various

ways: (i) it could be used as a factor for monitoring

the treatment effectiveness; (ii) it can provide some

additional time for the immune system to recover; and

(iii) it can provide sufficient time for incorporating

other therapeutic methods (such as immunotherapy) in

a polytherapy approach. Designing a proper dosage

strategy that maintains the balance between sensitive

and resistant subpopulations while avoiding toxicity is

required for combating or delaying resistance. In this

paper, we provide a mathematical framework that cap-

tures the competitive dynamics of the resistant and

sensitive subpopulations within a tumor. Then,

through pharmacokinetic/pharmacodynamic (PKPD)

modeling, we explore the effect of dosage strategies on

the relative dynamics of these subpopulations. Based

on this model, we propose an optimization problem

that finds the optimal dosing that maximizes the emer-

gence time of the resistant clonal population.

The rest of the paper is organized as follows. In section

Methods, we present the mathematical framework for

competition dynamics in a clonal evolution model. Addi-

tionally, we model the dynamic and kinetic effects of the

drug in a containment treatment strategy. Then, we pro-

pose our optimal solution to determine the dosage strat-

egy that leads to the latest emergence of the resistant

clone. In section Results and Discussion, we provide the

results of our framework and our proposed optimal solu-

tion. In section Conclusion, we conclude the paper.

Methods

In a heterogeneous environment, where all subpopulations

compete over natural resources and nutrients, mathematical

modeling is a pivotal approach to exploring the dynamics

of the competing clones. In this section, we overview some

works in the literature that model the dynamics of competi-

tive subpopulations. Afterward, we present the mathemati-

cal model that we employ throughout this paper for

exploring the competition between drug-resistant and drug-

sensitive cells in a heterogeneous tumor.

Related work: competition dynamics

In [13], the authors model the dynamics of competing can-

cer clones through an approach similar to the competition
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among different species in ecology. In a two-species model,

they present the following system of equations

_x¼ rxx 1�xþ γxyy

K

� �
, (1a)

_y¼ ryy 1�yþ γyxx

K

� �
, (1b)

where K represents the carrying capacity as the maxi-

mum size possible for the cell population. rx and ry are

the growth rates of species x and y, respectively. In

this classic model, ϒxy and ϒyx represent the degree of

interspecific competition, defined as the amount of

each subpopulation’s effect on the growth of the other

one. In the case that there is no interaction between

the species or there is only one type, (1) reduces to a

Logistic growth model for each species. Although

there is no closed-form solution for the system (1), [13]

supports the interpretation of long-term behavior

through linear stability analysis. The authors note that

the steady-state dynamics of the species leads to com-

petitive exclusion or coexistence, depending on the sys-

tem parameters. The authors show that both species

coexist in the long-term, if and only if each of them

suppresses its own type more than its competitor.

Under the opposite condition, only one of the species

would survive in the long-term, a situation that is

called competitive exclusion.

Other papers, such as [14,15], follow a similar approach to

extending the model for expressing the evolutionary dynam-

ics of multiple cell types and the competition of resistant and

sensitive types in a competitive heterogeneous tumor envi-

ronment. Following a different approach, [16] focuses on the

dynamics of resistant cells given a generic growth model for

the entire population. Then, for Gompertz, Logistic, and

exponential dynamics, the authors study the effect of aggres-

sive chemotherapy on the size of the resistant population.

Following the equation presented in [16] for logistic growth,

the authors in [11] propose a mathematical framework to

determine the density of the drug-resistant population in

infective diseases. The authors employ this model to express

the benefits and costs for the sensitive population through

competition and mutation, and present a managed treatment

strategy including aggressive and containment strategies. For

an antibiotic setting, the authors in [12,17] define a resource-

dependent reproduction rate to determine the effective

treatment strategy in the presence of competition between

antibiotic-resistant and antibiotic-sensitive pathogens. They

assume that the drug affects both populations but with dif-

ferent effectiveness as represented by the minimum inhibiting

concentration (MIC) of the antibiotic. The results presented

in [12] show that the competition between resistant and sensi-

tive cells determines whether an aggressive or moderate treat-

ment strategy minimizes the resistance.

Resource-constrained modeling of clonal

evolution

In this paper, we consider a basic clonal evolution model,

following Nowell’s branching architecture [18], as repre-

sented in Fig. 1B for an original cell and its mutation.

Table 1 contains all of the parameters and variables that

will be used in our model and solutions for the rest of the

paper. The birth rate and death rate are represented by bm
and dm for cell m, respectively, and the rate of mutation

from cell type 0 to 1 is denoted by u01. These cell types rep-

resent the drug-sensitive (with size x0 tð Þ) and drug-resistant

(with size x1 tð Þ) clones. Associated with this model, we

derive the set of equations (2) that express the dynamic

behavior of the clonal evolution. In order to explore the

competition among the resistant and sensitive clones over

nutrients, similar to [12], we introduce a nutrient source

BA

Fig. 1. (A) In aggressive treatments, eradicating the drug-sensitive cells leads to a rapid growth of resistant cells and forming an entirely

resistant tumor. However, containment treatments maintain competition between the subpopulations, thereby preventing resistant cells

from taking over the entire tumor. (B) Basic model of clonal evolution for one original cell and one mutation. The birth and death rates of

cell m are represented by bm and dm , respectively, and the mutation rate from type 0 to type 1 is denoted by u01
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R tð Þ which varies proportional to the growth rates G0 and

G1 of the clones. However, unlike [12], we assume that the

present populations are the only factors that affect the

nutrient resource supply.

_x0 ¼ b0x0�d0x0�u01x0, (2a)

_x1 ¼ b1x1�d1x1þu01x0, (2b)

_R¼�α G0x0þG1x1ð Þ, (2c)

where the time variable t is dropped for the sake of

simplicity, G0 ¼ b0�d0 and G1 ¼ b1�d1.

From the above equations, it is concluded that
_R¼�α _x0þ _x1ð Þ, which means Rþα x0þx1ð Þ¼R0, where

R0 is a constant defined at the time of initiation (t0) as

R0 ¼R t0ð Þþα x0 t0ð Þþx1 t0ð Þð Þ. Adopting the linear approxi-

mation for the birth rate–nutrition relationship, we can

express bm as a linear function of the available resource as

bm ¼ λmR. Therefore, given that R¼R0�α x0þx1ð Þ,

bm ¼ λm R0�α x0þx1ð Þð Þ,m¼ 0,1: (3)

The system of (2), then reduces to a system of two equa-

tions that represent the dynamics between the competing

clones as

_x0 ¼ λ0 R0�α x0þx1ð Þð Þx0�d0x0�u01x0, (4a)

_x1 ¼ λ1 R0�α x0þx1ð Þð Þx1�d1x1þu01x0: (4b)

Factoring R0 in the above equations leads to

_x0 ¼ λ0R0 1� x0þx1ð Þ
R0=α

� �
x0�d0x0�u01x0 (5a)

_x1 ¼ λ1R0 1� x0þx1ð Þ
R0=α

� �
x1�d1x1þu01x0, (5b)

meaning that for a total cell quantity greater than

R0=α, the variation rate would be negative.

Optimal dosage for containment in

heterogeneous tumors

In this paper, it is assumed that that an aggressive treat-

ment has been applied to reduce the size of tumor to a tol-

erable burden with a rationale similar to the method

proposed in [4]. Then, in the control phase of the treat-

ment, a containment strategy is followed to delay resistance

emergence. In this section, we present a mathematical

framework to explore the relative dynamics of sensitive and

resistant subpopulations in a containment strategy and to

maximize the time for resistance emergence through PKPD

modeling of the administered drug.

In this phase, we introduce a drug that is effective on

sensitive cells but has very small or no effectiveness on the

resistant clone. Assuming that the effect of a drug on kill-

ing tumor cells follows first-order kinetics [19], the system

of equations (2) is then modified as

_x0 ¼ b0x0�d0x0�u01x0�ht0x0 (6a)

_x1 ¼ b1x1�d1x1þu01x0�ht1x1 (6b)

_R¼�α G0x0þG1x1ð Þ (6c)

with G0 ¼ b0�d0�ht0 and G1 ¼ b1�d1�ht1. The time-

variant effect of the drug on the sensitive and resistant

clones is represented by ht0 and ht1, respectively. The

superscript t is used to distinguish these time-varying

functions from the constant coefficients for birth,

death, and mutation rates.

Assuming that plasma concentration—which is related to

pharmacokinetic parameters—and the concentration at the

site of action—which is present in pharmacodynamic mod-

els—are always in equilibrium, the effect of the drugs can

be modeled using PKPD modeling [20]. Therefore, htm
can be expressed for the drug response time period as

htm ¼ fPD fPK dose,tð Þð Þ, where fPD :ð Þ is the

Table 1. Parameters and variables

Notation Description

x0 Size of sensitive type

x1 Size of resistant type

bm Birth rate of cell type m

dm Death rate of cell type m

u01 Mutation rate from type 0 to type 1

R Nutrient resource

α Rate of nutrient resource usage

R0 Nutrient related constant at initiation

λm Birth rate–nutrient factor for type m

fPD(.) Pharmacodynamics (PD) model

fPK(.) Pharmacokinetic (PK) model

cp Plasma concentration of a drug

κ Decay rate for a drug

Emax Maximum response of a drug

EC50 Half maximum concentration of a drug

Klm Linear approximation factor on type m

ht
m PKPD effect of drug on type m

N Number of doses

Tn Drug’s nth administering time instant

Dn Dosage at nth time instant

X 0 Vector of the initial number of cells

t0 Time of initiation

teq Time of resistance emergence

t f Length of the treatment period

τmin Minimum dosage interval

Dmin Minimum dosage of drug

Dmax Maximum dosage of drug
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pharmacodynamics model and fPK :ð Þ¼ cp tð Þ is the pharma-

cokinetic model in which cp tð Þ is the time-variant plasma

concentration [20]. The pharmacokinetic model for drugs

that are administered intravenously follows exponential

decay as

cp tð Þ¼ cp0e
�κt, (7)

where cp0 is the initial plasma concentration at the

time of administration and κ is the decay rate and

depends on drug clearance. The effective response of a

drug with concentration c, follows the empirical phar-

macodynamic model

E cð Þ¼ Emaxc
ν

ECν
50þcν

, (8)

where c is the concentration of the drug, and EC50 is

the concentration that produces half of the drug’s

maximum response (Emax) and ν is a Hill-type factor

governing the sigmoidicity of the response. The linear

adaptation of (8) approximates this model for small

concentration values [20] as E cð Þ≈ Emax

EC50
c¼Klc, where

Kl is called the linear approximation factor, in this

paper.

Therefore, ht0 ¼Kl0c tð Þ and ht1 ¼Kl1c tð Þ, where Kl1≪Kl0

given that cell type 1 is resistant to the drug. Assume that

at time instants Tnf gNn¼1, where N is the total number of

doses, a new dose Dn of drug is taken. The plasma concen-

tration at the beginning of each new administration is

expressed as

cpn ¼Dnþ cpn�1
e�κ Tn�Tn�1ð Þ, (9)

where the second term reflects the remaining effect of

the previous dosage.

It can be considered that in the system of equations (6),
_R¼�α _x0þ _x1ð Þ. Following the rationale that led to repre-

senting bm as in equation (3), the system of equations (6)

can be expressed in the form of

_x0 ¼ λ0 R0�α x0þx1ð Þð Þx0�d0x0�u01x0�ht0x0 (10a)

_x1 ¼ λ1 R0�α x0þx1ð Þð Þx1�d1x1þu01x0�ht1x1, (10b)

or equivalently as

dX

dt
¼ f t,X tð Þ,D,Tð Þ: (11)

The N-dimensional real vector D contains all required

dosages. T is an N-dimensional vector with positive integer

elements that contains all time instants and X is an M-di-

mensional vector that represents the size of all cell types. In

the case of (10), M¼ 2 and X¼ ½x0x1�T. There is no general

closed-form expression for the solution of this nonlinear

system, though we can analyze the response for specific

conditions.

In the case that the treatment is able to completely eradi-

cate the sensitive clone, the number of cells in this subpop-

ulation would be x0 ¼ 0. Assuming ht1 is negligible, at the

steady-state dX
dt ¼ 0, the number of resistant clone cells

would be x1 ¼ λ1R0�d1
λ1α

and can be approximated by R0=α,
which equals the maximum size of the tumor, in the control

phase. In other words, eliminating the sensitive cells leads

to a tumor that is entirely formed by the resistant clone x1
and thus changes the tumor cell population in favor of the

resistant clone.

In order to prevent this tumor environment alteration,

we adopt a containment treatment strategy and propose a

dosage design that delays the rise of the resistant clone over

a fixed, known period of time. We use the time instant at

which the size of the resistant subpopulation surpasses the

sensitive subpopulation as the indicator of resistance emer-

gence. In other words, this is the time instant that each

clone equally forms half of the tumor and is shown by teq
in this paper. The following optimization problem finds the

optimal dosage strategy that maximizes the time for resis-

tance emergence or equivalently maximizes teq.

max
D,T

teq (12a)

Subject to
dX

dt
¼ f t,X tð Þ,D,Tð Þ (12b)

X t0ð Þ¼X0 (12c)

x1 teq
� �¼ x0 teq

� �
(12d)

T1 ≥ t0þ τmin (12e)

tf ≥TNþ τmin (12f)

Tn ≥Tn�1þ τmin,2≤ n≤N (12g)

Dmin ≤Dn ≤Dmax ,1≤ n≤N (12h)

where tf is the treatment period; Dn and Tn are the nth

dosage and time instant, respectively. τmin is the mini-

mum time between two consecutive courses; Dmin and

Dmax are the drug’s minimum and maximum dosages,

respectively.

Results and Discussion

In this section, we provide a quantitative formulation

and mathematical framework that models the effect of
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drugs on the clonal evolution of competing cells, and

the impact of therapeutics on delaying the emergence

of resistance during the control phase. Table 2 con-

tains the baseline values of the input parameters

assumed in this evaluation which are mainly extracted

from [4,13,21]. The table also shows the range of the

parameters that will be used in the sensitivity analysis

of the model. In our evaluations, we assume that the

number of sensitive cells at the beginning of control

phase is 103 and that there exists a very small number

of resistant cells, set to 10. Other parameters are

assumed to be equal to the baseline values reported in

Table 2.

In Fig. 2, we explore the effect of the dosage on the

emergence of resistance by lowering the dosage

amount following the schedules presented in graphs

(A)–(C), from a full amount of Dmax to 50% and

25% of its baseline value. This leads to decreasing the

drug response (ht0 and ht1), as depicted in graphs

(D)–(F). The number of cells in the sensitive and resis-

tant subpopulation is shown in (G)–(I), in terms of the

percentage of the tumor’s size. The graphs show that

when we reduce the drug dose, the competition

between the drug-sensitive and drug-resistant clones

leads to delaying the emergence of resistance. In

graphs (J)–(L) the size of sensitive and resistant clones

is compared at six different checkpoints, for each of

the dosing schedules (A)–(C) explored in this figure.

The checkpoints include the initial time for the control

phase, four time instants after each of the four drug

administrations and at the end of treatment period. It

is apparent that the size of resistant clone increases

after each dose. More importantly though, these

graphs show that in plot (J), which is associated with

the dosing schedule (A), the resistant type takes over

the entire tumor after the third administration, while it

happens after the fourth dosage in (K) and it is the

dominant subpopulation by the end of the treatment

in (L). From the results presented in this figure, it is

concluded that the relative dynamics and population

for the drug-sensitive and drug-resistant clones are

governed by their competition and depend on the dos-

ing strategy.

In the next set of investigations in Fig. 3, we present

the effect of two other dosage strategies given in (A)

and (B) in comparison with our proposed optimal

strategy in (C) which is the solution of the optimiza-

tion problem (12). The dosage values in (A) and (B)

are 50% and 25% of Dmin, respectively, with different

timings given in the graphs. The associated drug

responses are presented in graphs (D)–(F), and the

resultant sizes of drug-resistant and drug-sensitive

clones are depicted in (G)–(I), where (I) represents the

optimal solution. It is observed that in (I), the two

curves representing the two subpopulations meet at the

maximum possible time instant in the given treatment

period, thus showing a delay in resistance onset. In

plots (J)–(L), the percentage of resistant and sensitive

subpopulations is compared at six checkpoints, which

include the initial time instant, the time after four

doses and at the end of the treatment period. It is

apparent from (J) and (K) that in their corresponding

strategies, (A) and (B), the resistant clone outcompetes

the sensitive clone after the fourth dose. In the optimal

strategy however, as shown in (L), the emergence of

resistance is postponed so that, at the end of the treat-

ment period, the size of resistant and sensitive clones

are comparable. The results presented in this figure

confirm that the relative dynamics of the sensitive and

resistant clones is dependent on the dosing strategy. It

is also concluded from Figs 2 and 3 that the proposed

optimal dosing strategy in 3(c), which is the solution

of the optimization problem, leads to the maximum

delay in the onset of resistance.

Figure 4 displays the heatmap plots for the number

of sensitive and resistant cells over the period of treat-

ment for all of the dosage strategies given in Figs 2A–C
and 3A–C, in the order of appearance. Plot 4(F), which

is associated with the optimal dosage strategy, shows

that the maximum size for the resistant clone popula-

tion is achieved at the end of the treatment period,

where it equals the size of sensitive clone. However, as

depicted in 4(A)–(E), this crossing happens at distinct

time instants depending on the dosage strategy.

Figure 5 compares teq, the time instant that the size

of the resistant subpopulation equals the size of

Table 2. Input parameters values and range

Parameter Valuea and Rangeb Unit

λ0 0:185�10% day−1/µg
λ1 0:12�10% day−1/µg
d0 0:1�10% day−1

d1 0:02�10% day−1

u01 10�4�10% day−1

R0 1500 µg
α 0:9�10% µg/cell
K l0 2�10% day−1/(µM/L)
K l1 0:125�10% day−1/(µM/L)
κ 0:0857�10% day−1

N 4 –
t f 30 day

τmin 4 day

Dmin 0.05 µM/L
Dmax 0.5 µM/L

aBaseline values were extracted from [4,13,21].; bRange defined

for the sensitivity analysis.
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sensitive clonal population, for the different dosage

strategies given in Figs 2A–C and 3A–C. The plot con-

firms that changing the dosage strategy changes the

time instant at which the resistant population sur-

passes the sensitive population and that the optimal

strategy maximizes this time.

Sensitivity analysis

We perform single parameter sensitivity analysis for

the optimal dosage strategy and investigate the effect

of the model parameters as well as drug’s PKPD

parameters on the maximum size of resistant clone

that achieved at the end of the treatment period. In

Fig. 6, the percentage of relative sensitivity is pre-

sented. While the optimal dosage strategy 3(c) assumed

with the baseline values for the parameters, as listed in

Table 2, one parameter at a time has been varied in a

range of �10% to þ10% of its baseline quantity. It

is apparent in the figure that among the model param-

eters, the resistant clone population is most sensitive

to the birth rate–nutrient parameters λ0 and λ1.
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Fig. 2. The effect of drug dosage on the clones’ dynamics in a containment treatment for a period of 30 days; (A–C) three different dosage

schedules; (D–F) the associated drug response (ht
0 and ht

1) to the schedules (A), (B) and (C); (G–I) percentage of tumor size for drug-

sensitive and drug-resistant clones over the period of treatment; J–L percentage of sensitive (S) and resistant (R) cells at six check points

from (i) to (vi), including the initial, after each administered dose and at the final point. From the results, it is apparent that the relative

dynamics of the subclones and time of rising the resistance depend on the dosage schedule
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Additionally, between drugs’ PKPD parameters κ, Kl0,

and Kl1, the size of the resistant clone is most sensitive

to the drug’s efficacy parameter on the sensitive clone,

reflected by linear approximation factor Kl0.

Conclusion

In thCis paper, we proposed a mathematical

framework for modeling the competition between

drug-sensitive and drug-resistant populations through

clonal evolution dynamics of heterogeneous tumors.

The framework involves a PKPD model for the

administered drug, which defines the relative dynamics

of the competing clones. It was shown that, for a con-

tainment therapy, the control phase of the treatment

(which aims to control and maintain the tumor burden

at a tolerable level) can be mathematically formulated

to achieve a strategically designed dosing strategy that
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Fig. 3. The effect of drug dosage on the clones’ dynamics in a containment treatment for a period of 30 days and delaying the emergence

of the resistant clone through optimal scheduling; (A) and (B) two different dosage schedules and (C) is the optimal schedule found as the

solution of the optimization problem; (D–F) the associated drug response (ht
0 and ht

1) to the schedules (A), (B), and (C); (G–I) Percentage of

tumor size for drug-sensitive and drug-resistant clones over the period of treatment where (I) represents the optimal solution; (J–L)
percentage of sensitive (S) and resistant (R) cells at six check points from (i) to (vi), including initial, after each dose of administration and at

the final point. It is apparent that the relative dynamics of the subclones and the time of rising resistance depend on the dosage schedule

and that our optimized strategy leads to delaying the emergence of the resistant clone
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will lead to the postponement of resistance emergence.

To support more effective containment strategies, we

formulated an optimization problem that determines

the dosage strategy that leads to the latest onset of

resistance for a given treatment period. We presented

simulation results that support the validity of the pro-

posed methodology and the optimization algorithm.

We compared the relative percentage of the tumor’s

size for the sensitive and resistant cells over the course

of the treatment. Additionally, we compared the size

of the sensitive and resistant clonal populations at dif-

ferent checkpoints, including the initiation time for the

control phase, after the administering of each dose and

at the end of the treatment period. Our results showed

that, while the resistant clonal population increases

after each dosage, the respective fraction of each clone

is governed by the presence of interclonal competition.

We investigated the effect of the dosage strategy on

the relative dynamics of the sensitive and resistant sub-

populations by altering the dosage amount, as well as

the administration schedule. Our results showed that

with a reduction of the drug dose from the standard,

maximum dose of Dmax, the competition between the

drug-sensitive and drug-resistant clones leads to delay-

ing the emergence of resistance and that changing the

dosing schedule results in different resistance dynam-

ics. Notably, our proposed optimized dosage strategy

increased the time of resistance emergence by more

than 100% , with respect to the dosing scenario with

the baseline value of Dmax. Single parameter sensitivity

analysis showed that, under optimal dosage strategy,

the size of resistant clone population is more sensitive

to the birth rate–nutrient parameters and the drug’s
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optimal strategy 3(C) where the size of sensitive and resistant subclones become equal at the end of the treatment period
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efficacy on the sensitive clonal population than it is to

the dynamics associated with population death and

mutation rates.
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