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Abstract: The position calibration of inertial measurement units (IMUs) is an important part of
human motion capture, especially in wearable systems. In realistic applications, static calibration
is quickly invalid during the motions for IMUs loosely mounted on the body. In this paper, we
propose a dynamic position calibration algorithm for IMUs mounted on the waist, upper leg, lower
leg, and foot based on joint constraints. To solve the problem of IMUs’ position displacement,
we introduce the Gauss–Newton (GN) method based on the Jacobian matrix, the dynamic weight
particle swarm optimization (DWPSO), and the grey wolf optimizer (GWO) to realize IMUs’ position
calibration. Furthermore, we establish the coordinate system of human lower limbs to estimate each
joint angle and use the fusion algorithm in the field of quaternions to improve the attitude calibration
performance of a single IMU. The performances of these three algorithms are analyzed and evaluated
by gait tests on the human body and comparisons with a high-precision IMU-Mocap reference device.
The simulation results show that the three algorithms can effectively calibrate the IMU’s position
for human lower limbs. Additionally, when the degree of freedom (DOF) of a certain dimension is
limited, the performances of the DWPSO and GWO may be better than GN, when the joint changes
sufficiently, the performances of the three are close. The results confirm that the dynamic calibration
algorithm based on joint constraints can effectively reduce the position offset errors of IMUs on upper
or lower limbs in practical applications.

Keywords: IMU; MoCap; DWPSO; GWO; Gauss–Newton; joint constraints

1. Introduction

In recent years, inertial measurement units (IMUs) have attracted increasing interest
in the field of human motion analysis. The wearable sensor motion capture system is
less costly, more flexible, and more portable than optical camera-based motion capture
devices [1,2]. By mounting IMUs on each limb of human bodies, the real-time tracking and
motion data analysis of human postures can be realized. The IMU-based motion capture
and analysis have shown substantial applications in athletic training, e.g., golf training,
baseball training, dart-throwing training, etc. [3–6]. It also has promising application
prospects in medical rehabilitation training. In [7], the IMU-Mocap system is applied to
determine the level of autonomy for patients with Parkinsonism syndromes. To obtain
the information of body motions, the installation position of the IMUs and the variation
of joint space position should be accurately measured. The works [1,8] analyzed the
influence of IMUs’ positions or directions on the accuracy of motion evaluation, and it will
further affect the variation of the joint angle. However, in practical applications, different
types of clothing materials and muscle stretching during exercise will cause IMU position
displacements. A direct consequence of IMU displacement is the difference of the derived
joint position relative to the pre-calibration. Therefore, an effective IMU position calibration
method is necessary.
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Regarding IMU position displacement, there are currently two types of IMU position
calibration, divided into static calibration, e.g., quiet standing, and dynamic calibration,
e.g., knee flexion. For static calibration, the work [9] realized an IMU-to-body calibration
based on preset static postures. In [10,11], the direction of the IMUs was estimated by a
T-pose or N-pose to ensure that each frame in the IMUs aligns with the known direction in
that posture. For dynamic calibration, the works [12,13] calibrated the IMUs bound to the
upper leg and lower leg by using flexion/extension (FE) and abduction/adduction (AA) of
the knee joint, so that the angle of the knee joint is equal to zero in the standing posture.
The studies [14,15] proposed a simple calibration scheme, which does not need to specify
the motion of limbs, and used human gait analysis to align the direction of IMUs to the
body. However, the above methods do not estimate the positions of the sensors relative
to the adjacent limbs, which is critical information for calculating the joint angle using
IMUs, especially during fast rotations of the joint [16], and establish a motion chain model
in high-speed motions [17]. The study [18] proposed a position estimation algorithm to
estimate the position of IMUs relative to the limbs based on the least-squares optimization.
This approach was further extended in [19,20] for gait analysis and the angles of the knee
and ankle joint were estimated; it was then applied to the rehabilitation system of human
limbs.

The limitations of the above calibration methods can be summarized as follows:
(1) The wearing position of the sensor needs to be fixed or special tools are

required [9–11].
(2) The limbs are required to perform specific motions, but it is difficult for volunteers

with damaged joints to complete them. Even volunteers with normal physical activities
need to be guided by professionals [12,13].

(3) The direction of IMUs must be estimated in advance to complete the calibration,
and it is easy to make mistakes, especially when using a magnetometer, which is vulnerable
to the interference of magnetic field [14,15,21].

(4) When the joint rotates, it cannot be fully rotated in all specified directions, resulting
in the decline of calibration accuracy [18,19].

Problem Statement

Considering the limitations of previous calibration algorithms, and based on the
joint constraints proposed in [18], in this work, we aim to study the influence of different
algorithms on the dynamic calibration performance of IMUs’ position based on joint
constraints. Furthermore, we aim to establish the human lower limb coordinate system and
calculate the joint angle to study the influence of IMUs’ position accuracy on human gait
space-time parameters. The study [18] did not provide research on the difference of results
caused by different joint motion types in the actual motion process. Due to the different
variation ranges of the hinge joint and spherical joint, the degree of freedom (DOF) of the
joint will change. When the joint rotation is insufficient, the result of the Gaussian–Newton
(GN) algorithm based on the Jacobian matrix may be inaccurate. To solve the IMU position
displacement and consider the influence of the change of joint DOF on the calibration
algorithm, we introduce the dynamic weight particle swarm optimization (DWPSO) [22]
and grey wolf optimizer (GWO) [23] to realize the position calibration of IMUs based on
the joint constraints, and the calibration results of the two algorithms are compared with
GN. The main contents of this work are as follows:

(1) The four IMUs are bound to the waist, upper leg, lower leg, and foot, respectively,
for the gait experiment, and the data of accelerometers and gyroscopes of each IMU
are collected. High-precision IMU-Mocap equipment is bound on the lower limbs for
synchronous data acquisition with IMUs. High-precision motion capture equipment is
only for reference. In addition, we place IMUs in two different positions, and three subjects
are tested in two positions, including one female of height 165 cm, and two males of height
175 cm and 180 cm respectively.
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(2) The collected data are substituted into the GN, DWPSO, and GWO for position
estimation to obtain the position information of IMUs relative to the limbs.

(3) Using the calibrated IMU position information, we establish the human lower limb
coordinate system to calculate the angles of the hip, knee, and ankle joint in each DOF.
Additionally, to improve the performance of attitude calibration, the quaternion fusion
algorithm is used to fuse the data of the accelerometer and gyroscope of single IMU.

(4) The performance of the three algorithms is evaluated by comparing them with the
high-precision IMU-Mocap reference device.

The following of the paper is organized into 5 parts. In Section 2, the IMU position
calibration model of the spherical joints and the hinge joints is introduced, respectively. In
Section 3, analyzing the performance of the GN, and points out its limitations. Under the
same constraints as the GN, the DWPSO and GWO are used to calibrate IMUs’ positions.
Section 4 establishes the coordinate system of human lower limbs, combines the position
information of IMUs and the attitude of single IMU to calculate the joint angle of human
lower limbs during walking. Section 5 introduces the experimental test device and test
scheme and analyzes the test data by analyzing the angle variation of each joint angle to
verify the performance of the three calibration algorithms. Finally, Section 6 summarizes
the study.

2. IMU Position Calibration Principle

In this study, we focus on the calibration of IMUs’ positions relative to the lower limb
joints. According to the international society of biomechanics (ISB) standard [24] and the
joints coordinate system defined in human anatomy [25], 3D rotation for the lower limbs
joints can be defined as: (1) hip: flexion/extension (HFE), abduction/adduction (HAA), inter-
nal/external rotation (HIE), (2) knee: flexion/ extension (KFE), abduction/adduction (KAA),
internal/external rotation (KIE), (3) ankle: flexion/extension (AFE), abduction/adduction
(AAA), internal/external rotation (AIE).

For the IMU position estimation, human lower limbs can be simplified as rigid seg-
ments connected by joints. Figure 1 presents a model of human left lower limbs; as the
human body is symmetrical, it can also be applied to the right lower limbs. The four IMUs
are denoted as S, S ∈ {A, B, C, D} being mounted on the waist, upper leg, lower leg, and
foot. The hip, knee, and ankle joints are denoted as Ji, Ji ∈ {JH, JK, JA}. r JK is the rotation
axis of the knee joint. Og is the global coordinate system, which represents the coordinate
system of the 3D space object. Os, S ∈ {A, B, C, D} is the sensor coordinate system, which
takes IMUs’ center as the coordinate origin.

A

B

JH

VJH, A

C

D

rJK

Og

VJH, B
VJK, B

VJK, C

VJA, C
VJA, D

JK

JA

Os

Figure 1. A model of a human left lower limb connected by joints.

The human lower limb joints can be classified into a spherical joint and hinge joint,
where the hip and ankle are spherical joints and the knee joint is the hinge joint. At time
step t (t = 1 . . . n), the accelerations measured by the accelerometers are denoted as aS(t).
The angular velocities measured by the gyroscope are denoted as wS(t), S ∈ {A, B, C, D}.

(1) The spherical joint
The spherical joint is analyzed on the hip joint as an example and is applicable for

the ankle joint. Assuming A and B are connected through the joint JH, the position of the
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two IMUs relative to the joint can be determined from the sequence of measurements of A
and B. Let V JH , S = [xJH , S, yJH , S, zJH , S]

T , S ∈ {A, B} denote the vector pointing from the
joints center to the origin of the two IMUs coordinate systems in Figure 1. Through the
IMU position estimation algorithm proposed in [18], the spherical joint model is defined
by Equation (1).

‖aA(t)− ΓA(t)‖ − ‖aB(t)− ΓB(t)‖ = 0, (1)

ΓS(t) = wS(t)× (wS(t)× V JH , S) + αS(t)× V JH , S, S ∈ {A, B}, (2)

where ||·|| is the norm for vectors, × is a cross product. The angular acceleration calculated
by the angular velocity is denoted as αS, which is defined by [19].

The IMU position displacement will cause the errors of Equation (1), and the equation
is not equal on the left and right. The errors are defined by Equation (3).

eJH (t) = ‖aA(t)− ΓA(t)‖ − ‖aB(t)− ΓB(t)‖ (3)

(2) The hinge joint
The knee joint is a hinge joint, and the model of the knee joint rotation axis estimation

proposed in [18] is defined by Equation (4).∥∥wB(t)× r JK , B
∥∥− ∥∥wC(t)× r JK , C

∥∥ = 0, (4)

where r JK , B, r JK , C are the coordinates of the unit vector parallel to the knee joint axis in the
OB and OC.

Figure 2 show the coordinates of r JK , B and r JK , C in spherical coordinates, and converts
it to the rectangular coordinate system in Equation (5)

r JK , S = [cos(ϕS) cos(θS), cos(ϕS) sin(θS), sin(θS)], S ∈ {B, C}, (5)

where ϕ ∈ [0, π] is the pitch angle, θ ∈ [0, 2π] is the yaw angle. The IMU position
displacement will cause Equation (4) to be unequal on the left and right. The errors are
defined by Equation (6).

eJK (t) =
∥∥wB(t)× r JK , B

∥∥− ∥∥wC(t)× r JK , C
∥∥ (6)

X

Y

Z

ɵ

φ

Figure 2. Spherical coordinates of r JK , B and r JK , C.

3. Calibration Algorithm Design
3.1. Gauss–Newton Method for IMUs Position Calibration

By the analysis of joint constraints in Section 2, we use the Gaussian–Newton (GN)
algorithm based on the Jacobian matrix to calculate Equations (3) and (6).

For Equation (3), the optimization problem is expressed by Equation (7).
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min
xJH

n

∑
t=1

e2
JH
(t),

xJH = [V JH , A, V JH , B]
T ,

eJH (t) = ‖aA(t)− ΓA(t)‖ − ‖aB(t)− ΓB(t)‖,

(7)

where xJH is the vector containing IMUs’ position parameters, and xJH , S, yJH , S, zJH , S,
S ∈ {A, B} are in the range [−0.2, 0.2].
The iteration steps at time t are described as follows:

(1) Randomly generate initial values of xγ
JH

, γ is the number of iterations.
(2) Calculate the deviation vector eJH using Equation (7).

(3) Calculate the Jacobian matrix J =
deJH
dxJH

using Equation (8), and then calculate the

generalized inverse matrix of J, which is pinv(J).

J =


∂eJH (1)
∂V JH , A

∂eJH (1)
∂V JH , B

...
...

∂eJH (n)
∂V JH , A

∂eJH (n)
∂V JH , B

, (8)

where
∂eJH

∂VJH , S
= − (aS − ΓS)

T

‖aS − ΓS‖
([wS]×[wS]× + [αS]×), S ∈ {A, B} (9)

the following symbols are introduced by Equation (10)

[wS]× =

 0 −wz wy
wz 0 −wx
−wy wx 0

,

[αS]× =

 0 −αz αy
αz 0 −αx
−αy αx 0

,

(10)

where wS = [wx, wy, wz]
T , αS = [αx, αy, αz]

T .
(4) Update xγ

JH
by Equation (11) and return to (2).

xγ+1
JH

= xγ
JH
− pinv(J)eJH , (11)

For Equation (6), the optimization iteration is expressed by Equation (12).

min
xJK

n

∑
t=1

e2
JK
(t),

xJK = [ϕB, θB, ϕC, θC]
T ,

eJK (t) =
∥∥wB(t)× r JK , B

∥∥− ∥∥wC(t)× r JK , C
∥∥,

(12)

where xJK is the vector containing knee joint axis position parameters. The iteration steps
at time t are described as follows:

(1) Randomly generate initial values of xγ
JK

.
(2) Calculate r JK , S using Equation (5)
(3) Calculate the deviation vector eJK using Equation (12).

(4) Calculate the Jacobian matrix J =
deJK
dxJK

using Equation (13) and calculate the

generalized inverse matrix of J is pinv(J).
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J =


∂eJK (1)
∂r JK , B

∂eJK (1)
∂r JK , C

...
...

∂eJK (n)
∂r JK , B

∂eJK (n)
∂r JK , C

, (13)

where
∂(
∥∥wS × r JH , S

∥∥)
∂r JH , S

=
(wS × r JH , S)×wS∥∥wS × r JH , S

∥∥ , S ∈ {B, C} (14)

(5) Update xγ
JK

using Equation (15) and return to (2).

xγ+1
JK

(t) = xγ
JK
(t)− pinv(J)eJK (t) (15)

According to the definition of the DH coordinate system in [26], the three DOF (3-DOF)
joints of the hip and ankle can be divided into three hinge joints. Therefore, the position
of the IMUs relative to the knee joint can be calculated using the spherical joint approach.
The positions of B and C relative to the knee joint can be obtained by Equation (16).

V JK , B = Ṽ JK , B −
1
2
(rT

JK , B · Ṽ JK , B + rT
JK , C · Ṽ JK , C)r JK , B,

V JK , C = Ṽ JK , C −
1
2
(rT

JK , B · Ṽ JK , B + rT
JK , C · Ṽ JK , C)r JK , C,

(16)

where Ṽ JK , B and Ṽ JK , C are the estimated by Equation (7).
By analyzing the algorithm, the limitations of the GN are as follows:
(1) In the process of using the GN, the Jacobi matrix theoretically needs to be positive

definite; however, the calculation may not be of full rank. When people walk, the motion of
the knee joint is mainly flexion and extension, i.e., there is a significant change in only one
DOF. When in other DOF, such as internal/external rotation of the knee joint, wx = wy = 0
cause αx = αy = 0. According to the analysis of Equations (8)–(10), this will reduce the
rank of the Jacobian matrix. For the hip or ankle joint, it is also not guaranteed that each
motion produces rotation in all 3-DOF at the same time, which reduces the rank of J. The
matrix J may be singular and leads to non-convergence of the algorithm.

(2) In the process of practical calculation, the GN is iterated along with one or two of
the matrix entries, which causes the high complexity of the J. Therefore, each joint can
only be calculated separately. If the motion data of the whole lower limb is processed at
the same time, it will increase the complexity of the algorithm and make the iteration time
longer and the performance of the GN will be compromised.

3.2. Dynamic Weight Particle Swarm Optimization for IMUs Position Calibration

Both the population algorithm and genetic algorithm simulate the adaptability of the
individual population on the basis of natural characteristics and use some transformation
rules to solve the optimal solution through the search space. However, individual variation
will occur in the process of the genetic algorithm, which cannot completely solve the con-
straints in the optimization problem [27]. Therefore, we chose the population optimization
algorithm to realize the position calibration of IMUs.

Under the same constraints as [18], we introduce dynamic weight particle swarm
optimization (DWPSO) to calibrate the position of IMUs, where the dynamic weight is
added to the traditional PSO. Unlike the GN, the DWPSO does not need to consider the
complexity of the Jacobian matrix calculation.

At time t, let N is the number of particles in the population, and ε is the ε-th particle
of all particles. The parameter vector containing the IMUs’ positions is expressed by
Equation (17). The vector containing knee joint axis position parameters is expressed by
Equation (18).
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xJH , ε = [V JH , A, ε, V JH , B, ε]
T , (17)

xJK , ε = [ϕB, ε, θB, ε, ϕC, ε, θC, ε]
T , (18)

For Equations (3) and (6), the optimization is expressed by Equations (19)–(21).

ηε = argmin(eJi (xγ
Ji , ε)), (19)

where ηε is individual extreme as optimal value of xJi found by the particle ε in the iteration,
Ji ∈ {JH , JK}. γ is the number of iterations.

p = argmin(eJi (ηε)), (20)

where p is the global extremum, i.e., all particles find the optimal value of xJi in the iterative.

F JH , ε =

FxJH , A, ε FxJH , B, ε

FyJH , A, ε FyJH , B, ε

FzJH , A, ε FzJH , B, ε

,

F JK , ε = [FϕB, ε, FθB, ε, FϕC, ε, FθC, ε]
T ,

(21)

where F JH , F JK are the update speed of particles. The algorithm steps at time t are as follows:
(1) Initialization xJi, ε and V Ji, ε. xJH , S, yJH , S, zJH , S, S ∈ {A, B} are following uniform

distribution in range [−0.2, 0.2]. ϕB, ϕC are following uniform distribution in range [0, π].
θB, θC are following uniform distribution in range [0, 2π].

(2) Substitute xJH , ε into Equation (3) to obtain eJH . xJK , ε into Equation (6) to obtain eJK .
(3) According to Equations (19) and (20) to calculate ηε, p.
(4) Update xJi, ε and V Ji, ε as follows:

Fγ+1
Ji , ε = µFγ

Ji , ε + Ω1∂1(ηε − xγ
Ji , ε) + Ω2∂2(p− xγ

Ji , ε), (22)

xγ+1
Ji , ε = xγ

Ji , ε + Fγ+1
Ji , ε , (23)

where Fγ+1
Ji , ε and xγ+1

Ji , ε are the values after the γ-th update. ∂1 and ∂2 are following uniform
distribution in range [0, 1]. µ is the inertia factor. Ω1 and Ω2 are acceleration constants.
This work takes Ω1 = 2, Ω2 = 2.

(5) Repeat steps 2∼4 until eJi convergence.
In step 4 of the algorithm, µ will affect the performance of the algorithm. µ is too

large or too small will affect the convergence of the error. Therefore, we introduce a PSO
based on dynamic weight. µ decreases exponentially in range [µmin, µmax] as γ increases.
Additionally, to avoid falling into a local optimum when µ decreases, random jumps are
introduced by Equation (24).

µ̃ = µmax

(
µmax

µmin

)1+ 1
10∂

γ
γmax , (24)

where µ̃ is dynamic weight. The maximum number of iterations is denoted as γmax. Let
µmin = 0.2, µmax = 0.8. Figure 3 shows the convergence curve of eJH when using fixed
weight and the dynamic weight, and the eJH is defined by Equation (3). When the N is
small, the performance of dynamic weight is better than the fixed weight. It is suitable for
some scenes that require high timeliness. When the N is large, the performance of dynamic
weight is similar to fixed weight.
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Figure 3. Convergence curves of dynamic weight and fixed weight with different numbers of
particles. (a) N = 50; (b) N = 150; (c) N = 350.

3.3. Grey Wolf Optimizer for IMUs Position Calibration

To verify the influence of different population algorithms on IMUs’ position calibration
performance, we also introduce the grey wolf optimizer (GWO) [23] for position calibration.
The GWO is a new optimization algorithm inspired by the hunting and social hierarchical
behavior of gray wolves. It randomly generates a set of solutions to form an initial gray
wolf group, and then iteratively selects the best three wolves in the population, similar to
the optimal solution in the PSO.

The parameter vector containing the IMUs position is expressed by Equation (25). The
vector containing knee joint axis position parameters is expressed by Equation (26).

xJH ,p = [V JH , A, V JH , B]
T , (25)

xJK ,p = [ϕB, θB, ϕC, θC]
T , (26)

where p is a different individual in the population and xJi , p, Ji ∈ {JH , JK} is the corre-
sponding position of the individual.

In the GWO iteration, the position of each gray wolf represents a feasible solution
in the solution space. Let the wolf with the best position be pα; the second-best is pβ; the
third-best is pδ. The remaining wolves are pε, i.e., the wolf pack individuals other than the
best three wolves. In each iteration, the three best gray wolves in the current population
are retained, and then the positions of other search agents are updated according to their
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position information. pα, pβ, pδ and pε are constantly updated and iterated until the
optimal solution is found. The process of finding the optimal solution is the process of a
gray wolf hunting prey.

(1) Encircling Prey

f pα
= h1 · xγ

Ji , pα
− xγ

Ji , pε
,

f pβ
= h2 · xγ

Ji , pβ
− xγ

Ji , pε
,

f pδ
= h3 · xγ

Ji , pδ
− xγ

Ji , pε
,

h = 2 · r1

(27)

where γ is the number of iterations. The positions of pα, pβ, pδ, pε in γ-th iteration are
denoted by xγ

Ji , pα
, xγ

Ji , pβ
, xγ

Ji , pδ
, xγ

Ji , pε
, respectively. The position vectors of pε relative to

pα, pβ, pδ are denoted as f pα
, f pβ

, f pδ
. The random vector following uniform distribution

in range [0, 1] is denoted as r1. h ∈ {h1, h2, h3} is the random weight and decreases
nonlinearly in iterations. From the initial iteration to the final iteration, it provides global
search in the decision space. When the algorithm falls into local optimization and it is
not easy to jump out, the randomness of h plays an important role in avoiding local
optimization. Equation (27) shows that, after moving, the pε will move around the target
gray wolves pα, pβ, pδ, and its orientation is determined by the size of each dimension
and the h.

(2) Hunting
xJi , p1 = xγ

Ji , pα
− k1 · f pα

,

xJi , p2 = xγ
Ji , pβ
− k2 · f pβ

,

xJi , p3 = xγ
Ji , pδ
− k3 · f pδ

,

k = 2 · ψ · r2 − ψ,

(28)

xγ+1
Ji , pε

=
xJi , p1 + xJi , p2 + xJi , p3

3
,

(29)

where k ∈ {k1, k2, k3} is the random weight. The random vector following uniform
distribution in range [0, 1] is denoted as r2. ψ is the convergence factor, which decreases
linearly from 2 to 0 with the number of iterations. Combining Equations (27) and (28)
shows that the pε moves its position by observing the positions of pα, pβ, pδ, and denoted
as xJi , p1 , xJi , p2 , xJi , p3 , respectively. Then, use Equation (29) to determine the moving

direction of the prey and update its position, i.e., xγ+1
Ji , pε

is the updated position of the
pε. Through a continuous iterative search, the optimal solution is found. Additionally,
Equation (29) shows that the target position of the pε is the centroid of the area enclosed by
the three positions obtained by observing the pα, pβ, pδ.

(3) Attacking Prey
During the iteration, when ψ decreases linearly from 2 to 0, its corresponding k also

changes in range [−ψ, ψ]. When the value of k is in the range, the next position of the gray
wolf can be anywhere between its current position and the prey position. When |k| < 1,
wolves attack their prey. When |k| > 1, the gray wolf separates from its prey and continues
to look for more suitable prey.

The algorithm steps at time t are as follows:
(1) Initialization h, k, xJi,p. xJH , S, yJH , S, zJH , S, S ∈ {A, B} are following uniform

distribution in range [−0.2, 0.2]. ϕB, ϕC are following uniform distribution in range [0, π].
θB, θC are following uniform distribution in range [0, 2π].

(2) Calculate the individual fitness of the population by substituting xJH ,p into Equa-
tion (3) and xJK ,p into Equation (6). Select the three individuals with the smallest error as
pα, pβ, pδ.
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(3) Calculate the position vectors of pε relative to pα, pβ, pδ in γ-th iteration, respec-
tively by Equation (27). Update the position of pε by Equations (28) and (29).

(4) If the maximum number of iterations is reached, go to step 6. Otherwise, go to
step 5.

(5) Reorder to determine the position of the gray wolf, and go to step 2.
(6) Output current optimal solution by Equation (29).

4. Calculation of Human Lower Limbs Joint Angles

To calculate the joint angle, the coordinate system of each limb needs to be constructed
first. The previous method of establishing the limb coordinate system is to let the subject
stand in a standard standing posture. The limitations of this method have been analyzed in
Section 1. According to the calibration algorithm in Section 3, we can obtain the installation
position and direction information of human lower limb sensors and use this information
to establish the coordinate system attached to a limb.

4.1. Establish the Coordinate System Attached to a Limb

In human kinematic analysis, it is crucial to determine the spatial relationship between
two adjacent limbs. The establishment of the spatial relationship between two limbs
depends on the coordinate frame fixed on each limb, i.e., the coordinate system attached
to a limb. The commonly used method in domestic and overseas is to establish the
coordinate frame on the axis of the proximal or posterior joints of each limb [28]. In this
work, according to the standards of the international society of biomechanics (ISB) [24],
we establish the coordinate system attached to a limb on the proximal joint, and all the
coordinate systems are the right-hand Cartesian coordinates. As shown in Figure 4, the
limbs of the pelvis, upper leg, lower leg, and foot of the left leg are denoted as the rod L1, L2,
L3, and L4, respectively, and the coordinate system attached to each limb is denoted as {L1},
{L2}, {L3}, {L4}. In most human motions, the pelvis generally makes only translational
motion without rotation; therefore, in the case of only calculating the joint angles, the L1
rod can be considered as a fixed rod.

A
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2z

L
3y

L
3x

L
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L
4y

L
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4zrJK

JK

JH

JAN

O

Figure 4. Structural diagram of human lower limb.

As shown in Figure 5a, {L2} is established at JH . Make the normal line of r JK through
JH , and the foot point is N. The y-axes direction of the attached coordinate system is from
N to JH . The z-axes parallel to the knee joint rotation axis and the direction is left leg to
right leg. The x-axes are perpendicular to the y- and z-axes.

In Figure 5b, the vertical line of the knee joint is made through the point JA, and the
vertical point is O, {L3} is established at O. The y-axes direction is from JA to O. The z-axes
coincides with the knee joint axis, and the direction is the left leg to right leg. The x-axes
are perpendicular to the y and z-axes, {L4} is established at JA. At the initial stage, {L1}
and {L2} coincide, and {L3} and {L4} are parallel.
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Figure 5. Structure diagram of limbs and position vector of each joint. (a) Limb L2; (b) Limb L3.

The attitude transformation between two adjacent sensors is defined by Equation (30).

RA
B (t) = (R

Og
A (t))T R

Og
B (t),

RB
C(t) = (R

Og
B (t))T R

Og
C (t),

RC
D(t) = (R

Og
C (t))T R

Og
D (t),

(30)

where RA
B is the attitude transformation matrix between A and B. The attitude transfor-

mation matrix between B and C is denoted as RB
C. The attitude transformation matrix

between C and D is denoted as RC
D. The attitude transformation matrix of each IMU

relative to the global coordinate system at time t is denoted as R
Og
S , S ∈ {A, B, C, D}. It

is worth noting that only the sensor coordinate system Os is time-dependent, resulting in

R
Og
S changing with time and Og is not time-dependent. We analyze the fusion process in

detail in Section 4.3. When the human body has not started motion capture and stands still,
the attitude transformations between IMUs are denoted by RA

B (0), RB
C(0), RC

D(0).
According to the analysis in Section 3, the V JH , B, V JK , B, V JK , C, V JA , C, V JA , D, r JK , B,

and r JK , C can be obtained. As shown in Figure 5a,b, V BN and VCO need to be calculated to
obtain the coordinate system attached to each limb. Establishing the equation of the knee
joint axis by Equation (31).

x + x2

rx
=

y + y2

ry
=

z + z2

rz
, (31)

where [x2, y2, z2]
T denote the coordinates of V JH , B and [x3, y3, z3]

T denote the coordi-
nates of V JK , B.

[
rx, ry, rz

]T denote the coordinates of r JK , B. [x, y, z]T is any point on a
line, and point N is on this line. Assume that the coordinates of V BN are [a, b, c]T , the
equation of knee joint axis by Equation (32).

a + x2

rx
=

b + y2

ry
=

c + z2

rz
(32)

The normal line of r JK can be expressed by Equation (33).

rx(a + x3) + ry(b + y3) + rz(a + z3) = 0 (33)

According to Equations (32) and (33), V BN can be calculated, and {L2} is calculated
by Equation (34).
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zL2 = r JK , B

yL2 =
V JH , B + V BN∥∥V JH , B + V BN

∥∥
xL2 = yL2 × zL2

(34)

The attitude transformation matrix from {L2} to the coordinate system of sensor B is
denoted by Equation (35).

RL2
B =

[
xL2 , yL2 , zL2

]T
(35)

Similarly, we can obtain VCO, and the attitude transformation matrix from {L3} to the
coordinate system of sensor C is denoted by Equation (36).

RL3
C =

[
xL3 , yL3 , zL3

]T
(36)

At initial stage, {L1} and {L2} coincide, and {L3} and {L4} are parallel, i.e.,

RL1
L2

= I,

RL4
D = RL3

C RC
D,

(37)

where I is a identity matrix of 3 by 3, RL1
L2

is a rotation matrix between {L1} and {L2}, and

RL4
D is attitude transformation matrix from {L4} to the coordinate system of sensor D.

4.2. Joint Angles Calculation

According to the ISB standard [24], each joint angle of the lower limbs is the motion
of the lower limbs relative to the adjacent upper limb, i.e., the upper leg is relative to the
pelvis, the lower leg is relative to the upper leg and the foot is relative to the lower leg. In
the 3-DOF of the joint angles, flexion/extension is β, which is the angle of rotation about
the z-axes. Abduction/adduction is φ, which is the angle of rotation about the x-axes.
Internal/external rotation is δ, which is the angle of rotation about the y-axes, according to
the Z-X-Y Euler angular rotation order to calculate the joint angles. At t time, the rotation
matrix of limb Li relative to Li−1 (i = 2, 3, 4) can be obtained by Equation (38).

RL1
L2
(t) = RL2

B R
Og
B (t)

RL2
L3
(t) = RL2

B (R
Og
B (t))

T
RB

C(0)R
Og
C (t)(RL3

C )
T

,

RL3
L4
(t) = RL3

C (R
Og
C (t))

T
RC

D(0)R
Og
D (t)(RL4

D )
T

(38)

where RLi−1
Li

can be expressed by Equation (39).

RLi−1
Li

=

−sδsβsφ + cδcφ −sδcβ sδsβsφ + cδsφ
cδsβsφ + sδcφ cδsβ −cδsβcφ + sδsφ
−cβsφ sβ cβcφ


=

r11 r12 r13
r21 r22 r23
r31 r32 r33

,

(39)

where c is cos and s is sin. Euler angle can be calculated by Equations (40)–(42).
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when cos β 6= 0:

β = atan2 (r32,
√

r2
12 + r2

22)

δ = atan2 (− r12

cos β
,

r22

cos β
),

φ = atan2 (− r31

cos β
,

r33

cos β
)

(40)

when β = 90◦:
β = 90◦

δ = 0◦

φ = atan2 (r13,−r23)

(41)

when β = −90◦:
β = −90◦

δ = 0◦

φ = atan2 (r13, r23)

(42)

4.3. Single IMU Attitude Fusion

To improve the accuracy of attitude acquisition by single IMU, we need to fuse the
attitude rotation matrix in Equation (30). The quaternion-based attitude fusion algorithm
can effectively combine the error characteristics of gyroscope and accelerometer, and
improve the accuracy of attitude calculation [29]. The expression of a quaternion is defined
by Equation (43).

q = q0 + q1i + q2 j + q3k, (43)

where i, j, k is an imaginary unit, q0, q1, q2, q3 is a real number, and each quaternion is a
linear combination of 1, i, j and k.
(1) Quaternion initialization

At time t, the quaternion of attitude change is qt = [q0, q1, q2, q3]
T , the attitude

calculation error is ξt =
[
ξx, ξy, ξz

]T . At the initial stage, q0 and ξ0 are defined by
Equation (44).

q0 = [1, 0, 0, 0]T ,

ξ0 = [0, 0, 0]T ,
(44)

(2) Correction of angular velocity error
Based on the definition of cosine matrix and Euler angles in [30], the gravity vec-

tor of the global coordinate system can be rotated to the sensor coordinate system by
Equation (45).

gOs
t = ROg

Os
(t) · gOg

t

=

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q3q0) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

0
0
1

,
(45)

where the rotation matrix of Os relative to Og by quaternion is denoted as R
Og
Os
(t). The

acceleration of gravity is denoted as g
Og
t . The acceleration of gravity after rotation from Og

to Os is denoted as gOs
t =

[
gOs

x , gOs
y , gOs

z

]T
. Equation (45) is simplified by Equation (46).
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gOs
x = 2(q1q3 − q0q2),

gOs
y = 2(q2q3 + q0q1),

gOs
z = q2

0 − q2
1 − q2

2 + q2
3.

(46)

In the process of IMU attitude rotation, the gravity vector measured by the accelerom-

eter is aOs
t = [aOs

x , aOs
y , aOs

z ]
T

, and the gravity vector calculated by the attitude inte-

grated by the gyroscope is gOs
t =

[
gOs

x , gOs
y , gOs

z

]T
. The error vector between them is

ξt =
[
ξx, ξy, ξz

]T , which is the error between the attitude integrated by the gyroscope and
the attitude measured by the accelerometer. It can be expressed by cross product, and ξt is
defined by Equation (47).

ξx = aOs
y · gOs

z − aOs
z · aOs

y ,

ξy = aOs
z · gOs

x − aOs
x · aOs

z ,

ξz = aOs
x · gOs

y − aOs
y · aOs

x .

(47)

(3) Data fusion
The cross product error is adjusted by proportional-integral (PI) controller [31] to

correct the bias of the gyroscope. By adjusting the two parameters λp and λi, the speed of
the accelerometer to correct the integral attitude of the gyroscope can be controlled, where,
λp is the proportional adjustment coefficient, which is used to control the speed of the error
converges to the accelerometer. Once there is a deviation in the system, the proportional
adjustment will immediately produce an adjustment effect to reduce the error. λi is the
integral adjustment coefficient, which is used to control the convergence speed of gyro bias,
so as to eliminate the steady-state error and improve the accuracy of the system.

(1) At time t, integrate the cross product error by Equation (48).

ξ+x = ξ−x + ξx · λi ·
1
2

∆t,

ξ+y = ξ−y + ξy · λi ·
1
2

∆t,

ξ+z = ξ−z + ξz · λi ·
1
2

∆t,

(48)

(2) The fused gyro measurements are defined by Equation (49).

wO+
s

x = wO−s
x + λp · ξx + ξ+x ,

wO+
s

y = wO−s
y + λp · ξy + ξ+x ,

wO+
s

z = wO−s
z + λp · ξz + ξ+x ,

(49)

where λp = 2∆t. The sampling frequency is denoted as ∆t. The angular velocity measured

by gyroscopes in IMUs coordinate system are denoted as wOs
t =

[
wOs

x , wOs
y , wOs

z

]T
. “-”

is prior-estimted, and “+” is post-estimted. Since the parameter value of PI controller
needs to be dynamically adjusted according to different experimental requirements, in this
work, the value of λi cannot be too large. As shown in Figure 6, after several experimental
parameter adjustments, when λi is greater than 0.2∆t, the ξ defined by Equation (48)
increases gradually. Therefore, any value less than 0.2 is acceptable, and we set λi = 0.1∆t.
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Figure 6. When the λi takes different values, the convergence curve of ξ.

(4) Update quaternion


q0(t +4t)
q1(t +4t)
q2(t +4t)
q3(t +4t)

 =


q0(t)
q1(t)
q2(t)
q3(t)




1 −wOs
x
2 ∆t −wOs

y
2 ∆t −wOs

z
2 ∆t

wOs
x
2 ∆t 1 wOs

z
2 ∆t −wOs

y
2 ∆t

wOs
y
2 ∆t −wOs

z
2 ∆t 1 wOs

x
2 ∆t

wOs
z
2 ∆t

wOs
y
2 ∆t −wOs

x
2 ∆t 1

 (50)

(5) Convert the updated quaternions into matrix forms by R
Og
Os

of Equation (45), and the
attitude transformation matrix of each IMU relative to the global coordinate system can
be obtained.

5. Experimental Analysis
5.1. Measurement Equipment

In Figure 7, four IMUs (Yost Labs, USA) with red marked points were bound to the
limb with medical tape. Each IMU included a tri-axial accelerometer in the range ±16 g
and a tri-axial gyroscope in range ±2000 deg/s. The four IMUs are bound to the waist,
upper leg, lower leg, and foot, respectively, and the IMUs are connected by a 3.5 mm
retractable spring cable. All IMUs record data synchronously during motion capture, and
the sampling frequency is 100 Hz, which is transmitted to the computer wirelessly. The
white marked point is a wireless motion capture device named Perception Neuron Pro
(Noitom, CN), which is used as a reference system and worn on the limbs simultaneously
with IMUs for synchronous capture. The motion capture device is only used to verify the
performance of the calibration algorithm.

(a) (b)

Figure 7. The motion capture test equipment. (a) he IMUs on the leg; (b) the IMUs on the waist.

Considering that different gait characteristics of different people may affect the experi-
mental results and avoid the randomness of the experimental results, in the data acquisition
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phase, the data of the accelerometer and gyroscope are acquired by three subjects, including
one female at a height of 165 cm (subject 1) and two males at heights of 175 cm (subject 2)
and 180 cm (subject 3), respectively. Among them, the data of motion capture device are
only used for reference, which is different from the data collected by IMUs and they do not
affect each other. As shown in Figure 8, the IMUs are mounted at position 1 and position
2, respectively, for two experiments, and the data of the accelerometer and gyroscope are
collected at two different positions, respectively. To study the randomness and accuracy of
the calibration algorithm, the binding positions of IMUs do not coincide with the motion
capture device, i.e., the positions of IMUs is displaced. Before the formal motion capture,
the subjects need to stand still for 10 s to obtain the attitude rotation matrix between adja-
cent IMUs in the initial state. During motion capture, the subjects walked for 15 s. To avoid
the deviation of the walking mode from normal, the subjects are not informed that the
walking data would be used for calibration. The data collected by IMUs were substituted
into the calibration algorithm to calculate the angle changes of the hip, knee, and ankle
during walking and compared with the reference value of motion capture equipment.

(a) (b) (c) (d)

Figure 8. The IMUs are mounted in position 1 and position 2 for the experiment, respectively. (a) The
waist; (b) the upper leg; (c) the lower leg; (d) the foot.

5.2. Data Analysis

To analyze the accuracy of the algorithm, we compared the deviation between the
three algorithms and the reference value. The angle calculated by the GN, DWPSO, and
GWO are estimated values, and the angle calculated by motion capture equipment are
reference values. The Root Mean Squared Error (RMSE) between the estimate values and
the reference value for each DOF is calculated by Equation (51).

RMSE =

√√√√1
t

t

∑
m=1

(H IMU,m − HMCS,m)
2, (51)

where H IMU is the estimation values from IMUs, HMCS is the angle reference value
calculated by motion capture equipment named Perception Neuron Pro.

5.3. Results and Analysis

Figures 9–11 show the RMSE comparison of three algorithms when IMUs on three
subjects were bound in two positions. It shows that the three algorithms achieve position
calibration at two positions, respectively. No matter where it is, the RMSE of the DWPSO
is the lowest of the three algorithms, which is closer to the reference value. It is worth
mentioning that the reference value will change when IMUs change the position. When the
IMUs were placed in the second position, the accuracy of the three algorithms were ranked
the same. When the GWO is used for position calibration, the initial population is easy to be
unevenly distributed and lacks global communication, resulting in the final solution being
easy to fall into local optimization. In the DWPSO algorithm, we introduce dynamic weight
to control the speed of the initial population and improve the accuracy of the algorithm.
Therefore, the calibration performance of the GWO is lower than DWPSO. However, the
introduction of dynamic weight increases the complexity of the PSO algorithm and reduces
the efficiency of DWPSO.



Sensors 2021, 21, 7161 17 of 23

The IMUs in position 1

H
FE

H
AA

H
IE

K
FE

K
AA

K
IE

A
FE

A
AA

A
IE

Joint degrees of freedom (DOF)

0

5

10

15

20

25

R
M

S
E

(°
)

DWPSO

GWO

GN

(a)

The IMUs in position 2

H
FE

H
AA

H
IE

K
FE

K
AA

K
IE

A
FE

A
AA

A
IE

Joint degrees of freedom (DOF)

0

5

10

15

20

25

R
M

S
E

(°
)

DWPSO

GWO

GN

(b)

Figure 9. The RMSE (◦) comparison of three algorithms when IMUs on subject 1 were bound in
two positions. (a) The IMUs in position 1; (b) the IMUs in position 2.
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Figure 10. The RMSE (◦) comparison of three algorithms when IMUs on subject 2 were bound in
two positions. (a) The IMUs in position 1; (b) the IMUs in position 2.
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Figure 11. The RMSE (◦) comparison of three algorithms when IMUs on subject 3 were bound in
two positions. (a) The IMUs in position 1; (b) the IMUs in position 2.

Table 1 shows the average and standard deviation (SD) of 15 computation times of
three algorithms, and all algorithms are completed on the same computer. As shown in
Table 1, the GWO uses the shortest average computation times, followed by the DWPSO,
and the GN takes the longest. When a high calibration accuracy and fast algorithm
efficiency are required, the GWO can be used for calibration. However, the SD value of the
GWO is the highest, indicating that the algorithm is less stable than DWPSO and GN, which
may reduce the efficiency. The DWPSO algorithm is relatively stable, and the optimization
performance is better than the other two algorithms. When there is no requirement for
speed, the DWPSO may be the best choice.

Table 1. Average and standard deviation (SD) of 15 computation times of the DWPSO, GWO, and GN.

Algorithm Type Average (s) SD

DWPSO 1076.1 2.01
GWO 576.3 3.76
GN 1556.4 2.98
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Combined with the analyses in Table 2 and Figures 9–11, although the heights and
sexes of the subjects are different, the variation range of the results of each subject is roughly
the same, and the performance of the calibration algorithm is also the same. This is because
the three calibration algorithms are carried out under the same joint constraints and the
joint constraints of each subject are the same, which will not be affected by the different
gait characteristics of the subjects. Therefore, subject 1 is selected as the sample for analysis.
Figure 12 shows the variation of the joint angle of IMUs in position 1 for 5 s. It shows that
the angle variation waveform of each joint is consistent with the reference value, only the
up and down translation is produced in terms of amplitude. It indicates that the offset
error of IMUs position is fixed and will not change over time.

Table 2. The RMSE (◦) comparison of three algorithms when IMUs on three subjects were bound in
position 1.

Subject 1 Subject 2 Subject 3

DWPSO GWO GN DWPSO GWO GN DWPSO GWO GN

HFE 8.65 9.09 9.36 10.63 10.97 11.05 8.17 9.65 11.90
HAA 3.72 6.42 7.90 5.97 7.36 12.53 3.42 7.83 9.61
HIE 4.53 5.13 5.26 3.29 4.15 4.69 5.71 6.08 6.86

KFE 5.77 6.86 7.45 4.35 5.61 5.99 2.06 3.41 3.76
KAA 1.12 3.42 5.02 6.01 7.86 10.34 4.98 6.93 9.28
KIE 3.16 5.26 7.02 4.54 6.37 7.63 1.57 4.25 6.97

AFE 4.03 5.69 7.36 3.81 4.08 6.62 5.43 8.62 9.45
AAA 5.76 6.83 7.71 3.55 5.67 9.71 3.26 4.54 4.86
AIE 21.05 23.07 23.45 25.41 26.06 26.83 20.25 21.79 23.67

Table 2 shows the test results of the RMSE when IMUs on three subjects were bound
in position 1. In HFE, HIE, KFE and AIE, the performances of the three algorithms are close
to each other. In HAA, KAA, KIE, AFE and AAA, the calibration performances of the DWPSO
and GWO are better than GN. A possible explanation is that under this DOF, the variation
of the joint is not significant, which will affect the calculation of the Jacobian matrix and
the accuracy of the calibration. The DWPSO and GWO do not consider the Jacobian matrix,
and their accuracy is significantly higher than GN. Additionally, the results in Figure 12
show that when the joint angle is around 0◦, the values of the DWPSO and GWO are closer
to the reference value than GN, e.g., KAA or AFE. This is because the DOF is not the main
activity of the joint, and will also affect the performance of the GN algorithm.

To more intuitively evaluate the consistency between the results of the three calibration
algorithms and the reference, we selected the angle values of HAA and KIE in Figure 12
as samples and plot the Bland–Altman diagram for analysis. As shown in Figure 13, the
x-axes are the average of each individual between the reference value and estimated value,
the y-axes are the difference of each individual between the reference and the estimated.
The two red lines in the figure are the upper and lower limits of the 95% consistency
interval, the purple dotted line indicates that the average value of the difference is 0, and
the green line is the average value of the difference between the reference value and the
estimated value in each individual. The closer the green line is to the purple dotted line,
the higher the consistency between the reference value and the estimated value. As shown
in Figure 13a, in HAA, the average difference value of the DWPSO is the closest to 0, and
the consistency with the reference value is the highest, the GWO is the second, and the GN
is the lowest. As shown in Figure 13b, the consistency analysis of KIE is also the highest in
the DWPSO. These results are consistent with the curve results in Figure 12. Additionally,
most of the results in Figure 13 are within the confidence interval, which explains why the
waveforms of the estimated value and the reference value are similar in Figure 12.
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Figure 12. The variation of the joint DOF when IMUs on subject 1 were bound in position 1. (a–c) The hip joint; (d–f) the
knee joint; (g–i) the ankle joint.
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Figure 13. The Bland-Altman consistency analysis of estimated and reference values of three algo-
rithms when IMUs in position 1. (a) HAA; (b) KIE.

Through the above analysis, it shows that in the IMUs position calibration of three
joints of human lower limbs, the three algorithms have achieved good calibration results,
and the calibration accuracy of the population algorithm is better than GN. When the joint
changes sufficiently in a certain DOF, the results of the three algorithms are close. When
the joint changes are insufficient, the calibration accuracy of the population algorithm is
obviously better than GN. For two different population algorithms the DWPSO and GWO,
different choices can be made according to practical applications.

6. Conclusions

In this work, we introduce the DWPSO, GWO, and GN algorithms to realize the
dynamic calibration of IMUs’ positions based on human lower limb joint constraints. The
performance of the algorithm is evaluated by gait experiments. The results show that the
three algorithms have achieved IMU position calibration and are suitable for estimating the
angles of the hip, knee, and ankle of humans during free walking. The simulation results
show that the DWPSO has the best calibration performance, followed by the GWO and GN.
When the joint rotation is sufficient or the joint is in the main motion, the performances of
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the three algorithms are close. When the joint rotation is insufficient, the performances of
the DWPSO and the GWO are significantly better than the GN.

At present, our work has achieved an IMU position calibration of human lower limbs.
However, when applied for a whole-body calibration, a large amount of data may cause the
decline of the searchability of the DWPSO and GWO. In future work, we need to conduct
further experiments.

Another route of future work is that when the offset error of IMUs position drifts
slowly over time in the short term, an accelerometer and gyroscope can be combined
to estimate the joint axis of the knee joint, and further improve the position calibration
accuracy.
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