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Abstract 

The transmission tree of the Israeli 2015 epidemic of highly pathogenic avian influenza (H5N1) was modelled by 
combining the spatio-temporal distribution of the outbreaks and the genetic distance between virus isolates. The 
most likely successions of transmission events were determined and transmission parameters were estimated. It was 
found that the median infectious pressure exerted at 1 km was 1.59 times (95% CI 1.04, 6.01) and 3.54 times (95% CI 
1.09, 131.75) higher than that exerted at 2 and 5 km, respectively, and that three farms were responsible for all seven 
transmission events.
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Introduction, methods and results
In mid-January 2015, the Israel’s national reference 
laboratory for avian influenza (Kimron Institute), con-
firmed the presence of highly pathogenic avian influenza 
(H5N1) virus in an extensive turkey farm. In an attempt 
to control the spread of the virus, human and poultry 
movements were restricted and culling, cleaning and dis-
infection were implemented in the infected farm and its 
vicinity. Within the next 4 weeks, the virus was isolated 
in seven other farms, mainly turkey farms, all located 
within 25 km from the first case. The objectives of this 
study were to estimate relevant transmission parameters 
and to reconstruct the most likely sequence of transmis-
sion events by combining the spatio-temporal distribu-
tion of the outbreaks and the genetic distance between 
the virus isolates.

The data used in this study relate to the eight cases 
of highly pathogenic avian influenza (H5N1) that were 
reported in Israel in January and February 2015. For all 
infected farms, the location, the date when increased 
mortality was reported, the date when samples were 

taken for laboratory confirmation and the date when 
cleaning and disinfection ended were recorded. Actual 
dates of infection were unknown and were therefore 
treated as model parameters to be estimated [1]. In each 
infected farm, a single virus strain was isolated and its 
full hemagglutinin gene was sequenced [2]. Assuming 
that the isolated strains were representative of the pool 
of viruses in the farms where they had been sampled, the 
genetic distance between virus isolates was determined.

The modelling approach used in this study combines 
epidemiologic and genetic data to infer possible transmis-
sion trees. It has already been used to model the spread 
of several animal pathogens, including highly pathogenic 
avian influenza virus [1, 3] and foot-and-mouth disease 
virus [4]. This approach assumes that all cases were 
reported and that there was only one virus introduction 
in the study area: except for the index case that had been 
infected by an unknown source, all successive cases were 
infected by one of the seven other infected farms through 
an unknown route.

To reconstruct the transmission tree, it was hypoth-
esised that the likelihood that farm A infected farm 
B increased if A was still infectious when B became 
infected, if A and B were geographically close to each 
other, if the genetic sequence taken from A was similar 
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to that from B and if there was no other farm that could 
have infected B.

Making the additional assumption of independence, 
the approximate likelihood L(AB) that farm A infected 
farm B is equal to the product of a temporal likelihood 
(Lt(AB)), a spatial likelihood (Ls(AB)) and a genetic likeli-
hood (Lg(AB)) as follows:

For the temporal likelihood, it was assumed that a farm 
became infectious one day after it became infected [5] 
and remained as such until the day when cleaning and 
disinfection ended. The temporal likelihood was there-
fore given by:

with tinf(X) being the day when farm X became infected 
and tclean(X) being the day when cleaning and disinfection 
procedures ended in farm X at which point the farm was 
assumed not to be infectious anymore. As avian influenza 
viruses usually spread fast, a temporal resolution below 
one day could have been useful but the data were not 
recorded at that scale preventing the use of more tempo-
rally-precise models.

For the spatial likelihood, as often used in spatially 
explicit transmission models for avian influenza [3, 6], 
it was assumed that the likelihood that farm A infected 
farm B decreased with the distance between A and B. 
Two different functional forms were considered for the 
spatial likelihood, reflecting different assumptions as to 
how rapidly the likelihood decays with distance. These 
were:

and

with dAB being the distance in kilometres between A and 
B and α and β being the parameters controlling the shape 
of the kernel.

Finally, for the genetic likelihood, it was assumed 
that, for each infection, each of the N nucleotides of the 
sequenced gene (here, N  =  1643) could mutate with 
probability π. The genetic likelihood was therefore given 
by an ordered binomial distribution:

L(AB) = Lt(AB) ∗ Ls(AB) ∗ Lg (AB).

Lt(AB) =







0 if tinf (B) ≤ tinf (A)
1 if tinf (A) < tinf (B) ≤ tclean(A)
0 if tinf (B) > tclean(A)
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Lg (AB) ∝ πmAB ∗ (1− π)N−mAB

with mAB being the number of mutations between the 
strain isolated in farm A and that isolated in farm B. 
According to this ordered binomial probability distri-
bution, the genetic likelihood of a transmission event is 
reduced by a factor (1 − π)/π for every additional muta-
tion. Note that because the dataset comprised only eight 
cases, it was decided to use a one-parameter model for 
the genetic likelihood, in contrast to Ypma et al. [3] who 
used separate parameters for transitions and transver-
sions. Also, because the data did not include any dele-
tion, the parameter for deletion was not included in the 
genetic likelihood.

Because the dates of infection were unknown, they 
were treated as additional parameters to be estimated. 
Also, because information about non-infected farms was 
not available, the general likelihood function was normal-
ised by dividing it by the sum of the product of the spatial 
and temporal likelihoods over all infectious farms. For 
any set of model parameters, the likelihood of a transmis-
sion tree can then be calculated by multiplying together 
the normalised likelihoods of all transmission events of 
that tree, one for each infected farm excluding the index 
case. As these events are independent, for each set of 
parameters we can compute the summed likelihood over 
the set T of all possible transmission trees as the prod-
uct of the sums of the columns of the 7 ×  8 matrix of 
likelihoods:

where F is the set of infected farms and F* is F minus the 
index case. Using a Bayesian approach, the posterior over 
all parameters was sampled using a Monte-Carlo Markov 
Chain algorithm. In light of the results presented in [3], 
the prior distributions that were used for the parame-
ters of the spatial likelihood (α and β) were gamma dis-
tributions of mean 2.5 and variance 5. The prior of the 
parameter of the genetic likelihood (π) was given a uni-
form distribution between (0, 0.3) as negative values are 
not allowed and values larger than 0.3 were considered 
as highly irrelevant. Infection dates were given uniform 
priors between 4 and 8 days before reporting dates. Two 
simulation chains of 200  000 iterations were run, with 
the first 20 000 iterations discarded to allow for burn-in 
of the chain. The chains were then thinned, taking every 
thirtieth sample to reduce autocorrelation amongst the 
samples. Convergence of the chains was assessed by 
checking the trace plots for all monitored parameters. 
Comparison of the fit of the models using the different 
spatial likelihoods was done using the deviance informa-
tion criterion (DIC) [7]. The best model was considered 
to be the most parsimonious model whose DIC was less 
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than two points greater than that of the model associated 
with the smallest DIC.

The probability p(AB) for a potential transmission 
event from A to B was taken as the expected value of 
the transmission event (encoded as 1 or 0). Due to our 
assumption that all farms (except the index farm) were 
infected by another farm in the dataset, we calculated 
this expected value, for a given set of parameters θ, by 
dividing the likelihood of the transmission event L(AB|θ) 
by the sum of the likelihoods of all possible infection 
events for B. p(AB) was then calculated by taking the 
average of this value for all sampled parameters. These 
probabilities of the transmission events were then used 
to reconstruct the transmission tree of the most likely 
transmission events. To establish the posterior distribu-
tion of the effective reproduction number Ri for a given 
farm i, we calculated Ri for each set of parameters as the 
expected number of farms infected by it:

The best-fit model was the model using the one-param-
eter spatial likelihood Ls1 (DIC  =  191.2 versus 191.5). 
Estimated parameter values are presented in Table 1. The 
shape parameter of the spatial kernel, estimated at 1.12 
(95% credible interval 0.11, 3.46), defines the relative like-
lihood of a transmission event between an infectious and 
a susceptible farm as a function of the distance between 
them: the median infectious pressure exerted at 1 km is 
expected to be 1.59 times (95% CI 1.04, 6.01) and 3.54 
times (95% CI 1.09, 131.75) higher than that exerted at 2 
and 5 km, respectively. The probability for a nucleotide to 
have mutated during a transmission event was estimated 
at 1.06e−3 (95% CI 0.55e−3, 1.82e−3), which is compa-
rable with estimates provided in [3] for a different avian 
influenza subtype. For all transmission events but two, 
the infecting farm could be identified with probability 
greater than 0.9; this was true for all farms at probability 

Ri =
∑

j �=i

p
(

i, j
)

.

0.5 (Figure 1). The effective reproduction numbers were 
highly variable from negligible (<1e−2) for farm 2, 4, 5 
and 7 to 2.00, (95% CI 2.00, 2.00), 2.89 (95% CI 1.18, 3.48) 
and 2.11 (95% CI 1.52, 3.82) for farms 1, 3 and 6, respec-
tively. The transmission tree suggests that only three 
farms (farms 1, 3 and 6) were likely to be responsible for 
all seven transmission events. Note that the very small 
95% credible interval for the effective reproduction num-
ber of farm 1 is due to the fact that the model predicted 
that farms 2 and 3 had almost a 100% chance to have 
been infected by farm 1 and that farm 1 had almost a 0% 
chance to have infected any other farm (because of the 
temporality of the cases and the genetic distance between 
isolates).

Discussion
At the time each farm (except the index case) was likely to 
become infected (i.e. between 4 and 8 days before report-
ing) there was at least one farm that was still infectious 
(already infected but not yet cleaned and disinfected) 
within a radius of 20 km. Therefore, the spatio-temporal 
distribution of the eight outbreaks does not show evi-
dence that some outbreaks remained undetected or that 
there was more than one virus introduction. However, 
whilst six of the seven strains isolated amongst the sec-
ondary cases had two or less than two nucleotides of dif-
ference relative to at least one previously isolated strain, 
the strain isolated in farm 4 differed from all other previ-
ously isolated strains by at least six nucleotides. Possible 
reasons for this include (1) a sudden burst in mutations 
on farm 4, (2) the transmission of a very different subvar-
iant from the farm that infected farm 4, (3) the presence 
of undetected infected farms that infected farm 4 or (4) 
a secondary introduction to farm 4. Further phylogenetic 
analyses would be required to assess the likelihood of a 
separate introduction [8], although these will be chal-
lenging to apply to the current dataset due to the small 
number of farms infected.

Table 1  Summary of the posterior distributions of the parameters

Parameter Interpretation Median (95% credible interval)

α Shape parameter of the spatial kernel 1.12 (0.11, 3.46)

π Probability of mutation 1.06e−3 (0.55e−3, 1.82e−3)

Re-farm 1 Effective reproduction number of farm 1 2.00 (2.00, 2.00)

Re-farm 2 Effective reproduction number of farm 2 Negligible (<1e−02)

Re-farm 3 Effective reproduction number of farm 3 2.92 (1.27, 3.48)

Re-farm 4 Effective reproduction number of farm 4 Negligible (<1e−02)

Re-farm 5 Effective reproduction number of farm 5 Negligible (<1e−02)

Re-farm 6 Effective reproduction number of farm 6 2.08 (1.52, 3.73)

Re-farm 7 Effective reproduction number of farm 7 Negligible (<1e−02)
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The strains sequenced on farms 4 and 7 displayed 
the same point mutation (position 132, see Addi-
tional file  1). Given that this mutation was not found 
in strains isolated from any other farms, it is unlikely 
to have occurred independently on both farms. This 
pattern may reflect infection from a common source: 
strains isolated on farms 4 and 7 might have both origi-
nated from a variant that appeared—but was not iso-
lated—on farm 3 (Figure 1). Alternatively, this may also 
suggest a transmission event, not captured in the mod-
elled transmission tree, between these two farms. Such 
a transmission event might have been direct between 
these two farms or mediated by unreported cases else-
where. It is worth noting that the number of muta-
tions between strains isolated in different farms had 
a strong influence on the estimated likelihood of the 
transmission events. Indeed, each additional mutation 
decreased the likelihood of the transmission event by a 
factor equal to the odds of the mutation rate, estimated 
here at 944 (95% CI 549, 1827). Consequently, to ensure 
meaningful inference, it is crucial to appreciate the 
genetic diversity of a strain within a farm by sequenc-
ing several strains from the same infected farm [5], and 
to integrate this information into the transmission tree 
modelling. Until then, such analyses should be inter-
preted cautiously [4].

To more accurately model the genetic distance between 
isolated strains, we could have accounted for the evo-
lutionary time separating the samples taken from an 
infected farm and its infector. On these short time scales, 
we could reasonably assume that the expected number of 
mutations increases linearly with the evolutionary time 
separating sequences. Such a model extension would 
yield maximal discriminatory power when times between 
sequences show high variance. However, as is evident 
from Figures  1 and 2, the evolutionary times between 
sequenced isolates are fairly constant throughout the out-
break. Thus, adding evolutionary time to our genetic like-
lihood is unlikely to have strong impact on inference, as 
was previously found for a similar (but larger) outbreak 
of avian influenza [9]. Given the small number of trans-
mission events available here, we deemed this extension 
to not merit the associated increase in model complexity, 
and followed [3] in omitting evolutionary time.

Whilst most of the likely transmission events identi-
fied using the transmission tree modelling were consist-
ent with outbreak investigations, the former approach 
cannot incorporate as many sources of information as 
the latter to make informed decisions and is therefore 
more limited when it comes to unexpected transmission 
events, particularly with small datasets. A continuation 
of this work could be to incorporate the prior knowledge 

Figure 1  Estimated trees of the most likely transmission events. The case identification numbers (y-axis) represent the farms in chronologi-
cal order of reporting (they were rearranged for the sake of figure clarity). Arrows represent transmission events whose probability was at least 0.1. 
Arrows are annotated with the number of mutations. Day 0 corresponds to the 6th January 2015.
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on transmission events generated from the outbreak 
investigations into the Bayesian parameter estimation 
procedures to estimate integrated measures of transmis-
sion probabilities.

Transmission tree modelling provided a consistent sta-
tistical framework to investigate the 2015 Israeli HPAI 
(H5N1) epidemic. By combining spatial, temporal and 
genetic data, it was possible to estimate transmission 
parameters and reconstruct the sequence of the most 
likely transmission events under a set of assumptions. We 
suggest that such a statistical approach should be used 
in real time to gain additional insights into the evolution 
of an epidemic. We further note that sequencing several 
strains isolated in each infected farm will allow better 
capturing genetic diversity and aid in calibrating and vali-
dating such models.

Additional file

Additional file 1. Sequence alignment. Comparative alignment of the 
8 isolates is presented.
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