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Abstract

Several studies have reported regulatory effects of estrogens on fear conditioning in female

rodents. However, these studies used different doses, durations, and/or administration

methods, and reported inconsistent results. To clarify the effect of estrogen on fear condi-

tioning, we investigated the effects of different doses and durations of estradiol administra-

tion on freezing behavior during contextual fear conditioning in ovariectomized (OVX) mice.

In Experiment 1, OVX ICR mice received a single subcutaneous (s.c.) injection of either oil

vehicle (control, 0.1 ml sesame oil) or varied doses (0.5 μg/0.1 ml, 5 μg/0.1 ml, or 50 μg/0.1

ml) of 17β-estradiol-3-benzoate (EB). Fear conditioning was conducted two days post-EB

treatment, and the mice were tested for the learned fear response the following day. In

Experiment 2, OVX female mice received an s.c. implantation of a Silastic capsule (I.D. 1.98

× 20.0 mm) containing either vehicle or varied doses (0.05 μg/0.1 ml, 0.5 μg/0.1 ml, 5 μg/0.1

ml, 50 μg/0.1 ml) of EB. Two weeks after implantation, fear conditioning was conducted.

During the tests conducted 24 h after conditioning, the high dose EB group showed longer

freezing times in both experiments, and lower locomotor activity compared to the control or

lower dose groups. In Experiment 3, serum estradiol concentrations of the mice that were

treated like those in Experiment 2, were measured; the serum levels of estradiol increased

linearly according to the dose of EB administered. The results suggest that mice treated

with a high dose of EB exhibit enhanced fear learning, regardless of treatment duration. As

a woman’s vulnerability to emotional disorders increases in the peripregnancy period, during

which estrogen levels are high, the results from the high-dose EB groups may be important

for understanding the hormonal mechanisms involved in these disorders.

Introduction

Changes in steroid hormone levels during premenstrual, postpartum, and postmenopausal

periods can lead to several disorders associated with mood, cognition, emotion, learning, and
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memory [1–4]. Estrogens are hormones that are intimately involved in the regulation of these

disorders. It has been reported that memory and cognitive performance can change with fluc-

tuations in circulating estradiol levels throughout menstruation, pregnancy, or the menopausal

period [5–7]. Additionally, estrogen replacement therapy has been found to alleviate memory

impairments in postmenopausal and surgically menopausal women [8, 9], and animal studies

have shown that estradiol administration increases performance in a spatial memory test in

ovariectomized (OVX) rats [10, 11]. Thus, estrogen is considered to play an important role in

learning and memory regulation.

However, the effects of estrogen on learning and memory, especially emotional learning

such as fear conditioning, are still controversial. Studies have reported that estrogen adminis-

tration to OVX animals decreases the freezing response in fear conditioning tests [12–15].

However, other studies have reported that estrogen administration increases conditioned fear

[15, 16]. The inconsistency in these results may, at least partially, be due to methodological var-

iations between studies. First, the variation in the doses used between the studies could have a

critical effect on behavior in fear conditioning tests. For instance, Barha et al. [15] found that

low-dose estrogen administration facilitated, whereas high- and mid-dose estrogen adminis-

tration impaired, contextual fear conditioning in female OVX rats. Similar dose-dependent

variations in estrogenic effects were also shown in anxiety-related behavioral tests in mice [17,

18], and non-spatial working memory tests in rats [19]. In humans, it has been reported that

cognitive performance in working memory tasks with emotional stimuli can vary with fluctua-

tions in circulating hormonal levels throughout the menstrual period [7]. Thus, the effects of

various estradiol levels seem likely to share common behavioral mechanisms. Second, varia-

tions between studies in terms of estradiol administration can affect the behavior of mice in

fear conditioning tests. However, no study has investigated the effects of differences in admin-

istration duration on fear conditioning. One study that examined the acute effects of a single

estradiol injection reported both inhibition and promotion of fear memory [15]; however, it is

unclear whether estradiol injections have an inhibitory or stimulatory effect on fear memory

with long-term treatment. Additionally, the effects of administration duration could interact

with the effects of the doses of estradiol described above.

We hypothesized that chronic treatment with high doses of estradiol unlike acute treatment

would facilitate fear conditioning in female mice, while low doses of the hormone would

inhibit fear. In fact, similar effects of chronic treatment on anxiety-related behaviors were

found in our previous studies [17, 18]. To test this hypothesis, we investigated fear condition-

ing in OVX mice that were treated acutely (Experiment 1) and chronically (Experiment 2)

with varying doses of estradiol.

Methods

Ethics

All experimental procedures were conducted in strict accordance with the Guidelines on the

Care and Use of Laboratory Animals in Kagoshima University, Japan, and approved by the

Ethics Committee for Animal Experimentation at Kagoshima University (#LE10007).

Animals

Eight-week-old female ICR mice were obtained from Kyudo Co. (experimental animals in

Experiment 1: N = 32, Experiment 2: N = 40, Experiment 3: N = 53; Kumamoto, Japan). They

were housed in groups (4–5 per cage) in Plexiglas cages (30 × 20 × 12 cm) until surgery. After

surgery, they were individually housed in smaller Plexiglas cages (10.5 × 17.5 × 11 cm). In the

present study, abnormal behaviors induced by isolation, such as hyperactivity and depressive-
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like behaviors, were not found during daily observations. We performed surgery, hormonal

treatment, fear conditioning tests, and measurements of uterine weight, and collected blood

for hormonal assays when all the mice were 10–12 weeks old. Throughout the experimental

period, the mice were kept in a controlled environment at 23 ± 2˚C, with a semi-reversed 12/

12 h light/dark cycle (lights off at 12:00). Food and water were available ad libitum.

Hormone treatments

A graphical representation of the experimental procedure in this study is shown in Fig 1. In

Experiment 1, all mice were bilaterally ovariectomized under pentobarbital anesthesia (80

mg/kg) approximately one week after arrival. One week post-surgery, mice were randomly

assigned to four 17β-estradiol-3-benzoate (EB) treatment groups, and the animals in each

group received a single subcutaneous (s.c.) injection of 0.1 ml of either 0.5 μg (EB0.5S, n = 9),

5 μg (EB5S, n = 7), or 50 μg (EB50S, n = 8) EB in oil, or oil vehicle alone (EB0S, n = 8). All

injections were administered between 7:00 and 10:00 a.m., and conditioning trials were con-

ducted approximately 48 h after injections.

In Experiment 2, the mice were bilaterally ovariectomized approximately one week after

arrival. At the time of surgery, the mice were randomly assigned to five treatment groups and

implanted s.c. with a Silastic capsule (I.D. 1.98 mm, O.D. 3.18 mm × 20.0 mm; Silastic Laboratory

Tubing, Dow Corning CO, Midland, MI, USA) containing either an oil vehicle (EB0L, n = 8) or

various EB concentrations: 0.05 μg/0.1 ml (EB0.05L, n = 8), 0.5 μg/0.1 ml (EB0.5L, n = 8), 5 μg/

0.1 ml (EB5L, n = 8), or 50 μg/0.1 ml (EB50L, n = 8). Since the capsules contained approximately

0.06 ml of liquid, the actual EB dose inside the capsules was approximately 0.03, 0.3, 3, or 30 μg,

respectively. Conditioning trials were conducted 14 days post-surgical implantation. Our groups

were based on the EB doses used in a previous study [17] that revealed an effect of estrogen dose

on anxiety-like behavior in order to allow for a comparison to be made.

Fig 1. Experimental procedure. In Experiment 1, mice received a single s.c. injection of either oil vehicle (control, 0.1 ml sesame oil) or various doses

(0.5 μg/0.1 ml, 5 μg/0.1 ml, or 50 μg/0.1 ml) of EB 7 days post-ovariectomy. Fear conditioning was conducted 2 days after EB treatment, and the mice

were tested for their conditioned fear responses the following day. In Experiment 2, mice were ovariectomized and implanted s.c. with a Silastic capsule

(I.D. 1.98 × 20.0 mm) containing either vehicle or various doses (0.05 μg, 0.5 μg, 5 μg, 50 μg/0.1 ml) of EB. Two weeks post-implantation, fear

conditioning and testing were conducted. In the conditioning phase, 3 min after being placed in the chamber, mice were administered three

consecutive foot shocks (duration: 2 s, 0.8 mA) with 30 s intershock intervals. The day after the last behavioral test, the animals were sacrificed using a

pentobarbital overdose. The uteri were collected and the wet weights were recorded. In Experiment 3, mice were ovariectomized and implanted (s.c.)

with a Silastic capsule (I.D. 1.98 × 20.0 mm) containing either vehicle or various doses (0.05 μg, 0.5 μg, 5 μg, 50 μg/0.1 ml) of EB. Two weeks post-

implantation, the animals were decapitated and their trunk blood was collected for the hormonal assay.

https://doi.org/10.1371/journal.pone.0197441.g001
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In Experiment 3, animals that received hormone treatments identical to that used for ani-

mals in Experiment 2 were used for the estradiol assay (EB0L, n = 8; EB0.05L, n = 7; EB0.5L,

n = 8; EB5L, n = 4; EB50L, n = 8). Two weeks after capsule implantation, the animals were

decapitated and their trunk blood was collected. The collected samples were then left for 1 h at

room temperature before centrifugation for 15 minutes at 3000 × g at 4˚C. The supernatant

was collected and stored at −80˚C until the assay was performed. Serum estradiol concentra-

tions were determined using a chemiluminescent immunoassay (CLIA), which was performed

by Clinical Pathology Laboratory Inc. Co. Ltd. (detection threshold: 12 pg/ml; Kagoshima,

Japan). Serum estradiol levels in almost all animals in the EB0L, EB0.05L, and EB0.5L groups

were undetectable, because they were below the detection threshold. Therefore, additional ani-

mals were used for the estradiol assay for these groups (EB0L, n = 4; EB0.05L, n = 7; EB0.5L,

n = 7), and the serum estradiol concentrations were subsequently determined using liquid

chromatography-tandem mass spectrometry (LC-MS/MS) by ASKA Pharmaceutical Medical

Inc. Co. Ltd. (detection threshold: 0.5 pg/assay; Kawasaki, Japan), which has higher sensitivity

and accuracy than the CLIA.

Behavioral testing

Transparent plastic chambers (30 × 10 × 19 cm, height 15 cm; O’Hara & Co., Ltd, Tokyo,

Japan) were used for the conditioning and test trials. The floor consisted of 19 stainless steel

rods connected to a shock generator.

The contextual fear conditioning procedure was based on an established paradigm [20].

The experiment was conducted over two consecutive days during the light cycle, and involved

a conditioning and testing day. On the first day, the mice were transported to the experimental

room 1 h before conditioning, and subsequently placed in the chamber. Three minutes after

being placed in the chamber, the mice were administered three consecutive foot shocks

(duration: 2 s, 0.8 mA) with 30 s intershock intervals. Thirty seconds after the final shock, the

mice were returned to their home cages and then returned to the colony room. The next day,

approximately 24 h after conditioning, the mice were transported back to the experimental

room in the same way as on the conditioning day.

To assess conditioned fear, the mice were placed in the chamber again. During the 10-min

test, all behaviors exhibited in the chamber were recorded using a video camera (Sony Handy-

cam, DCR-HC62, Tokyo, Japan) positioned in front of the chamber. After testing, the cumula-

tive duration of specific behaviors was determined from the recorded video by a well-trained

observer blinded to the experimental hypothesis. The behaviors scored were freezing (absence

of all movements except those associated with respiration), locomotion (walking and running

around the chamber), stretching (stretching the whole body forward while keeping the hind

limbs in place), tail writhing (sinuous movement of the tail, with or without banging on the

floor), and grooming (licking and washing of the face and body). The total duration of freez-

ing, which is a fear-related behavior, was defined as a measure of fear-related memory [21, 22].

The total duration of locomotion and rearing served as a measure of activity and exploratory

behavior. Stretching, tail writhing, and grooming indicated a state of tension [21, 22]. The day

after the last behavioral test, the animals were sacrificed using a pentobarbital overdose. The

uteri were collected and the wet weights were recorded.

Statistical analysis

The total time of each behavior, uterine weight, and serum concentrations of estradiol were

analyzed by a one-way analysis of variance (ANOVA) followed by a Tukey’s test using Prism

software (GraphPad Prism, San Diego, USA). The serum estradiol values were log-transformed
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(Log10) before the ANOVA was performed to maintain the homogeneity of variance. To esti-

mate the differences in the estradiol levels between the groups, we compared the levels that had

been measured by the two different assay methods for the five treatment groups. To further

investigate the effects of estrogens on fear learning, we used linear and quadratic regression

analyses using SPSS v.20 (IBM Corp., Armonk, NY) to assess the association between the

cumulative duration of freezing and the uterine weights in Experiment 2, which were expected

to be an index of circulating estrogen levels. All data are presented as means ± standard error

of the mean (SEM). The data for one mouse, which was injured during conditioning, were

excluded from the statistical analyses.

Results

Enhancement effects of estradiol benzoate on contextual freezing behavior

In Experiment 1, we examined the effect of a single EB injection on conditioned fear memory

acquisition. In OVX female mice treated with a high-dose of EB, we found an increase in fear

memory. Specifically, there was a significant main effect of EB dose on total freezing time

(F(3, 28) = 5.00, p< 0.05). Post hoc comparisons showed that the mice treated with EB50S

spent more time freezing than controls (EB0S; p< 0.05) and mice treated with EB5S

(p< 0.05), but not those treated with EB0.5S (Fig 2A). We did not find a significant difference

in locomotion time among the groups (Fig 2B). There were also no significant main effects of

EB treatment on other behaviors (S1 Table).

In Experiment 2, we examined the effect of chronic EB treatment on fear conditioning in

female mice. We found that chronic treatment with a high dose of EB stimulated fear learning,

with a significant main effect of dose on total freezing time (F(4, 35) = 3.49, p< 0.05). Post hoc

comparisons showed that EB50L mice displayed more freezing than control (EB0L) and EB5L

mice (ps< 0.05; Fig 3A). Similarly, there was a significant main effect of EB treatment on loco-

motion time (F(4, 35) = 3.59, p< 0.05), with EB50L mice showing significantly less locomo-

tion than EB0L mice (p< 0.05; Fig 3B). In addition, there was also a marginal difference

between the EB50L and EB5L mice with regard to locomotion time (p = 0.054; Fig 3B). EB5L

mice displayed more tail tremors than control mice (19.0 ± 5.4 versus 3.4 ± 1.2) (F(4, 35) =

2.987, p< 0.05; S2 Table). There was no significant effect of EB treatment on the duration of

other behaviors, although we found a slight increase in stretching time in the higher-dose

groups compared with the controls (S2 Table).

Hormonal effects

An s.c. injection of EB is often used to induce a state of estrus in females, and uterine weights

gradually increase with increasing doses of EB [23, 24]. To examine how the injection of EB

affects circulating estrogen levels, we determined the uterine weights of the animals after

behavioral testing. In Experiment 1, the uterine weights increased with increases in EB dose,

although they were measured 5 days after EB administration (Table 1: EB0S, n = 7; EB0.5S,

n = 6; EB5S, n = 7; EB50S, n = 7; F(3, 23) = 5.52, p< 0.01). The uterine weight in the EB50S

(52.9 ± 6.2 mg) group was significantly higher than that in the EB0S (29.6 ± 2.0 mg) group

(p< 0.01). We also measured the uterine weight after behavioral testing in Experiment 2,

and the weight was found to increase with increasing EB dose (Table 1: EB0L, n = 6; EB0.05L,

n = 6; EB0.5L, n = 7; EB5L, n = 7; EB50L, n = 7; F(4, 28) = 34.60, p< 0.0001). Uterine weights

in the EB5L (173.6 ± 24.8 mg) and EB50L (193.7 ± 13.9 mg) groups were significantly higher

than those of the vehicle (27.8 ± 1.4 mg), EB0.05L (25.3 ± 1.2 mg), and EB0.5L (51.9 ± 7.7 mg)

groups (p< 0.0001). Thus, the uterine weights were affected by the EB dose used.
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Fig 2. Effect of freezing and locomotion durations on contextual fear conditioning in Experiment 1. OVX mice

received a single s.c. injection of EB at a dose of 0.5 μg/0.1 ml (EB0.5S), 5 μg/0.1 ml (EB5S), or 50 μg/0.1 ml (EB50S), or

an oil vehicle (EB0S) two days before conditioning. The mean (± SEM) duration of freezing (A) and locomotion (B) in

the 10-min test conducted 24 h after conditioning is shown. Mice treated with a high dose of EB (EB50S) displayed

significantly more freezing than control and EB5S mice (p< 0.05). Significant differences are denoted by an asterisk;
�p< 0.05.

https://doi.org/10.1371/journal.pone.0197441.g002
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Fig 3. Effect of freezing and locomotion durations on contextual fear conditioning in Experiment 2. OVX mice

were implanted s.c. with a Silastic capsule containing either vehicle (EB0L), 0.05 μg/0.1 ml (EB0.05L), 0.5 μg/0.1 ml

(EB0.5L), 5 μg/0.1 ml (EB5L), or 50 μg/0.1 ml (EB50L) 14 days before conditioning. Mean (± SEM) duration of

freezing (A) and locomotion (B) in the 10 min test conducted 24 h after conditioning. Mice treated with EB50L

showed a significantly longer freezing time compared with control (p< 0.05) and EB5L (p< 0.05) mice. EB50L mice

Estradiol effect on contextual fear conditioning
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In addition, serum estradiol concentrations were measured in Experiment 3 2 weeks post-

capsule implantation to examine the relationship between EB dose and serum estradiol levels.

The serum levels of estradiol increased according to the dose of EB used (F(4, 25) = 55.30,

p< 0.0001). The estradiol levels were significantly different between the groups (EB0.5L:

4.90 ± 1.11 pg/ml; EB5L: 17.75 ± 1.70 pg/ml; EB50L: 88.13 ± 14.30 pg/ml; ps< 0.05) but not

between the EB0L (0.59 ± 0.18 pg/ml) and EB0.05L (1.95 ± 0.72 pg/ml) groups (p = 0.22).

Thus, exogenous EB affects serum estradiol concentrations depending on the dose adminis-

tered. In addition, serum estradiol levels highly correlated with uterine weight in animals with

assayed hormonal levels (r = 0.77, p< 0.01). This suggests that uterine weight is related to

serum estradiol levels in animals implanted with an estrogen capsule.

Regression analyses

We conducted both linear and quadratic regression analyses to assess the association between

the cumulative freezing duration and the uterine weights in Experiment 2. The results of

the regression analysis indicated that the relationship might be quadratic rather than linear

(S1 Fig). The linear model did not reach significance (n = 34, R2 = 0.104, F(1,32) = 3.73,

p = 0.062), while the non-linear, quadratic function model showed significance (n = 34,

R2 = 0.213, F(2,31) = 4.19, p < 0.05). Even though only 21.3% of the variance was determined,

a significant U-shaped quadratic relationship between the cumulative freezing duration and

the uterine weights was obtained.

Discussion

OVX mice treated both acutely and chronically with the highest dose of EB showed increased

freezing behavior in the fear-conditioning test compared to the mice treated with lower EB

doses or vehicle. In addition, mice treated chronically with the highest dose of EB showed a

reduced locomotion time compared to the oil-control animals. These results indicate that

treatment with high EB doses, both acutely and chronically, facilitates fear learning in OVX

mice. In the same way, the uterine weights and the serum estradiol concentrations increased

with increasing EB doses. These findings are partially consistent with our hypothesis that

chronic treatment with high-dose estradiol facilitates fear conditioning in female mice. How-

ever, the results in acute treatment are inconsistent with our prediction that acute treatment

with high-dose estradiol does not facilitate fear conditioning.

also displayed a significantly shorter locomotion time compared to control mice (p< 0.05). Significant differences are

denoted by an asterisk; �p< 0.05.

https://doi.org/10.1371/journal.pone.0197441.g003

Table 1. Uterine weight.

Experiment 1

EB dose EB0S EB0.5S EB5S EB50S

Uterine weight (mg) 29.6 ± 2.0a 36.8 ± 2.6 41.9 ± 4.4 52.9 ± 6.2b

Experiment 2

EB dose EB0L EB0.05L EB0.5L EB5L EB50L

Uterine weight (mg) 27.8 ± 1.4a 25.3 ± 1.2a 51.9 ± 7.7a 173.6 ± 24.8b 193.7 ± 13.9b

Uterine weights after the test in Experiment 1 and Experiment 2. The weights were measured 5 days after a single administration of EB in Experiment 1, and 17 days

after implantation of EB capsules in Experiment 2. The uterine weights increased in line with the EB dose administered. The superscript letters indicate statistical

significance; ps< 0.01.

https://doi.org/10.1371/journal.pone.0197441.t001
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The serum levels of estradiol in the EB0.5L (4.90 ± 1.11 pg/ml) and EB5L (17.75 ± 1.70 pg/

ml) group were within those reported for normal cycling mice in previous studies [25–28]

(approximately 5–60 pg/ml), while those in the EB50L group in Experiment 3 (88.13 ± 14.30

pg/ml) were higher than those reported for the proestrus period [25–28] and were within the

estradiol level in pregnant animals [29, 30] (approximately 60–150 pg/ml). As we did not actu-

ally measure the estradiol levels of animals in Experiment 1 and 2, we can only speculate about

the relationship between the estradiol level and fear learning. However, uterine weights are

possible alternative parameters for circulating estradiol levels, because some studies indicated

that uterine weights linearly increase with increasing doses of EB [23, 24] and a significant

correlation (r = 0.77, p< 0.01) between uterine weights and doses of EB was obtained in this

study. Additionally, the uterine weights in the animals in higher-doses groups in this study

were similar to those found in pseudopregnant mice [31], rather than estrous. In human, ges-

tational estrogen levels are also consistently higher than during the estrus cycle [32], and a

woman’s vulnerability to emotional disorders increases during the peripregnancy period [33].

Therefore, our results suggest that higher estradiol levels, such as those observed during the

gestational period, can promote enhanced fear learning.

Usually, a single administration of approximately 5–10 μg EB followed by an injection of

progesterone is used for induction of behavioral estrus of female mice [34–36]. Then, we used

the highest dose of estradiol (50 μg/0.1 ml) in order to obtain “higher” estradiol levels than

those during proestrus. Therefore, the facilitation on fear conditioning by the highest-dose

estradiol found in Experiment1 might be pharmacological, rather than physiological. This is

supported by the results of the uterine weights obtained in Experiment 1 as indicated by the

significant increase in uterine weight in the EB50S group. In the preliminary experiment, we

measured the uterine weight 2 days after EB injection and also found a significant increase in

uterine weight with increasing EB dose (S3 Table), suggesting that estradiol levels in the EB50S

group were high during fear conditioning. However, in Experiment 1 the injection procedure

was used, which differed from Experiment 2 used silastic capsule procedure, and the estradiol

levels during training were possibly different from memory formation, as well as testing.

Hence, no conclusive evidence can be obtained for the relationship between hormonal levels

and fear learning in Experiment 1. In further studies, the actual estradiol levels need to be

determined for each memory stage and the influences on fear learning should be assessed.

Previous studies have reported that treatment with estradiol has both faciliatory and inhibi-

tory effects on conditioned fear learning in rats [15]. Inconsistent with our hypothesis, our

results indicate a faciliatory but not an inhibitory effect on fear learning. There are several rea-

sons why no inhibitory effect was found in this study. First, the control mice showed less freez-

ing time compared to those in a previous study [16]; this may be due to the lower electric

current or shorter shock duration used in the fear conditioning phase. Second, it is possible

that small differences, such as the effect of estradiol on the inhibition of fear learning, were not

detected owing to the small number of animals used and the low statistical power of the study.

Therefore, the effects of estradiol need to be examined using other shock parameters, as well as

with a larger number of animals to provide greater statistical power. Third, the timing of estro-

gen administration also requires further examination. In Experiment 1, the conditioning trials

were conducted 48 h after EB injection, while Barha et al., who showed bidirectional results on

fear learning in rats [15], conducted trials 30 min after injection. It is well known that estro-

gens mediate their effects through both genomic and non-genomic pathways. Non-genomic

actions, which are independent of gene transcription and protein synthesis, occur rapidly and

last for 30–45 min [37]. Rapid effects of estrogens can change neural activity in hippocampus

related to learning and memory [38, 39], and activation by an agonist of the G-protein coupled

receptor 30 (GPR30), a putative membrane estrogen receptor, decreases anxiety within 30 min
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of administration [40]. Therefore, the inhibitory effect may be mainly mediated through the

non-genomic activity of EB, and thus we may have failed to detect the effect for this reason.

Future studies should aim to examine the effects of pathway and receptor differences on fear

learning. The inhibitory effect should be confirmed in future studies examining the role of

estradiol using various methods.

One important limitation of present study is that the mechanisms that facilitate the fear

learning in the animals treated with high-dose EB cannot be determined. Various mechanisms

can contribute to facilitation of fear leaning, such as attention, emotion, and motivation, and

fear memory itself, and estrogens can affect all of them. Because we did not use a standardized

method for assessing the influence of EB on memory consolidation, or an injection of EB

immediately after training, we cannot establish the actual influence of EB treatment on fear

memory. However, mechanism involving emotion is thought to be important for the facilita-

tion of fear leaning in this study, rather than fear memory itself. Many animal studies have

reported the effects of EB on emotional state and stress response. Several studies using chronic

treatment with high-dose EB reported increased anxiety-related behaviors in female mice [18,

41]. Chronic EB treatment also increased the corticosterone level [42], and the stimulation of

glucocorticoid receptor resulted in higher anxiety-like behavior [43]. A gradual increase in

anxiety in mice treated with 50 μg/0.1 ml of EB has also been reported. The same procedure

was used in our study and consistent results were obtained as indicated by an increase in facto-

rial scores for anxiety-related behaviors measured using behavioral parameters from the open

field, elevated plus maze, and light-dark transition tests [17]. In Experiment 2 in our study,

animals in the EB50L group showed marginal suppression of locomotor activity in the fear-

conditioning chamber. Overall, these findings suggest that the facilitation of fear learning in

the present study is related to increased anxiety owing to EB

Although the mechanisms in the brain were not assessed in the present study, the possible

mechanisms are worth mentioning. Several areas in the brain, the most crucial being the

amygdala, hypothalamus, and hippocampus, may be influenced by estrogen (Reviewed in

Walf and Frye, 2006; Handa, et al, 2012) [44, 45]. Especially, the hypothalamus may be strongly

associated with the emotional effects of treatment with high-dose EB. It was reported that

chronic treatment with estradiol impairs the glucocorticoid-dependent negative feedback of

the hypothalamic–pituitary–adrenal (HPA) axis via estrogen receptors within the hypothala-

mus [42]. It is possible to facilitate fear conditioning by mediating hyper-activation of the

HPA axis.

Another limitation of present study is that the possibility of social isolation effects cannot

be ruled out, although compared to male mice, adult female mice are insusceptible to social

isolation [46] and we did not find any abnormal behavior induced by isolation in this study.

Despite these limitations, it is worth highlighting that our findings suggest that higher level of

estrogen, comparable to that during the peripregnancy period, may induce enhanced fear

learning, because that has important implications for neuroendocrinological mechanisms

underlying a woman’s vulnerability to emotional disorders.

Conclusions

In this study, we investigated fear conditioning in OVX mice that were treated acutely and

chronically with various estradiol doses. Our results indicated that mice treated with a high

dose of EB exhibited enhanced freezing behavior during the contextual fear conditioning test,

regardless of the treatment duration. This indicates that the estrogenic modulation of fear

learning is dependent on the dose of EB administered. Although this study has some limita-

tions, our findings will contribute significantly to future studies that aim to investigate the
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effect of estradiol treatment on fear memory and examine the neuroendocrinological mecha-

nisms underlying the vulnerability of women to emotional disorders.
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S1 Table. Behaviors recorded during the conditioning test in Experiment 1. Animals

received a single subcutaneous (s.c.) injection of 0.1 ml of either 0.5 μg (EB0.5S, n = 9), 5 μg

(EB5S, n = 7), or 50 μg (EB50S, n = 8) EB in oil, or oil vehicle alone (EB0S, n = 8).
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S2 Table. Behaviors recorded during the conditioning test in Experiment 2. Animals

implanted s.c. with a Silastic capsule containing either 0.05 μg/0.1 ml (EB0.05L, n = 8), 0.5 μg/

0.1 ml (EB0.5L, n = 8), 5 μg/0.1 ml (EB5L, n = 8), or 50 μg/0.1 ml (EB50L, n = 8) or an oil vehi-

cle (EB0L, n = 8). Superscript letters indicate statistical significance; p<0.05.

(DOCX)

S3 Table. Uterine weight 2 days after s.c. administration of EB. Uterine weights were mea-

sured 2 days after a single administration of EB in a second group of animals. Animals received

an s.c. injection of either oil vehicle (control, 0.1 ml sesame oil (EB0S), n = 8) or various doses

(1 μg/0.1 ml (EB1S), n = 8; 5 μg/0.1 ml (EB5S), n = 9; 10 μg/0.1 ml (EB10S), n = 9; 50 μg/0.1 ml

(EB50S), n = 9 or 100 μg/0.1 ml (EB100S), n = 9) of EB 7 days post-ovariectomy. The uterine

weights increased in line with the EB dose administered (F(5, 46) = 20.78, p< 0.0001). Super-

script letters indicate statistical significance; ps< 0.05–0.0001.

(DOCX)

S1 Fig. The relationship between freezing duration and uterine weight. Scatter plot of the

cumulative freezing duration during the test trials versus the uterine weights of the estradiol-

treated female mice with the regression lines superimposed. The filled circles represent the

data points of each subject in all groups included in Experiment 2. The dashed line represents

the estimated regression line (Y = 0.168X + 6.761, R2 = 0.104, F(1,32) = 3.73, p = 0.062)

determined by a linear model, while the solid line represents the estimated regression line

(Y = 0.004X2–0.831X + 37.710, R2 = 0.213, F(2,31) = 4.19, � p< 0.05) determined by a qua-

dratic model.

(TIF)
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