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Jinbo B. Wei1,2, Shuang Li1,2, Fugui G. Fang1,2, Yong Liu3 and

Yinghui H. Ling1,2*

1College of Animal Science and Technology, Anhui Agricultural University, Hefei, China, 2Anhui

Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and

Bio-Breeding, Anhui Agricultural University, Hefei, China, 3Key Laboratory of Embryo Development

and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China

It is universally acknowledged that lncRNA plays an important role in the

regulation of animal skeletal muscle development regulation. However, there

is a lack of relevant research on lncRNA in rabbit skeletal muscle development.

Thus, we explored the expression profiles of lncRNA in rabbits at three growth

stages (2-week-old fetus, 6-week-old post-weaning, and 6-month-old adult)

using RNA-seq. A total of 554 di�erentially expressed lncRNAs (235 up- and

319 down-regulated) were found between the post-weaning and fetus groups

and 19 (7 up- and 12 down-regulated) between the post-weaning and adult

groups and 429 (115 up- and 314 down-regulated) between the fetus and

adult. The enrichment pathways in the post-weaning and fetus groups were

mainly concentrated at AMPK and PI3K-Akt signaling pathways, and the co-

expression results revealed that LINC-2903, LINC-2374, LINC-8591 plays a role

in early maintenance of skeletal muscle development. The enriched pathways

in the fetus and adult groups were mainly involved in PI3K-Akt signaling

pathwayswith a strong association found inmTOR signaling pathways. Analysis

of the co-expression results suggests that LINC-5617 may be involved in

the proliferation of embryonic skeletal muscle cells, and that LINC-8613 and

LINC-8705 may provide energy for postnatal skeletal muscle development.

The specific roles of di�erent lncRNAs in di�erent developmental stages of

New Zealand White rabbits obtained. This will contribute to the subsequent

study on the regulatory mechanism of muscle development in New Zealand

White rabbits.

KEYWORDS

lncRNA, skeletal, muscle, transcriptome, rabbits

Introduction

The New Zealand White rabbit (Oryctolagus cuniculus), which is native to the

United States and was introduced to China many years ago, has beneficial characteristics

for commercial purposes including fast early growth, and a high level of fatty meat (1).

The New Zealand white rabbit has also been widely used in the biological and medical
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fields in recent years as an ideal laboratory animal. New Zealand

white rabbit meat has been preferred by the consumers, due to

its high protein levels, low cholesterol and low fat advantages

(2). The leg muscle is the most economically valuable part of

meat-producing rabbits and has therefore been the focus of

molecular breeding efforts to improve yields from commercial

rabbit farming. With the development and application of

molecular biology and bioinformatics, it has become possible to

understand the basis of meat rabbit production performance at

the molecular level (3).

Long non-coding RNAs (lncRNAs) are >200 nucleotides

non-coding RNA molecules that have been widely recognized

to play important roles in many cellular processes, including

the cell cycle (4), cell differentiation, metabolism, and diseases

(5). For example, some lncRNAs act as molecular scaffolds

by assembling protein complexes that can activate or repress

transcription (6). Another portion of the lncRNAs may act as

decoys to isolate transcriptional regulators and repress their

activity (7). The search for lncRNAs associated with muscle

developmental traits has become particularly important in

commercial animal farming. Emerging research also suggests

that lncRNAs play an important role in muscle development

in pigs (8), calves (9), chickens (10), sheep (11), rabbits (3),

and humans (12). Fifty-five differentially expressed lncRNAs

were identified by RNA-seq in high and low intramuscular

adipose tissues in the pig, suggesting that these molecules may

be involved in muscle fat metabolism (3). LncRNAs located at

meat quality trait-related loci were identified in nine muscle

samples from Limousin bull calves, suggesting that they may

be associated with superior meat quality (9). Differentially

expressed lncRNAs have also been identified in multiple tissues

in chicken skeletal muscle and specific overexpression of the

lncRNA Gallus gallus(gga)-lnc-0181 was found to play an

important role in chicken muscle development (10). LNC-

011371, LNC-007561, and LNC-001728 were found to play an

important role in regulatingmuscle development in goats during

growth to adulthood (13).

We hypothesized that lncRNAs play a significant role in

muscle development at different stages in rabbits but there is

a lack of relevant studies. Therefore, we performed RNA-seq

analysis on New Zealand white rabbits at three developmental

stages (2-week-old fetus, 6-week-old post-weaning, and 6-

month-old adult rabbit), explored the expression profiles of

lncRNAs at the three stages, screened differentially expressed

lncRNAs and obtained potential lncRNAs associated with

muscle based on their functional analysis and corresponding

target genes. Our current findings provide a theoretical basis

for the molecular mechanisms of muscle development in meat

Abbreviations: LncRNA, Long non-coding RNA; FPKM, fragments Per

Kilobase of transcript sequence per Millions base pairs sequenced; GO,

Gene Ontology; PCA, Principal component analysis.

rabbits and contribute to the development of this aspect

of research.

Materials and methods

Experimental animal preparation and
sample collection

New Zealand white rabbits in the study were purchased

from the animal room of Anhui Medical University (Hefei,

China), including post-weaning stage rabbits at 6-week-old (0.86

± 0.083 kg) and adult female rabbits with 2 weeks gestation

at 6-month-old (4.37 ± 0.033 kg). When sampling, muscle

anesthesia was performed with Jingsongling (2,4xylyl xylazole,

Lot Number 030725, Shandong Zibo Veterinary Medicine

Factory, Shandong, China) at 2 mg/kg before cesarean section.

The fully anesthetized rabbits were euthanized by injecting air

into the ear vein. The fetuses were taken out from the uterus

of female rabbits by cesarean section. Only 1 fetus (each animal

represents 1 repetition) was selected for each female rabbit, that

was, there were 3 biological repeats in each stage (9.14± 0.33 g).

The left hind leg triceps brachii were taken as samples. All

samples were rinsed three times with DPBS (Servicebio, Wuhan,

China) containing 1× penicillin and streptomycin (14, 15), post-

weaning immediately snap frozen in liquid nitrogen (Sichuan

Dongya Industry and Trade Co Ltd, Sichuan, China), and then

quickly transferred to a−80◦C freezer and stored until required

for RNA extraction.

Extraction and quality testing of total RNA

Extract 0.5 ± 0.1 g of rabbit tissue samples with TRIzol

total RNA. (Invitrogen, Carlsbad, CA, United States). These

RNA preparations were then quality tested using 1.5% agarose

gel electrophoresis. And the concentration of the extracted

RNAs was tested with the Nanodrop-2000 nucleic acid protein

analyzer NEW (Agilent Technologies, CA, United States), and

the results indicated an OD260/280 of between 1.8 and 2.1.

Finally, the integrity of the RNA was measured with an Agilent

2100 bioassay instrument.

Construction of the transcriptome cDNA
library

Aliquots of 5 µg of RNA from each sample tissue

were used as the starting material for library construction.

Briefly, ribosomal RNA was first removed from the total

RNA using an rRNA-free kit (Epicenter, Madison, WI,

United States) and linear RNA was then removed with RNase

R (Epicenter, Madison, WI, United States). An RNA-seq library
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was then generated using an NEBNext
R©

UltraTM Directional

RNA Library Prep Kit for Illumina
R©

(NEB, Ipswich, MA,

United States). The library fragments were purified into cDNA

fragments, with a preferred length of 250–300 bp, using the

AMPure XP system (Beckman Coulter, Beverly, United States).

AMPure XP beads were then used to purify the double-stranded

cDNA, repair the ends of this purified cDNA, and then add

poly A linkers. Finally, the cDNA library was constructed by

PCR amplification.

Clustering and quality control analysis of
the RNA libraries

The index-encoded samples were clustered using the cBot

cluster generation system through TruSeq PE Cluster Kit v3-

cBot-HS (NEB, Ipswich, MA, United States). Illumina PE150

(pair end 150) sequencing was then performed in accordance

with the effective concentration. Briefly, four fluorescently

labeled dNTPs, DNA polymerase and adaptor primers were

added to the sequencing flow cell for amplification. The

Illumina platform then captured the fluorescent signal and

converted the light signal into a sequencing peak to obtain

sequence information.

Clean reads were next filtered from the original reads which

were processed by the internal Perl script (ng-qc, parameter: -

L 20, -p 0.5). This filter condition removes reads containing a

5′ linker and poly A/T/G/C, no 3′ linker or insert sequence,

and those with an N (N means base information cannot be

determined) ratio >10%. In addition, when the number of low-

quality bases contained in a single-end read exceeded 50% of the

length of the read, the paired reads were also removed. The Q20,

Q30, and GC content of the clean data were calculated at the

same time.

Mining and analysis of the sequence data

The FA and GTF files of the reference genome and gene

model of the New Zealand white rabbit (Oryctolagus cuniculus)

were downloaded from the NCBI database (OryCun2.0

GCA_000003625.1). Bowtie2 v2.2.8 was used to construct

the index of the reference genome and Hisat2 was employed

to align the clean reads of the paired ends. LncRNAs were

subsequently detected and identified using StringTie (16). The

raw counts of the obtained lncRNAs were normalized using

a Fragments Per Kilobase of transcript sequence per Million

base pairs sequenced (FPKM) approach, which represents the

expression level of the lncRNA (17). Differentially expressed

lncRNAs were identified from the expression level analysis. The

negative binomial distribution of DESeq2 (R-3.1.2) was used

for differential analysis of the transcripts (18). The |log2(Fold

Change)|≥1 and an adjusted P-value (P-adjust) < 0.05 were

used as the threshold to screen for differentially expressed

lncRNAs (19). LncRNAs with a P-adjust < 0.05 were designated

as differentially expressed.

Functional and pathway analysis of
di�erentially expressed lncRNAs

Gene Ontology (GO) was used for GO enrichment analysis

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis. All the obtained New Zealand white rabbits

differentially expressed lncRNAs were annotated into the GO

(http://www.geneontology.org) and KEGG (http://www.kegg.

jp) databases. P-values < 0.05 indicated significant enrichment.

Target gene prediction for the
di�erentially expressed lncRNAs

Target gene prediction was performed on three groups

(fetus, post-weaning, and adult) of differentially expressed

lncRNAs. LncRNAs’ target genes were predicted by the

positional relationship (co-location) and expression correlation

(co-expression) of lncRNAs with protein-coding genes. Then,

functional enrichment analysis (GO/KEGG) was performed

on the target genes of the differential lncRNAs to predict

the lncRNAs associated with muscle development. A Pearson

correlation coefficient (PCC) was calculated to evaluate the

co-expression relationship between differentially expressed

lncRNAs and mRNAs. Co-expression pairs with a PCC > 0.8

and a P-value < 0.05 were selected for constructing regulatory

networks and were visualized using Cytoscape 3.5.1 (http://

www.cytoscape.org).

Real-time fluorescence quantitative PCR
validation

qPCR was performed using a 2 × Q3 SYBR qPCR

Premix (TOLOBIO, Shanghai, China) and a fluorescent qPCR

instrument (Thermo, Shanghai, China). Randomly selected 10

differentially expressed lncRNAs. Primer pairs were designed

using NCBI Primer-BLAST and synthesized by TsingKe

Biotechnology (TsingKe, Nanjing, China). The GAPDH internal

reference gene was used as a control. PCR reactions were

conducted in a final volume of 25 µL, comprising the following:

12.5 µL of 2 × Q3 SYBR qPCR Mix (High ROX), 0.5 µL of

PCR forward primer (10 µmol/L), 0.5 µL of PCR reverse primer

(10 µmol/L) (Table 1), 1 µL of DNA template (cDNA solution)

and 10.5 µL of sterilized water. Amplification conditions were

as follows: pre-denaturation at 95◦C for 2min followed by 40
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cycles of 95◦C for 15 s and 60◦C for 34 s. Melting curve analysis

was conducted at 95◦C for 15 s, 60◦C for 34 s, and 95◦C for 15 s.

Data analysis

The lncRNA expression levels were normalized to a

reference sequence and calculated by 2−11Ct. The data

were all initially collated using Excel 2016, and analyzed by

IBM SPSS Statistics v19.0 for one-way ANOVA, which was

performed on the normalized data using GraphPad Prism 8.0,

using the analysis correlation bi-variables method to analyze

the relationship between muscle development-related gene

expression and muscle phenotype data. A Spearman correlation

coefficient was used (20). P < 0.05 was used as the criterion for

significant differences.

Results

RNA quality testing

Testing of the RNA via 1.5% agarose nucleic acid

electrophoresis revealed three clear bands, among which

the 28S band was the brightest, indicating that the RNA

quality met the requirements for library construction

(Supplementary Figure S1).

Analysis of lncRNA sequencing data

Principal component analysis (PCA) showed clustering of

the three samples from each stage, indicating reproducibility

of the data. Cluster plots for the fetus, post-weaning and

adult groups show reproducibility of the samples (Figure 1A).

From the Venn diagram, 354 lncRNAs were revealed to be

expressed in all three groups, 405 specifically in the post-

weaning group, 172 specifically in the fetus group, and 105

specifically in the adult group, indicating a dramatic change

in the lncRNA regulatory network in skeletal muscle between

the postnatal and post-weaning stages (Figure 1B). The overall

lncRNA expression levels were more homogeneous among the

three stages (Figure 1C). The heat map revealed the dynamic

changes in all samples (Figure 1D).

Di�erential expression of lncRNAs

To further explore the differences in the regulatory

network between the 3 stages, differential analysis of lncRNA

was performed. There were 554 differentially expressed

lncRNAs found between the post-weaning and fetus groups

(Supplementary material 4), of which 235 were up-regulated

and 319 were down-regulated (Figure 2A); 19 differentially

expressed lncRNAs were found in the post-weaning and

adult groups (Supplementary material 5), of which 7 were up-

regulated and 12 were down-regulated (Figure 2B); and 429

differentially expressed lncRNAs were found in the fetus and

adult groups (Supplementary material 6), of which 115 were

up-regulated and 314 were down-regulated (Figure 2C).

GO enrichment analysis of di�erentially
expressed lncRNAs

We employed GO to functionally enrich for differential

lncRNAs from two adjacent phases (fetus and post-weaning,

post-weaning, and adult), and these differentially expressed

lncRNAs were found to be significantly enriched in biological

processes, cellular components and molecular functions.

Up-regulated differential lncRNAs between the post-weaning

and fetus groups were enriched in 212 GO terms (P < 0.05),

mainly involved in precursor metabolite and energy production,

ATP metabolic processes, growth hormone receptor signaling,

the JAK-STAT cascade involved in growth hormone signaling

pathway, and the regulation of myoblast differentiation

(Figure 3A; Supplementary material 7). Down-regulated

differential lncRNA enrichment was evident for 362 GO

terms (P < 0.05), including chromosomal components, limb

morphogenesis, limb development, chromosome development

and skeletal formation (Figure 3B; Supplementary material 7).

Up-regulated differential lncRNAs were not significantly

enriched for terms between the post-weaning and adult groups.

However, membrane lipid metabolism processes as well as

other hormone intertransport processes were involved. Down-

regulated differential lncRNA enrichment was observed in 17

terms (P < 0.05) including growth hormone receptor signaling,

the cellular response to growth hormone stimuli, the JAK-STAT

cascade involved in growth hormone signaling pathways, and

in processes associated with protein modifications and growth

hormone response (Figure 3C; Supplementary material 8).

KEGG pathway analysis of di�erentially
expressed lncRNAs

The identified signaling pathways were subsequently

analyzed using KEGG for differential lncRNAs in two adjacent

stages (fetus and post-weaning, post-weaning, and adult).

Up-regulated differential lncRNAs between the post-weaning

and fetus groups were enriched in 2 pathways (P < 0.05)

the proteasome and Epstein-Barr virus infection. However,

there was also a high involvement in muscle development-

related mTOR signaling and 5′-adenosine monophosphate

activated protein kinase (AMPK) signaling (Figure 4A;

Supplementary material 7). Down-regulated differential
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FIGURE 1

Analysis of lncRNA sequencing data. (A) Principal component analysis plot (horizontal coordinate is PC1, vertical coordinate is PC2, indicating

the degree of clustering). (B) Venn diagram (where circles represent samples, non-overlapping part is specific expression lncRNA, overlapping

part is non-specific expression lncRNA). (C) Box plot of lncRNA expression levels [horizontal coordinate is sample name, vertical coordinate is

log10(FPKM+1), and the maximum, upper quartile, median, lower quartile and minimum values are shown]. (D) Hierarchical clustering plot of

di�erential lncRNA expression in di�erent experimental groups [each row represents one lncRNA, each column represents one sample, and the

color from blue to red indicates log10(FPKM+1) from large to small]. (A–D, F, Fetus; P, Post-weaning; A, Adult).

lncRNA enrichment was evident in 13 pathways (P < 0.05),

mainly associated with axon guidance, phosphatidylinositol

3-kinase/protein kinase 3 (PI3K)-Akt signaling, and actin

cytoskeleton regulation (Figure 4B; Supplementary material 7).

Up-regulated differential lncRNAs between the post-weaning

and adult groups were not significantly enriched in any pathway,

but showed an involvement in myocardial development such

as arrhythmogenic right ventricular cardiomyopathy (ARVC)

and ECM-receptor interaction hypertrophic cardiomyopathy

(HCM) (Figure 4C; Supplementary material 8). Down-

regulated differential lncRNA enrichment was observed

in a single pathway (P < 0.05), the proteasome, but were

highly involved in Jak-STAT and mTOR signaling (Figure 4D;

Supplementary material 8).
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FIGURE 2

Sequencing of di�erentially expressed lncRNA. (A) Volcano plot of di�erential lncRNA between post-weaning and fetus groups. (B) Volcano plot

of di�erential lncRNA between post-weaning and adult groups. (C) Volcano plot of di�erential lncRNA between fetus and adult groups. A–C

Horizontal coordinates represent lncRNA expression fold changes in di�erent samples, vertical coordinates represent statistical significance of

di�erences in lncRNA expression changes, di�erentially expressed lncRNA are indicated by blue dots (up-regulated) and red dots

(down-regulated) insignificant lncRNA are indicated by purple and blue dots.

Co-expression analysis of di�erential
lncRNAs and their target genes

A gene co-expression network map was constructed based

on the similarity of gene expression data. A total of 9 differential

lncRNAs targeting 4,344 genes were identified in the post-

weaning and fetus groups. Among these molecules, LINC-

2903, LINC-2374, and LINC-8591 were found to be the most

abundant target genes and significantly associated with muscle

development. Sixteen differential lncRNAs targeting 3,665 genes

were identified in the post-weaning and adult groups. among

them, LINC-8613, LINC-8705, LINC-5617, LINC-2374, and

LINC-2903 target genes were the most numerous and require

special attention (Figure 5).

Real-time fluorescence quantitative PCR

To verify the reliability of our data, high expression

differential lncRNAs were screened using qPCR validation.

qPCR results were given as relative expression values, and

RNA-seq results as Fragments Per Kilobase of exon model per
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FIGURE 3

Di�erentially expressed lncRNA GO analysis. (A) Histogram of up-regulated di�erential lncRNA GO enrichment in post-weaning and fetus

groups. (B) Histogram of down-regulated di�erential lncRNA GO enrichment in post-weaning and fetus groups. (C) Histogram of

down-regulated di�erential lncRNA GO enrichment in fetus and adult groups (horizontal coordinates represent enriched GO terms, vertical

coordinates represent the number of di�erentially expressed lncRNA in the entry). Di�erent colors are used to distinguish biological processes,

cellular components, and molecular functions; BP, biological process; CC, cellular component; and MF, molecular function.

Million mapped fragments (FPKM) values. By calculating the

correlation coefficient between these two data sets, the qPCR

data were found to be consistent with the expression trends from

the sequencing data in this study (Figure 6).

Discussion

Postnatal skeletal muscle growth is mainly achieved through

increases in the length and circumference of muscle fibers,

and not by an enhanced number of muscle fibers. Hence,

identifications of the key lncRNAs that function at different

stages of skeletal muscle development will be important for

the future development of more optimal meat production in

rabbits. LncRNAs play a pleiotropic role in skeletal muscle

production as key regulators of biological processes such as cell

growth, development, differentiation and disease (21). However,

the changes in lncRNA expression levels before and after birth

in rabbits had not been clear previously. We thus conducted

RNA-seq analysis of hind leg muscle samples from New Zealand

white rabbits at the fetal, post-weaning, and adult growth stages

to identify lncRNAs that may have potential effects on skeletal

muscle development at these different stages. The data from

PCA and heat map analysis showed reproducibility at each

stage, and qPCR results verified the reliability of these data.

Differentially expressed lncRNAs were detected between the

post-weaning and fetus groups and the post-weaning and adult

groups than the fetus and adult groups, with a total of 554

differentially expressed lncRNAs for the post-weaning and fetus

groups, 429 for the post-weaning and adult groups, and 19 only
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FIGURE 4

Analysis of di�erentially expressed lncRNAs using KEGG. (A) Scatterplot of all di�erentially up-regulated lncRNA KEGG enrichment in

post-weaning and fetus groups. (B) Scatterplot of all di�erentially down-regulated lncRNA KEGG enrichment in post-weaning and fetus groups.

(C) Scatterplot of all di�erentially up-regulated lncRNA KEGG enrichment in fetus and adult groups. (D) Scatterplot of all di�erentially

down-regulated lncRNA KEGG in fetus and adult groups. lncRNA KEGG enrichment scatterplot. (Horizontal coordinates indicate enrichment

factors, vertical coordinates indicate pathway names, the size of the dots indicates how many di�erentially expressed lncRNA are in this

pathway, and the colors of the dots correspond to di�erent q-value ranges of up-regulated di�erential lncRNA KEGG enrichment scatter plots).

between the fetus and adult groups. This demonstrated that the

muscle development of New Zealand white rabbits is mainly

concentrated in the post-weaning to fetus stages.

Our post-weaning and fetal samples were analyzed by GO

and KEGG to reveal differentially up- and down-regulated

lncRNAs, which were found to be predominantly enriched in

myofibril formation. AMPK and PI3K-Akt signaling pathways

were predominantly enriched in the post-weaning group

compared to the fetus group. Prior studies have demonstrated

that AMPK is an intracellular sensor of ATP consumption

and a key regulator of skeletal muscle metabolism, mainly

involved in promoting glucose and fat oxidation, and ATP

catabolism (22). The PI3K-Akt signaling pathway is known

to be involved in cell proliferation, differentiation, invasion,

and apoptosis (23). Prior experiments have revealed that the

activation of PI3K-Akt signaling is required for the proliferation

and differentiation (24). This suggests that AMPK and PI3K-

Akt signaling pathways play an important role in regulating

skeletal muscle cell development in rabbits. Our current co-

expression analysis in the post-weaning and fetus groups of New

Zealand white rabbits identified three differentially expressed

lncRNAs, LINC-2903, LINC-2374, and LINC-8591, that showed

a significant association with muscle development. It has

been found previously that insulin-like growth factor (IGF)

positively regulates muscle differentiation and can stimulate

myoblast proliferation (25). Myogenic (MYOD) (a marker

Frontiers in Veterinary Science 08 frontiersin.org

https://doi.org/10.3389/fvets.2022.948929
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhu et al. 10.3389/fvets.2022.948929

FIGURE 5

Construction of lncRNA-mRNA co-expression network. (A) Di�erential lncRNA-mRNA functional network between post-weaning and fetus

groups. (B–D) Di�erential lncRNA-mRNA functional network between fetus and adult groups (large nodes represent lncRNA and small nodes

represent target genes. The lines represent the regulatory relationship between lncRNA and mRNA. For the correlation between lncRNA and

target genes, Pearson correlation coe�cient (PCC) > 0.8, p-value < 0.05.

gene for satellite cell activation and differentiation) (26),

and Myogenin (MYOG) (a marker gene for late satellite

cell differentiation) promote skeletal muscle satellites towards

myogenic differentiation and fusion to form multinucleated

muscle fibers (27). A MYOG knockdown reverses terminal

myoblast differentiation (28, 29). The myosin heavy chain

family (MYH19 and MYH8) and the troponin family (TNNT1

and TNNT2), which are related to the formation of myofibril

types, are involved in muscle proliferation, differentiation and

structure (13). LINC-2903 is associated with IGF, MYH10,

MYH8, MYOG, MYOD, and TNNT1, indicating that this

lncRNA molecule plays a role in maintaining normal muscle

development and promoting proliferation or differentiation in

the early stages of skeletal muscle development. It has been

shown previously in a human study that when the plasma

protein 2 (PAPPA2) gene is mutated or missing in children,

it usually results in a short stature (30). In knockout mice

for this gene, body length and bone length are lower than

normal mice, and osteogenesis is abnormal (30, 31). LINC-2374

directly targets PAPPA2 and was found in our current analyses

to be highly expressed in the post-weaning stage, suggesting

its involvement in rapid muscle development and a direct or

indirect role in the regulation of skeletal muscle development.

MYH3 is a genetic isoform of myosin heavy chain (MyHC),

which has been shown to form filaments in transverse, smooth

and non-muscle cells and to play an important role in human

infancy development and muscle regeneration (32). MYH3 has

been associated with LINC-8591 and its high expression in early

development would indicate an involvement in muscle fiber

formation during the progression to adulthood.
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FIGURE 6

Comparison of di�erentially expressed lncRNA qPCR and RNA-seq results. (qPCR expression, orange, bar graph. RNA-seq expression, blue, line

graph. F, Fetus; P, Post-weaning; A, Adult).

Differentially expressed lncRNAs were found to be up-

regulated and down-regulated by GO and KEGG analysis in

the post-weaning and adult groups in our current study. and

were mainly enriched in muscle cell development and PI3K-

Akt signaling processes, also highly involved in the mTOR

pathway, which is clearly linked to muscle development.
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TABLE 1 Primers and sequences of the selected lncRNAs for qPCR.

Primer name Gene-id Primer sequences

(5′–3′)

Fragment size/bp

LINC-480 XLOC-022528 F:CACCACCTCTCTCTCACCAAG

R:CCCAGCTTCTCACTAAGCCAT

180

LINC-1522 XLOC-067637 F:GGCATAGACGGGATTCTGGG

R:TGAACAACCATGACACAGTGGA

102

LINC-3981 XLOC-167500 F:GTGCTTCTCCTGGTCTCCCAT

R:GTGCTGGATTCTGTCCTGGTT

122

LINC-8206 XLOC-309022 F:TGTCCCTTTGTGCTTGGTCA

R:GCAAATGCTTGTGACGGGTG

200

LINC-8653 XLOC-318854 F:CAGCAGCCATCCGGTATCAT

R:GGGAAGGGTTTCTGATGCGA

157

LINC-8705 XLOC-319783 F:TGCAAGTCTACCGTGTGAGT

R:AGCTTGGTGGAGCATTGAGT

140

LINC-8943 XLOC-323492 F:AACCAATTAGCGTTTGGCAGC

R:TGACTCCAGGTGGAACCAAT

117

LINC-2374 XLOC-105852 F:AAAGTTCCCAGTCCCCAAGC

R:TGATCCACAGGTCGTTTGCT

143

LINC-5363 XLOC-224411 F:CCGCTTGTGAAGGGCTGTAA

R:GTCTTCGGTCCTGAGCAAGT

101

SPO11-AS1 100359270 F:TCAGCTCGATGGCGCATTTA

R:AAATGATCTGACGACGCCCA

107

LINC-2903 XLOC_122121 F:CATGGCTTTTTGCCACTCCA

R:ACGAAGTGGCCCTGTCTTTC

154

LINC-8591 XLOC_317430 F:GGGAAATGGAGTCCCCCAAG

R:GGAAATCCTGATCCAGGGGAC

97

LINC-8613 XLOC_317978 F:GTTCTAGTCCTGGTTGGGGC

R:CCTTTTCCGTTGGTTCAGCC

119

LINC-5617 XLOC_236837 F:GGATGACCACTTCGACCCAG

R:CGCGTAGTGATAGGCCAACT

212

Annotate: SPO11-AS1 for SPO11 initiator of meiotic double stranded breaks.

F, Forward; R, Reverse.

The PI3K-Akt signaling pathway and steroid biosynthesis are

particularly prominent in these processes, which indicates their

significant role in postnatal muscle growth (33). The protein

mTOR is a serine/threonine kinase that regulates growth,

development, and behavior by regulating protein synthesis,

autophagy, and a variety of other cellular processes in response

to changes in nutrients and other cues. mTOR complexes

are widely described as signaling systems that sense levels

of various nutrients, energy, and growth factors, and direct

downstream activities such as development, reproduction,

metabolism, behavior, stress responses, and aging (34). Co-

expression analysis of fetus and adult group, identified

three differentially expressed lnRNAs associated with muscle

development, named LINC-5363, LINC-8613, and LINC-

8705.

Myostatin (MSTN) was originally identified in mice, with

mutations in this gene resulting in skeletal muscle hypertrophy,

and is known to negatively regulate muscle development (35).

LINC-5363 directly targets MSTN, suggesting that this lncRNA

may play a negative regulatory role from fetal to adult muscle

development in animals. It has been reported that Myh10

is a pleiotropic gene that plays multiple roles in different

developmental processes, including tension production (35),

growth factor receptor internalization (36), cell adhesion (37)

and extracellular matrix protein secretion (38). Myh10 encodes

a non-muscle myosin heavy chain IIB (NMHC IIB), which

has been shown to be a cytoskeletal protein with multiple

functions, includingcytoplasmic division, cell shape regulation,

adhesion and migration (39). NMHC IIB plays a critical role in

cytoskeletal formation. LINC-5617 targets MYH10, suggesting
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its possible involvement in the proliferation and development

of skeletal muscle cells. Myosin heavy chain (MyHC) is the

molecular motor of muscle and forms the backbone of the

thick filaments of myofibrils (33). Different MyHC isoforms are

important for the physiological properties of different muscle

fiber types. Dominant mutations in the developmental MyHC

isoform gene (MYH8) are associated with distal joint flexure

syndrome. Myosin is a highly conserved and ubiquitous protein

present in all eukaryotic cells (40). It acts as a molecular

motor converting the chemical energy of ATP hydrolysis

into mechanical forces for various cellular motilities such as

cytoplasmic division, phagocytosis and muscle contraction (41).

LINC-8613 is associated withMYH8 and is primarily associated

with signaling pathways that provide energy, suggesting that

postnatal LIN-8613 is primarily associated with cellular energy

supply. Protein kinase cAMP-dependent type II regulatory

subunit beta (PRKAR2B) enhances glucose consumption, lactate

production and the rate of extracellular acidification (42).

PRKAR2B increases the expression level of hypoxia-inducible

factor 1α (HIF-1α), suggesting that PRKAR2B can consume

large amounts of energy, which is closely related to skeletal

muscle development (43). The transcription factor ZBTB14

affects β-catenin protein content by reducing junctional β-

catenin protein mRNA levels, which in turn exerts an inhibitory

effect on Wnt/β-catenin signaling, thereby exerting a regulatory

effect on myofiber hypertrophy (44). LINC-8705 is associated

with PRKAR2B, ZBTB14, and is highly expressed in the

post-weaning, suggesting that it may play an important role

in bone muscle development after birth in New Zealand

white rabbits.

Conclusion

We analyzed for the first time skeletal muscle tissue

from the hind legs of New Zealand White rabbits at three

developmental stages (2-week-old fetuses, 6-week-old post-

weanings, and 6-month-old adults) using RNA-seq. Co-

expression analysis of the fetal and post-weaning groups

showed that LINC-2903, LINC-2374, and LINC-8591 lncRNAs

played a role in maintaining normal muscle development

and promoting proliferation or differentiation in the early

stages of skeletal muscle development. Co-expression results

in post-weaning and adult groups suggest that LINC-5617

may be involved in skeletal muscle cell proliferation and

development. LINC-8613, and LINC-8705 are mainly associated

with signaling pathways that provide energy, suggesting

that they may provide energy for postnatal skeletal muscle

development. Thus, our current study provides a solid

foundation for further studies on muscle developmental

characteristics and meat improvement in New Zealand white

rabbits, as well as broader studies on muscle development

in herbivores.
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