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Genetic insights into therapeutic targets for aortic
aneurysms: A Mendelian randomization study
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Summary

Background As aortic aneurysms (AAs) enlarge, they can become life-threatening if left undiagnosed or neglected.
At present, there is a lack of radical treatments for preventing disease progression. Therefore, we aimed to identify

effective drug targets that slow the progression of AAs.
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Methods A Mendelian randomization (MR) analysis was conducted to identify therapeutic targets which are associ-
ated with AAs. Summary statistics for AAs were obtained from two datasets: the UK Biobank (2228 cases and
408,565 controls) and the FinnGen study (3658 cases and 244,907 controls). Cis-expression quantitative trait loci
(cis-eQTL) for druggable genes were retrieved from the eQTLGen Consortium and used as genetic instrumental var-
iables. Colocalization analysis was performed to determine the probability that single nucleotide polymorphisms
(SNPs) associated with AAs and eQTL shared causal genetic variants.

Findings Four drug targets (BTN3A1, FASN, PLAU, and PSMA4) showed significant MR results in two independent
datasets. Proteasome 20S subunit alpha 4 (PSMA4) and plasminogen activator, urokinase (PLAU) in particular,
were found to have strong evidence for colocalization with AAs, and abdominal aortic aneurysm in particular. Addi-
tionally, except for the association between PSMA4 and intracranial aneurysms, no association between genetically
proxied inhibition of PLAU and PSMA4 was detected in increasing the risk of other cardiometabolic risks and
diseases.

Interpretation This study supports that drug-targeting PLAU and PSMA4 inhibition may reduce the risk of AAs.
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Doppler ultrasound or computed tomography (CT).
However, AAs progression is slow, and large aneurysms

Introduction
Aortic aneurysms (AAs) are the Isth most common

cause of death in individuals aged 55 years and over and
occur when the progressive weakening of the aortic wall
causes the aorta to dilate."* Small aneurysms remain
mostly asymptomatic and can be monitored using a
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can lead to aortic rupture and sudden death.’ Since a
few pharmacological treatments have been found to be
effective so far, surgical, and endovascular repair are
essential treatments for AAs. It is essential to identify
effective drugs for the prevention of AAs.

A large-scale randomized clinical trial (RCT) is an
efficient way to estimate drug treatment strategies; how-
ever, it requires extensive planning, time for design and
execution, and resources. In recent years, it has become
the most cost-effective way to integrate human genetics
studies into drug development programs and has been
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Research in context

Evidence before this study

Aortic aneurysms (AAs) are potentially lethal conditions
that cause more than 10,000 deaths per year around
the world. In the clinical setting, surgical and endovas-
cular repair are essential treatments for AAs. Unfortu-
nately, there is a lack of effective medications for
preventing disease progression.

Added value of this study

Our study aimed to identify therapeutic targets relevant
to AAs by performing a Mendelian randomization analy-
sis. We identified the genetically predicted expression of
PSMA4 and PLAU were associated with AAs risk in two
independent cohorts, which also had strong evidence
for colocalization with AAs. Further, these two proteins
were significantly increased in abdominal aortic aneur-
ysms human samples.

Implications of all the available evidence

This study supports that drug-targeting PLAU and
PSMA4 inhibition may reduce the risk of AAs, which
may provide insight into the underlying mechanisms
and corresponding interventions. Further investigation
is needed to validate in basic and even clinical research
in this field.

used successfully to assess the effects of 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (HMGCR) inhibi-
tors and proprotein convertase subtilisin-like/kexin type
9 (PCSK9) inhibitors on lowering coronary artery dis-
ease risks.*”

Mendelian randomization (MR) is an approach that
uses common variants as unconfounded unbiased prox-
ies to investigate causal associations.® In drug target
MR analysis, cis-expression quantitative trait loci (cis-
eQTL) located in the genomic region of the drug target
gene are often considered proxies, which function as
regulators that influence gene expression. Such MR
analyses have been applied to several diseases, such as
COVID-19, and Parkinson’s disease.”® Interestingly,
using genetic markers to identify drug targets for AAs,
studies have demonstrated targeting low-density lipo-
protein cholesterol might be an effective treatment strat-
egy for preventing and managing abdominal aortic
aneurysms,? which are now proven to benefit abdomi-
nal aortic aneurysm patients.’” Additionally, some
potential targets also were found." " However, geno-
mic evidence for a range of potential drug targets for
AAs has not yet been explored.

In this study, we aimed to identify potential drug tar-
gets to slow down AAs progression, and we performed
MR analyses by combining eQTL found in the blood
with two independent AAs genome-wide association

study (GWAS) datasets. The association between geneti-
cally proxied druggable genes and AAs risks was investi-
gated, as well as between the genes and 18 additional
cardiometabolic risk factors and 13 common disease
traits.

Methods

Ethics

Our study was a secondary analysis of publicly available
data. Informed consent was obtained from all partici-
pants as per the original GWAS protocols, and all ethi-
cal approvals for the GWAS were obtained by the
original GWAS authors. The human study was
approved by the Institutional Review Board of the
Tongji Hospital (Tongji Medical College, Wuhan,
China) and was conducted following the Declaration of
Helsinki and the International Conference on Harmo-
nization Guidelines for Good Clinical Practice.

Identifying cis-eQTL data linked to druggable genes

A total of 4302 druggable genes located on the autoso-
mal chromosomes with HGNC names were identi-
fied.” These included 1375 protein therapeutic targets
in clinical development, 646 proteins related to drug
targets and compounds, and 2281 proteins associated
with members of key drug target families.

Considering that cis-eQTL were more proximal to
the gene of interest in the drug development studies,
we obtained fully statistically significant cis-eQTL (false
discovery rate <o.05, £1 Mb from each probe) from the
eQTLGen Consortium and eQTL meta-analysis of the
peripheral blood of 31,684 individuals.” To generate
genetic instruments to proxy 4302 druggable targets,
we selected cis-eQTL within +100 kb from each gene’s
genome position, and eQTLs were available for 2664
druggable genes in the final.

Three independent sources of protein QTL (pQTL)
datasets (Ferkingstad‘s N = 35,559 Icelanders; Sun’s: N
= 3301 Europans, and Emilsson’s N = 5457 Icelanders)
were downloaded for two druggable proteins of interest,
proteasome 208 subunit alpha 4 (PSMA4) and plasmin-
ogen activator urokinase (PLAU)."® '® All significant
cis-pQTL could be available in the original supplemen-
tary tables.

Outcome data

Aortic aneurysm. The UK Biobank is a large-scale bio-
medical database and research resource containing in-
depth genetic and health information from over
500,000 participants. We defined AAs in the UK Bio-
bank according to electronic health recodes (ICD-9 or
ICD-10 diagnosis and hospital procedure codes, Table
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S1) from hospital episode statistics and death certifi-
cates, which consisted of 2228 cases and 408,565 con-
trols. GWAS summary statistics for AAs were obtained
from Pan-UK Biobank (https://pan.ukbb.broadinstitute.
org/), and GWAS analysis was adjusted for the follow-
ing covariates: age, sex, age * sex, age2, age2 * sex, and
the first 10 principal components. We used summary
statistics from the FinnGen Consortium for external
replication in an independent sample cohort (Table
S1)."” This study included 3658 patients with AAs and
244,907 controls, the GWAS was adjusted for age, sex,
10 principal components, and genotyping batch.

Cardiometabolic traits and diseases. We selected 18
cardiometabolic risk factors, including lipid traits (total
cholesterol, triglycerides, high-density lipoprotein
(HDL-C), low-density lipoprotein (LDL-C), apolipopro-
tein A1t and B (ApoAr1, ApoB), and lipoprotein « (Lp
(a))),>**" blood pressure traits (systolic blood pressure,
diastolic blood pressure, and pulse pressure),”* glyce-
mic traits (fasting glucose, fasting insulin, 2-hour glu-
cose, and HbA1c),” and anthropometric traits (body
mass index, waist circumference, hip circumference,
and waist-to-hip ratio).*# *® Additionally, 13 cardiometa-
bolic diseases were included in the analysis, such as
four kinds of stroke,?” atrial fibrillation,*® coronary
artery disease,”” heart failure,*® type 1 diabetes,* type 2
diabetes,?” chronic kidney disease,?® intracranial aneur-
ysms** and two subtypes of AAs® (Table S2).

Statistics

Mendelian randomization and colocalization. We con-
ducted MR analyses using the TwoSampleMR R pack-
age. Before MR analysis, several rules were applied to
filter low-quality genetic instruments. First, we excluded
single nucleotide polymorphisms (SNPs) with weak
strength (F-statistic <10). Then, after harmonizing the
exposure and outcome summary data, we selected condi-
tionally independent SNPs without linkage disequilibrium
(r2<o.1, based on the 1000 Genomes European reference
panel) as instrumental variables. We also removed genes
that suggested greater variance than exposure in the AAs
trait using Steiger filtering (Table S3).

For the main analysis, we used the Wald ratio
method to compute the MR estimates for each SNP,
and the SNP estimates were meta-analyzed using
inverse variance weighted (IVW), MR-Egger, and
weighted median models with multiple proposed
instruments. For proposed instruments that contained
more than two variants, MR-Egger regression was pet-
formed to account for potential pleiotropy in the associa-
tion between the exposure of interest and outcomes.
Bonferroni corrections were applied to establish multi-
ple testing-adjusted significance thresholds for the
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sensitivity analyses. In the UK Biobank cohort, we
defined p-values below 1.90E—j5 (p = 0.05/2644) as sig-
nificant, the significant targets were then replicated in
the FinnGen cohort. Associations with p-values below
0.0045 (p = 0.05/11) in replication analyses, were
regarded as significant.

For significant MR results in two dependent cohorts,
we performed a colocalization analysis for AAs risk
using the coloc R package with default priors. For the
eQTL dataset, we used 1E—o4 prior probability for cis-
eQTL (Hi) and AAs associations (H2) and set a prior
probability that a single variant affects both traits (Hg)
at 1E—o5. We set significant colocalization (posterior
probability) at PPH4>0.80, and the genes strongly colo-
calized with AAs were regarded as potential targeted
molecular.

For the potential safety aspects and alternative indi-
cations, the association between potential targeted
molecular and 31 cardiovascular traits was explored by
MR analysis and colocalization analysis. All significant
traits were performed multi-trait colocalization analysis
to distinguish causality from confounding by using the
"Moloc" R package.

As many variants are pleiotropic, we conducted a
multivariable MR analysis to explore the potential inde-
pendent associations of genetically proxied PSMA4 and
PLAU with AAs risk using the “MVMR” package in R.
For PSMA4, a multivariable weighted regression analy-
sis is performed with the AAs regressed on the genetic
associations with other 4 risk factors (Body mass index,
Hip circumference, HDH-C, and LDL-C) in a single
regression model. For PLAU, we adjusted the potential
effect of ApoAr1, ApoB, and Lp(a).

Human subjects

A total of 70 subjects were recruited from Tongji Hospi-
tal, Tongji Medical College in Wuhan, China, between
January 2018 and June 2020, including 35 abdominal
aortic aneurysm (AAA) patients diagnosed with Doppler
ultrasound or computed tomography (CT), and 35
matched healthy control subjects (Table S4). All blood
samples were collected and plasma was separated by
centrifugation immediately and stored at —8o °C until
analysis.

Additionally, aortic tissue specimens were collected
from patients with aortic aneurysm and dissection (n =
8). Normal control infrarenal aortic wall tissue speci-
mens were also obtained from organ donors (n = 4).

Western blotting

Aortic tissues were washed with cold PBS and lysed in
RIPA buffer to extract whole-cell protein, which was
resolved by SDS-PAGE, transferred onto PVDF mem-
brane, and blocked with 5% non-fat dry milk in TBS-T.
The membrane was incubated with indicated primary
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antibody overnight at 4 °C, followed by incubation with
a peroxidase-conjugated secondary antibody for 2 h, and
finally developed with the ECL system (Vazyme Biotech
Co.,Ltd). The western blotting results were quantified
by densitometry and processed with Image ] software
(National Institutes of Health software). The following
antibodies were used: anti-uPA (1:1000, #17968-1-AP,
Proteintech Group, Inc.) and anti-PSMA4 (1:1000,
RKo5687, ABclonal Technology (Wuhan, China))

Enzyme-linked immunosorbent assay (ELISA) analysis
of u-PA

The levels of u-PA in human plasma were measured
using the Human urokinase-type plasminogen activator
(uPA) ELISA Kit (Jiangsu Meibiao Biotechnology Co.,
Ltd) according to the manufacturer's protocol.

Evaluation of druggability and clinical development
activity

To evaluate the druggability of candidate target genes,
we systematic searched DrugBank and ChEMBL Data-
base to get information of potential small molecule
compounds. We also complemented clinical develop-
ment activity by searching through ClinicalTrials.gov
website.

Role of funders

In the present study, none of the funding sources
played a role in the study design, data collection, data
analyses, interpretation, or writing the manuscript.

Results

Study design

Our study aimed to identify therapeutic targets relevant
to AAs. A flow diagram summarizing the methodology
is shown in Figure 1, and Table Sz provides the sources
of the data used. First, we distinguished 4302 unique
human protein-coding genes as drugged or druggable."*
Next, we selected conditionally independent cis-eQTL
variants robustly linked with concentrations and investi-
gated the biological relevance of mRNA expression of
therapeutic targets on AAs risk using a two-sample
MR approach. For MR results that reached the sig-
nificance threshold after adjusting for multiple test-
ing and validated in a second cohort, we conducted
colocalization to examine whether MR results were
influenced by distinct causal variants that were in
linkage disequilibrium with each other. The final
therapeutic targets were further tested for MR
assumptions, and the potential safety aspects and
alternative indications were explored. Finally, the
protein levels of targets in plasma and tissues were
detected in a prospective cohort if possible.

Discovery analysis

Using cis-eQTL data available from the eQTLGen Con-
sortium,” we identified 2644 druggable genes after
clumping and performed a two-sample MR analysis on
European summary statistics for patients with AAs. In
the discovery cohort, which included 2228 patients and
408,565 controls from the UK Biobank, we used IVW
meta-analysis to combine effect estimates from each
genetic instrument. Genetically predicted expression of
11 genes was found to be associated with AAs risk after
accounting for multiple testing (p<1.90E—5 [IVW],
0.05 Bonferroni-corrected for 2644 drug targets, Table

S5-6).

Replication analysis

We attempted to replicate the effect estimates for the
top 11 genes identified in the discovery stage using
data from the FinnGen cohort (N = 248,565). Four
drug targets (BTN3A1, FASN, PLAU, and PSMA4)
were replicated beyond a stringent Bonferroni
threshold (p<o.0045 [IVW], o.05/11 genes, Table 1,
Table S7-8), and there was a 100% consistency in
the direction of effect. One other gene (FBNi)
reached nominal significance (p<o.o5 [[VW]).

Colocalization analysis

We conducted a colocalization analysis to determine fur-
ther the probability that SNPs associated with AAs and
eQTL shared causal genetic variants. The results sug-
gested that PSMA4 and AA likely share a causal variant
within the PSMA4 locus (PP.H4 = 0.9y, Figure 2a-b),
and PLAU in the blood was highlighted as a candidate
for AAs risk (PP.H4 = 0.93, Figure 2c¢-d). Therefore,
two potentially druggable genes with evidence of a
shared genetic effect between the eQTL and AAs risk
were identified from MR and colocalization analyses
(Table S9).

PSMA4

PSMA4 showed a positive estimate effect in the MR
results, indicating a relationship between increased
PSMA4 expression and increased AAs risk (OR =
1.93, 95% CI: 1.54—2.41). Therefore, PSMA4 antago-
nists may be a novel strategy to reduce the risk of
AAs. However, it is important to consider side
effects and other alternative indications in drug
development studies. Hence, we assessed the causal
relationships of genetically proxied inhibition of
PSMA4 on 18 potentially modifiable risk factors and
13 additional diseases.

We did not observe clear evidence of an association
between the genetically proxied antagonistic effect of
PSMA4 and a range of lipid subclasses, blood pressure,
and glycaemic outcomes (p<0.0016 [I[VW], 0.05/31 out-
comes, Figure 3a). However, genetically proxied PSMA4
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Identifying druggable genes

Instrument selection

4,302 drug targets from 20,000+ genes in human

v

cis-eQTLs data from eQTLGen Consortium in 31,884 blood samples

Inclusion criteria: FDR<0.05, F-statistic > 10, p > 5E-08 with outcome

Aortic aneurysm risk

Mendelian randomization

Discovery cohort
from UK Biobank

Replication cohort
from FinnGen R6 release

v

11 drug targets with significant
MR results (p<1.90E-05)

v

4 drug targets replicated (p<0.0045)

v

Colocalization

2 drug targets PP.H4>0.8

— T~

Follow-up analysis

pQTL analysis

Safety aspects and

» Sun et al. datasets
» Emilsson et al. datasets
» Ferkingstad et al. datasets

alternative indications analysis

= 18 Cardiometabolic traits
» 13 Cardiometabolic diseases

Figure 1. Overview of the study design in our Mendelian randomization study.

Genes UK Biobank cohort FINNGEN cohort
SNPs OR (95% CI) Ivw MR-Egger Egger SNPs OR (95% CI) vw MR-Egger Egger
p-value intercept intercept p-value intercept intercept
p-value p-value
BTN3A1 17 0.75 (0.66—0.85) 5.51E—06 0.001 0.96 17 0.87 (0.80—0.95) 1.78E—03 0.002 0.93
FASN 20 1.24(1.12—-1.36) 1.40E-05 0.04 0.22 20 0.88 (0.82—0.95) 9.01E—-04 —0.007 0.77
PLAU 10 1.73(1.42—-2.11) 6.29E—08 0.06 0.11 1 142 (1.23—-1.63) 8.91E—-07 0.017 0.51
PSMA4 8 1.93(1.54—2.41) 8.53E—09 0.08 0.18 7 1.33(1.12—1.59) 1.36E—03 0.05 0.46
Table 1: Mendelian randomization results.

inhibition was weakly associated with body mass index (p

= 0.003 [IVW]), HDL-C (p = 0.03 [IVW]), LDL (p = 0.04
[[VW]) and Hip circumference (p = o0.03 [[VW]). To
gain the potential independent associations of
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PSMA4 with AAs risk, we performed multivariable
MR analysis and the result show that there appear to
be independent associations between PSMA4 and
AAs risk (p = 6.6E—3 [IVW]).
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Figure 2. Regional Manhattan plot of associations of SNPs with PSMA4 and PLAU locus. (a) rs931794 was used to proxy serum
PSMA4 expression. (b) rs931794 and its flanking 400 kb region to either side in aortic aneurysms. (c) rs2227551 was used to proxy
serum PLAU expression. (d) rs2227551 and its flanking 400 kb region to either side in aortic aneurysm.

For cardiometabolic diseases, genetically predicted
PSMA4 inhibition was significantly negatively associ-
ated with heart failure (OR = 0.89, 95% CI: 0.84—0.94,
p =3.92E—o05 [IVW]), abdominal aortic aneurysm (OR =
0.53, 95% CI: 0.4—0.7, p= 9.26E—06 [I[VW)), and intra-
cranial aneurysm (OR: 0.53, 95% CI: 0.43—0.65, p =
3.57E—09 [IVW]) (Figure 3b). Furthermore, the associa-
tion between PSMA4 and abdominal aortic aneurysm
and intracranial aneurysm was confirmed by colocaliza-
tion (PPH4>0.80, Table Sg). We also use multi-trait
colocalization analysis to distinguish causality from
eQTL for PSMA4, abdominal aortic aneurysms, and
intracranial aneurysms. The results show there was
strong evidence (PPA = 0.999, Table S10) at eQTL for
PSMA4, aortic aneurysms, and intracranial aneurysms.

To explore the possible relationship between PSMA4
and AAs risk, we detected the protein level in aortic tis-
sues in AAD patients and found the expression of
PSMA4 was significantly upregulated in patients
(Figure 3c). At the single-cell level, PSMA4 is widely
expressed in the blood (like monocytes, B cells, T cells,
and Natural killer cells, https://atlas.fredhutch.org/
nygc/multimodal-pbmc/) and aortic tissue

(macrophage, smooth muscle cells, endothelial cells,
and fibroblast, https://singlecell.broadinstitute.org/sin
gle_cell/study/SCP1265/deep-learning-enables-genetic-
analysis-of-the-human-thoracic-aorta) (Figure S1a-d).

Additionally, many approved drugs that targeted the
208 proteosome had been widely used in clinical, such
as carfilzomib and Bortezomib, but the number of mol-
ecule compounds that targeted PSMA4 is small (Table
S1).

PLAU
PLAU was another druggable gene that passed the sig-
nificance threshold in the colocalization analysis, and
we further investigated plasma protein levels using
pQTL data. Two cis-pQTL related to plasma u-PA
(rs2227564"7 and rs2227551'""%) were identified (Table
S12). Using cis-pQTL we found that u-PA levels were
consistently positively associated with AAs risk
(Figure 4a), which was in line with the eQTL results.
Additionally, no significant association between
genetically proxied inhibition of PLAU and cardiometa-
bolic disorder risk was detected (Figure 4b), but
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Figure 3. Associations between genetically predicted PSMA4 and other cardiovascular conditions. Forest plot mendelian randomi-
zation effect estimates and 95% confidence intervals for the genetic proxied antagonistic effect of PSMA4 and 18 cardiometabolic
disorders (a) and 13 diseases (b) analysed. OR: odds ratio. 95% Cl 95% confidence interval. (c) Representative Western blot analysis
and quantification (d) of PSMA4 in aortic tissues, Mann-Whitney test, **p<0.01.

genetically proxied PLAU inhibition was weakly asso-
ciated with ApoA1 (p = 0.005), ApoB (p = o.01), and
Lp(a) (p = o.o1) (Figure 4b). We also conducted mul-
tivariable Mendelian randomization to adjust the
potential confounders (ApoA1, ApoB, and Lp(a)) and
found a significant association between PLAU and
the risk of AAs (p = 1.3E-04) after adjusting the
potential confounders.

Based on SNPs, we did not identify any associations
between the plasma concentrations of PLAU and com-
mon diseases, including stroke, cardiovascular diseases,
diabetes, chronic kidney disease, and intracranial aneur-
ysms, except for abdominal aortic aneurysm (OR =
0.46, 95% CI: 036-0.59, p = 119E-09 [IVW)])
(Figure 4c), the causality of which was strengthened by
colocalization analysis (PP.H4 = 0.98, Table So).

Furthermore, we also detected the protein level of u-
PA in aortic tissue and human plasma, and found a
higher expression in patients, indicating the level of u-
PA is associated with AAs risk (Figure 4d-f). In the
peripheral blood mononuclear cell, PLAU is mainly
expressed in CD14 positive monocytes, but in aortic tis-
sue, we find macrophage could express PLAU mainly,
and so does smooth muscle cell, endothelial cell, and
fibroblast (Figure Sid-e).

Currently, many molecule compounds targeted at
PLAU were in experimental, and uPA Inhibitor WX-
UK1 is being evaluated in clinical trials for advanced
malignancies (Table Si1). Amiloride, a potential
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inhibitor of PLAU, has already been approved for hyper-
tension (Table S13).

Discussion

To explore putative druggable genes that might protect
against AA, we performed a large-scale Mendelian ran-
domization analysis by integrating GWAS datasets, the
drug genome, and gene expression data (eQTL and
pQTL). This analysis used 5886 patients with AA and
653,472 control individuals. Our results indicate that
lifelong, naturally randomized, genetically proxied inhi-
bition of PSMA4 and PLAU was significantly associated
with a lower risk of AA. However, few associations sup-
port genetically proxied PSMA4 and PLAU inhibition
with enhanced risks of other metabolic disorders and
cardiovascular diseases.

PLAU, a urokinase-type plasminogen activator, enco-
des a secreted serine protease, u-PA, that mediates the
conversion of plasminogen to plasmin. Active plasmin
is critical for cleaving fibrin into soluble peptides and
clearing fibrin overlay.>® In our study, rs2227551, which
was associated with PLAU gene expression, was also
associated with AAs risks (UK Biobank: OR = 1.14, p =
1.9E—o04; FinnGen: OR = 1.09, P = 3.3E—04). On the
other hand, there was strong evidence of colocalization
between rs2227551 and AAs (PPH4 = 0.93), and this
cis-pQTL is likely to alter plasma u-PA levels. We also
performed a phenome-wide scan of GWAS for
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Figure 4. Associations between genetically predicted PLAU and other cardiovascular conditions. (a) forest plot showed genetically-
predicted protein expression of PLAU is associated with aortic aneurysms risk. (b-c) Forest plot mendelian randomization effect esti-
mates and 95% confidence intervals for the genetic proxied antagonistic effect of PLAU and 18 cardiometabolic disorders (b) and
13 diseases (c) analysed. OR: odds ratio. 95% Cl 95% confidence interval. (d) Representative Western blot analysis and quantification
(e) of u-PA in aortic tissues, Mann-Whitney test, **p<0.01 (e) Quantification of u-PA in human plasma, Mann-Whitney test,

**%p <0.001.

rs2227551, and the variant was not strongly associated
with other risks that could affect the risk of AAs, indicat-
ing that this variant is unlikely to exhibit widespread
horizontal pleiotropy.

Additionally, plasmin plays a crucial role in extracel-
lular matrix (ECM) degradation (such as collagen type
IV and fibronectin), matrix metalloprotease (MMP)
zymogen activation (MMP-9 and MMP-12), inflamma-
tion regulation, and various growth factors (TGF-g and
VEGF),””** which have also been implicated in the path-
ogenesis of AA. In our study, we found that PLAU
played a vital role in AA formation. Previous studies
have demonstrated that the level of u-PA is elevated in
the aneurysmal segment of the abdominal aorta of
angiotensin (Ang) Il-induced ApoE/~ mice and
increased expression of u-PA is also observed in human
abdominal AA.9"* Additionally, ApoE~/~ Plau™/~
knockout mice protect against aneurysm formation in
Ang Il-induced aneurysms with or without pre-existing
hyperlipidemia and atherosclerosis.**#* Inflammatory
cells, particularly macrophages, were the major source
of increased u-PA in the aneurysmal tissue. It has been

reported that u-PA plays an important role in promoting
vascular inflammation by activating cytokines and
MMPs (MMP-2 and MMP-g), which might degrade
elastin directly or other ECM components indirectly.*?
In PLAU-deficient mice, cell migration, including mac-
rophages and foam cells, was also reduced in the
injured vessel walls.*?

Therefore, it has been hypothesized that inhibition
of PLAU (or u-PA) could be an effective treatment for
AA. Plasminogen activator inhibitor-1 (PAI-1) is a pri-
mary endogenous inhibitor of uPA. Both male and
female Pai-1~/~ mice had significantly larger aneur-
ysms. However, local delivery of the Pai-1 gene
completely prevented aneurysm formation and expan-
sion in the early stage by decreasing inflammation and
MMPs activity in Ang Il-induced abdominal AA in
ApoE~/~ mice. 4445

PSMA4 encodes a proteasome subunit that plays a cen-
tral role in regulating inflammation, signal pathway trans-
duction, and stress response. Proteasome dysfunction
leads to many cardiovascular diseases, including cardio-
myopathies, heart failure, and atherosclerosis.*>*’ In

www.thelancet.com Vol 83 Month , 2022
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aneurysms, proteasome peptidase activity was increased in
both human and mouse abdominal AA tissue, which
could be inhibited by bortezomib, a potent, selective inhib-
itor of the chymotrypsin-like activity of the 20S protea-
some. Additionally, studies have demonstrated that low-
dose bortezomib injection appeared to reduce MMP activ-
ity, smooth muscle cell phenotypic switching, and elastin
degradation, resulting in the attenuation of aneurysm for-
mation.** Our MR analysis suggested that PSMA4, a
mediator of cell proliferation and apoptosis,*® was consis-
tently associated with AAs (p<1.90E—j3).

Proteasome inhibitors are widely used to treat malig-
nancies but are also known to have unavoidable side
effects, especially cardiovascular toxicity. Carfilzomib is
associated with congestive heart failure and myocardial
ischemia, but bortezomib shows better safety in the
heart’° Our findings did not show an association
between genetically predicted inhibition of PSMA4 and
cardiovascular risk. However, contrary to expectations,
it was inversely associated with heart failure. Further
studies are required to assess any moderating effects.

As they enlarge, AAs is life-threatening if undiag-
nosed or neglected. With considerable progress in the
molecular mechanisms of AAs, pharmacological treat-
ments, such as beta-blockers, losartan, statins, antiplate-
let agents, and metformin, have made progress in
recent years.”' >* Owing to side effects and inconsistent
clinical trial results, it is important to investigate other
potentially effective and safe therapeutic targets. To
ensure credible results obtained from MR analysis, Bon-
ferroni correction for multiple testing was applied to
reduce the risk of false-positive results. We used several
pleiotropy-robust MR methods and outlier detection to
rigorously decrease the possibility that the findings
were not biased due to pleiotropy. Additionally, pQTL
was used as a proposed instrument to validate our
results. Due to limited genetic studies on protein levels,
we only found pQTL for PLAU and validated that PLAU
protein levels were consistently positively associated
with AAs risk.

Individuals of European ancestry are always considered
homogenous, but in our study, of the 11 drug targets identi-
fied in the UK Biobank cohort, only 4 are successfully repli-
cated in the FinnGen cohort, suggesting poor portability
within individuals of European ancestry. Previous ancient
human genome studies have reported that present-day
Europeans could drive from three mainly differentiated
sub-population, including ‘hunter-gatherer-related’ ances-
try, ‘northwestern-Anatolian-Neolithic-related’” ancestry,
and ‘steppe-related’ ancestry. Although they share a com-
mon genome of European ancestry, we recommend the
role of different sub-population should be paid more atten-
tion to in the future.

This study had several strengths. Firstly, it is well-
known that the process of novel drug development
always takes a very long time, is extremely expensive,
and considers a high failure rate. We focused our
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research on druggable genes to improve the efficacy,
safety, and drug development success in AAs and found
two drug targets (PLAU and PSMA4) associated with AAs.
Further, we listed some targeted small molecule inhibitors
under development currently, which at least pointed the
way forward for the future drug development of these tar-
gets. Secondly, we also conducted a wide-angled MR analy-
sis to identify the potential safety aspects and alternative
indications, which was important if they might be used
clinically someday. Thirdly, those two proteins were found
associated with the risk of aortic aneurysms in our popula-
tion-based studies as well.

This study had several limitations. First, it is difficult
to completely exclude the potential influence of direc-
tional pleiotropy. The diagnosis of AAs was a little dif-
ferent between the UK Biobank cohort and the
FinnGen cohort, which could result in poor portability
of our study. Second, the examination of side effects in
our study is confined to cardiovascular outcomes, more
particular attention should be paid to systemic adverse
reactions in the future. Third, clinical trials are needed
to evaluate their efficacy and safety for the early manage-
ment of AAs. Fourth, syndromic aneurysms have differ-
ent etiologies for AAs, and we evaluated the outcomes
of PLAU and PSMA in these patients. Fifth, PSMA4
has a strong association with smoking, which is a
risk factor for AAs. Further special attention should
be paid in non-smoking patients to minimize the
potential pleiotropic effect. Finally, the study popula-
tion was restricted to individuals of European ances-
try; therefore, the insights gained cannot be
extended to other ethnicities.

In conclusion, this study supports that targeting
PLAU and PSMA4 can reduce the risk of AAs. How-
ever, randomized trials need to be conducted to evaluate
the efficacy and safety of the prevention of AAs.
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