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The trillions of microorganisms that reside in the gastrointestinal tract, essential for 
nutrient absorption, are kept under control by a single cell barrier and large amounts of 
immune cells. Intestinal epithelial cells (IECs) are critical in establishing an environment 
supporting microbial colonization and immunological tolerance. A large population 
of CD8+ T cells is in direct and constant contact with the IECs and the intraepithelial 
lymphocytes (IELs). Due to their location, at the interphase of the intestinal lumen and 
external environment and the host tissues, they seem ideally positioned to balance 
immune tolerance and protection to preserve the fragile intestinal barrier from invasion 
as well as immunopathology. IELs are a heterogeneous population, with a large innate-
like contribution of unknown specificity, intercalated with antigen-specific tissue-resident 
memory T cells. In this review, we provide a comprehensive overview of IEL physiology 
and how they interact with the IECs and contribute to immune surveillance to preserve 
intestinal homeostasis and host-microbial relationships.

Keywords: mucosal immunology, intraepithelial lymphocytes, inflammatory bowel disease, CD8+ T-lymphocytes, 
epithelial cells

iNTRODUCTiON

The intestinal epithelia are a single cell layer of large surface. Together with a mucus layer, the epithe-
lia form a dynamic physical barrier between the host and its environment. Estimates are up to 100 
trillion microorganisms, including pathogens, have made the gastrointestinal tract their home (1), 
which makes the intestine the largest potential port for microbial invasion. However, a proportion 
of the microorganisms in the intestine can contribute to the hosts’ health and immunity. These 
commensal bacteria compete for resources with pathogenic microorganisms and provide metabolic 
capacity to digest food products by generating important compounds (e.g., vitamin K) or by assisting 
other microorganisms with supportive roles. The delicate nature of the single cell epithelial barrier, 
the essential function of the gastrointestinal tract to absorb nutrients and liquids, and the balance to 
maintain beneficial microbes, while offering protection against invasion and avoiding tissue damage, 
requires an effective and robust, yet tolerant, immune system.

The intestinal immune surveillance network is an integrated part of the organ, which enables it to 
swiftly pick up cues regarding its health status and contributes to tissue homeostasis as well as repair. 
Immune surveillance links rapid activation of innate immune cells to the more delayed recruitment 
of adaptive immune cells (2), ultimately resulting in immunological memory. Part of the innate sys-
tem is the intestinal epithelial cells (IECs) themselves as well as classical innate immune cells. Mostly, 
macrophages, monocytes, and dendritic cells (DCs) migrate to the intestine from the bone marrow 
via blood (3). Following infection, interactions between antigen presenting cells and lymphocytes 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01281&domain=pdf&date_stamp=2017-10-11
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01281
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:marc.veldhoen@medicina.ulisboa.pt
https://doi.org/10.3389/fimmu.2017.01281
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01281/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01281/abstract
http://loop.frontiersin.org/people/482970
http://loop.frontiersin.org/people/482967
http://loop.frontiersin.org/people/444951
http://loop.frontiersin.org/people/23879
http://10.13039/100010661


2

Konjar et al. CD8+ T Cell Intestinal Immunity

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1281

can take place in specialized structures, unique to the intestine, 
such as isolated lymphoid follicles and Peyer’s patches (4).

T-lymphocytes recognize foreign particles (antigens) by 
their surface expressed T cell receptor (TCR). With each T cell 
expressing a nearly unique TCR, collectively T cells can recog-
nize nearly all foreign antigens. From the two major types of 
T cells found in blood and secondary lymphoid organs (SLO), 
CD4 expressing helper T (TH) cells are generated in the thymus 
as precursors without a defined function. They recognize anti-
gens presented in major histocompatibility complexes class II 
(MHCII) after processing by antigen presenting cells. TH cells 
have an important orchestrating role, differentiating into effec-
tor cells with distinct supportive functions in type 1 (TH1), type 
2 (TH2), and type 3 (TH17) immunity and high levels of flexibility 
(5, 6). Specialized regulatory T cells can curtail responses and 
form part of a carefully balanced immune system (7). CD8 
expressing cytotoxic T  cells similarly derive from the thymus 
as naive cells. They mainly recognize antigens resulting from 
the target cells’ transcriptional machinery and degradation of 
cytosolic proteins by the proteasome presented in MHCI, such 
as those resulting from viral infections as well as intracellular 
bacterial infections. Upon encountering their cognate antigen, 
CD8+ T cells differentiate into effector cells, classically thought 
to be part of type 1 immunity due to their high potential for 
interferon (IFN)γ production.

The maintenance of effector T  cells is metabolically costly. 
Rapidly dividing cells require large amounts of energy for the 
production of cellular building blocks and secretion of effector 
molecules. These cells can potentially contribute to chronic 
inflammation and immunopathology. To avoid such possible 
danger and energy expense, the majority of effector cells undergo 
apoptosis after pathogen clearance, re-establishing homeosta-
sis. Yet, some persist as memory cells, providing protection 
against re-infection. Memory CD8 T  cells are a heterogeneous 
population, varying in phenotype, function, and localization (8) 
(Figure 1). This facilitates a swift and tailored response to a broad 
array of potential insults. In addition, the intestinal immune 
system has another important population of specialized CD8+ 
T-lymphocytes known as intraepithelial lymphocytes (IELs) 
(9). Intriguingly, IELs have characteristics of naive, effector, and 
memory cells require bidirectional cross-talk with IECs (10) 
(Figure 1), with one murine IEL estimated to be present for every 
4–10 IECs (11, 12).

Aberrant immunity has severe consequences, especially in 
the intestine where a single epithelial cell layer forms the barrier 
between the host and a very high amount of microorganisms. 
Immunity against commensal bacteria can result in chronic 
inflammation, such as observed in inflammatory bowel diseases 
(IBDs). In this review, we focus on CD8 expressing T cells, par-
ticularly IELs, which, located in the very top layer of the intestinal 
barrier, are ideally positioned to monitor the intestinal micro-
biota. They may contribute to modulating immunity toward 
microbes as well as immunopathology, and are involved in tissue 
homeostasis and epithelial repair. We will discuss some of the 
properties of IELs and speculate on their role in the intestinal 
immune surveillance network.

Conventional CD8 T Cells
The initiation of an adaptive immune response requires several 
myeloid and lymphoid cell types. These cells need to be brought 
together and act in a strictly orchestrated manner in time and 
space to license immune cell activation (13). Critical interactions 
are those between antigen presenting cells, especially DCs and 
T  cells (14). In order to become fully activated, naive T  cells 
require signaling through TCR (signal 1) as well as costimulatory 
receptors (signal 2), such as CD28 and CD40. Additional cues 
(signal 3) provide inflammatory context and involve cytokines 
and chemokines (15, 16).

During the initiation phase, naive CD8+ T cells rapidly prolif-
erate and differentiate into cytotoxic T-lymphocyte effector cells 
thereby gaining the ability to kill target cells by releasing perforin 
and granzymes, and secrete large amounts of cytokines, such as 
tumor necrosis factor (TNF) and IFNs (17) (Figure 1). The rapid 
proliferation during the expansion phase ensures that a limited 
number of precursor cells can counter infectious agents. Effector 
cells migrate to most tissues in the body to ensure the removal of 
all infected cells and pathogens (18). However, such a response 
cannot be sustained and proximally 95% of effector cells die in a 
contraction phase upon pathogen clearance (19).

A limited number of cells develop into memory cells, return-
ing to a state of quiescence with slow cell turn over and effector 
molecule transcription. Despite this they are able to rapidly 
reactivate, proliferate, and express effector molecules upon 
reencounter with a similar pathogen (18, 20–23). How memory 
T  cells develop remains incompletely understood. There are 
different signals influencing T cells upon and after encountering 
their cognate antigen that influence the size and quality of the 
T cell memory pool (8).

Three subtypes of memory T  cells are recognized, they are; 
effector memory (TEM) T  cells, central memory (TCM) T  cells  
(18, 24, 25), and tissue-resident memory (TRM) cells expressing 
CD69 and CD103 (26–29) (Figure 1). Differences in cell locali-
zation, recall ability, and effector functions provide intersecting 
levels of protection against re-infection (30). Memory cells found 
circulating through blood, lymph, and SLO are referred to as 
TCM cells and express CD62L and CCR7, which enable entry in 
lymphoid organs and circulation (31–34). Those cells primarily 
found in non-lymphoid tissues are TEM cells (18, 22).

Although migration of T cells is a pillar of successful immune 
defense, experiments using defined tissue grafts from ganglia, 
skin, and intestine as well as the use of parabiosis have defined 
a residential population of memory T cells (27, 35–37). At epi-
thelial barrier sites such as the skin, lungs, reproductive organs, 
and gastrointestinal tract, a unique memory population is found; 
TRM cells. These cells share characteristics with TEM cells, express-
ing CD44 and low levels of CD62L (Figure 1). They are found 
at the initial site of infection, providing very regional immune 
surveillance and protection against re-infection (35, 38, 39), and 
do not recirculate (40). The discovery of TRM cells and subsequent 
detailed analysis have resulted in a paradigm shift that most 
memory T cells are an integral part of non-lymphoid tissues (41). 
But, these cells did not settle on empty ground to fill a previously 
non-existent niche. TRM cells compete, successfully, with innate or 
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FigURe 1 | The relationships between CD8+ T cell populations in the small intestine. Naive CD8+ T cells (top left) are maintained in a quiescent state within their own 
compartment under homeostatic control. They mainly circulate through the secondary lymphoid organs (SLO). Upon encountering antigen, T cells are primed, 
acquire cellular building blocks such as lipids, and express CD69. Thereafter, they undergo rapid proliferation and express CD25 [high affinity interleukin (IL)-2 
receptor], cytokines such as tumor necrosis factor (TNF) and interferon (IFN)γ and can release cytolytic factors, as effector T cells. Large proportions or effector 
T cells will die by apoptosis. Memory cells are derived from primed or effector T cells of which three subsets are distinguished; central memory T cell (TCM) that is 
present in the SLO, effector memory T cells (TEM) that are circulating and rapidly acquire effector functions and tissue-resident cells (TRM) in tissues, especially barrier 
sites, such as the skin and intestine. All memory cells rely on IL-15 for their maintenance. At barrier sites TRM cells compete with natural intraepithelial lymphocytes 
(IELs), both maintained in a semi-activated state expressing CD69 and CD103 and metabolically charged.

3

Konjar et al. CD8+ T Cell Intestinal Immunity

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1281

innate-like lymphocytes, which are already present at the original 
site of infection (39).

intraepithelial Lymphocytes
A variety of innate or innate-like lymphoid cell types reside in tis-
sues, including natural killer (NK) cells, innate lymphoid cells, and 
T cells expressing the γδ TCR chains (γδ T cells), homodimers of 
CD8α or a semi-invariant TCRαβ such as NKT cells, and mucosal 
associated invariant T  cells. The top layer of the epithelia, in 
murine and human intestine as well as murine skin, contains large 
populations of such innate-like T cells within the IEL population.

Intestinal IELs express the prototypical tissue-resident integrin 
CD103 (integrin αE), with which they interact with IECs (10), as 
well as C-Type lectin and early activation marker CD69, and the 

NK cell inhibitory receptor 2B4 (CD244) (42). Antibody stain-
ing for CD8α, CD69, and CD103 in lymphocytes sourced from 
the intestinal intraepithelial fraction provides a homogenous 
cell population (42). However, IELs can be divided into subsets 
based on their activation mechanism and on the antigens, which 
they may recognize. Induced or adaptive IELs are derived from 
conventional CD8αβ T cells, which recognize non-self antigens 
in the context of MHCI. They home to the intestinal barrier upon 
encountering their cognate antigen in the intestine as TRM cells 
(9, 43). Induced IELs accumulate with age (44), replacing natural 
IELs (39).

Natural or innate-like IELs also originate in the thymus 
where they acquire homing factors and identity upon selection 
on self-antigens and seed the intestine as a precursor population 
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(45–51). They express CD8αα homodimers, in contrast to con-
ventional CD8αβ T cells (52) (Figure 1). They express either the 
conventional αβ TCR or the non-conventional γδ TCR. In the 
small intestine around 60% of all IELs express TCRγδ, in marked 
contrast to SLO in which γδ T cell represent less than 1% (53). 
In humans, natural IELs predominantly express TCRVδ1 with a 
contribution from TCRVδ3, the majority of which express CD8 
(54, 55). In contrast to murine cells, human γδ T cells may process 
and present antigen (56).

Contrary to T cells found in SLO and in line with TRM cells, 
IELs do not circulate through blood and lymph and are tissue-
resident (57). IELs seem to respond to a broad range of inflam-
matory cues, but the precise identity of these signals remains 
unknown. They modulate epithelial cell homeostasis and local 
immune responses by targeting other immune cells, viruses, 
and bacteria (9, 58, 59). The majority of IELs hold cytoplasmic 
granules containing large amounts of granzymes, cytokines, and 
chemotactic factors (42, 43, 60–62). At the first sight, the cyto-
toxic properties of IELs suggest, they can cause damage to the 
epithelial barrier by powerfully attacking infected cells, particu-
larly IECs (63). However, IELs are well adapted to the intestinal 
environment in order to survive and perform their functions in 
protecting the delicate epithelial layer. In recent years, several 
studies of IELs have revealed distinct characteristics regarding 
their maintenance, activation, and contribution to the host 
immune response to preserve a healthy epithelial barrier.

Maintaining ieLs
Intraepithelial lymphocytes develop pre-birth, occupy the epithe-
lia before microbial colonization, and play an important role in 
immune protection during early life (64). It remained debatable 
for a considerable time if natural IELs take up residence at the 
intestinal epithelia as precursor naive-like cells or as antigen-
experienced memory-like CD8+ T cells poised for activation or 
reactivation. The later would suggest that a priming step may be 
required, post-thymic development in the SLO, before seeding 
in IEL compartment. Transcriptional analysis, comparing IELs 
harvested under non-inflammatory conditions with memory 
CD8+ T  cells, revealed paradoxical findings of their activa-
tion status (42, 43). IELs constitutively express transcripts of 
genes associated with activated cytotoxic T  cells [granzyme A, 
granzyme B, serglycin, Fas ligand (FasL), and CCL5]. Yet, at the 
same time, IELs highly express transcripts of genes involved 
in immune regulation. These include cytotoxic T-lymphocyte 
associated protein 4, Ly49E-G, the NK  cell inhibitory receptor 
Ig superfamily-related gp49B, and programmed cell death 1 (42). 
Factors involved in microbe-toxicity, such as regenerating islet-
derived protein 3 gamma (Reg3γ), are readily detected in IELs 
under steady state conditions (65). In addition, several transcripts 
have been translated, and proteins are present and stored in secre-
tory vesicles, e.g., granzymes (66). IELs home are retained in a 
poised activation state in mice lacking most secondary organs 
(67, 68), suggesting priming in secondary organs for natural IELs 
is not essential and the IEL activation status may be maintained 
by factors in the local epithelial environment.

Natural IELs are present in axenic mice. However, reduced 
numbers (of induced IELs) and decreased cytotoxicity of IELs 

from germ-free mice indicate that signals from the microbiota or 
other environmental stimuli are required to maintain intestinal 
CD8+ T cells and their function (51, 69, 70). The ligand activated 
transcription factor, arylhydrocarbon receptor is critical for IEL 
maintenance (59, 71). Of interest, the provision of ligands can be 
achieved via food intake, especially green vegetables, and may 
also be obtained from the microbiota (59, 72). Curiously, 30–50% 
of IELs from conventional standard pathogen-free mice express 
the marker Thy1 (CD90), but those found in axenic mice do not. 
Colonization of germ-free mice results in the generation of Thy1-
expressing IELs (69), but as yet no functional differences have 
been attributed to the expression of Thy1.

Intraepithelial lymphocyte maintenance and activation also 
critically relies on interactions between IECs and microorgan-
isms. Myeloid differentiation primary response gene 88 (MyD88), 
the adapter protein used by many toll-like receptors (TLRs), 
interleukin (IL)-1R, and IL-18R activate the transcription factor 
nuclear factor-κB, is required for IEL maintenance via the pro-
duction of IL-15 (65, 73) (Figure 2). IL-15 production signals via 
the type 1 transcription factor, Tbox expressed in T cells (Tbet) 
to maintain IEL precursors (51). TLR2 may be at least one of 
the pattern recognition receptors involved in IEL maintenance, 
via IL-15 induction, its absence resulting in marked reduction 
of intestinal IELs (74, 75). Although IL-15 may be induced by 
microorganisms, they may not be essential for its production as 
axenic mice have reportedly higher levels of Il15 transcripts, and 
no differences in numbers of natural IELs were observed (51). 
Nucleotide-binding oligomerization domain-containing protein 
(NOD)2, an intracellular sensor for microbial products has also 
been shown to be important for IEL maintenance (76). IELs in 
NOD2-deficient mice show reduced proliferation and increased 
levels of apoptosis. Once again, NOD2 signaling, via recognition 
of gut microbiota, results in IL-15 production (Figure  2). Of 
inter est, NOD2 is able to tune the signaling of TLR2 dose depend-
ently (77). Although these results have been achieved using whole 
body knock outs for MyD88, TLR2, or NOD2, and therefore, the 
exact role of IECs remains to be determined, they indicate that 
microorganisms may play an important role in IEL maintenance.

ieL Activation Status
Due to the positioning of IELs just underneath the single epithe-
lial layer and their potential involvement in modulating intestinal 
pathology, the activation status of IELs is intensively studied. 
Transcriptional data of IELs foretells puzzling semi-activation 
of IELs that could enable them to deal with a broad range of 
pathologies quickly, with reduced requirement for immedi-
ate energy absorption and new gene expression (78). Unlike 
conventional CD8+ T  cells, IELs express high levels of Tnfsf6 
transcripts during steady state (42, 43), but do not express the 
encoding FasL protein on their surface until additional activation 
takes place (61). Despite their poised state and effector-like or TEM 
cell characteristics, IELs do not contain transcripts for cytokines, 
which they secrete during conditions of inflammation (43). This 
suggests IELs require additional cues to initiate part of their effec-
tor function capacity.

Understanding the activation properties of IELs is essential 
to gain insight into mechanisms of local immunity and events 
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FigURe 2 | Maintenance and activation of intraepithelial lymphocytes (IELs). (A) Commensal bacteria can contribute to IEL maintenance. Signaling via TLR2 and 
myeloid differentiation primary response gene 88 (MyD88) increases interleukin (IL)-15 production, an important survival factor for IELs. Antigen presenting cells, 
such as dendritic cells (DCs) or macrophages, also produce IL-15 in a NOD2 dependent manner. IL-15 is bound to the IL-15Rα on the producing cells, and is 
presented in trans to the IEL, which carry the IL-15Rβ/Cγ chain receptor complex, and signals via the transcription factor Tbx21. IL-7 and stem cell factor (SCF) are 
additional examples for IEC derived cytokines important for IEL survival, while arylhydrocarbon receptor expression (AhR) and tissue-specific factors, such as 
butyrophilin-like 1 (Btnl1), play an additional role in maintaining IELs. (B) Infections cause disruption or damage to the epithelial barrier. Dependent on the type of 
insult, IEC and DCs produce cytokines like thymic stromal lymphopoietin (TSLP), IL-10, IL-12, or SCF, thereby directing the type of immune response. Additional 
stimulation may be derived from IEL–IEL cross-talk, such as via OX40–XO40L interactions. IELs produce pro-inflammatory cytokines such as interferons (IFNs) and 
tumor necrosis factor (TNF), and cytotoxic factors such as Fas ligand (FasL) and granzymes, as well as antimicrobial peptides (AMPs) to contain the infection and 
contribute to wound healing and restoration of homeostasis by secreting growth factors such as KGF. Aberrant IEL activation and potentiation by cytokines might be 
involved in the development of chronic inflammation and IBD.
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associated with tolerance, chronic inflammation, and immunopa-
thology. Intestinal mucosa resected from patients with IBD (79) 
or celiac disease (80) contains increased numbers of activated 
T cells, a hallmark of intestinal inflammatory disorders (81). Yet, 
in a chemically induced colitis model, dextran sulfate sodium, 
2,4,6-trinitrobenzene sulfonic acid (TNBS) or T  cell transfer 
colitis, and IELs were found to be protective (60, 76, 82–84). 
This raises questions regarding the role of IELs in the intestinal 
immune network, whether they can, at least in part, contribute 
to chronic inflammation and pathology, or if they have a more 
tolerogenic or regulatory role. Furthermore, although cytotoxicity 
and microbicidal activity are an important part of IEL activity, it is 
not clear if their potential to produce cytokines and chemokines 
can be tailored to the level or identity the microbial threat.

Transcriptional data also suggested that IELs are metabolically 
prepared for swift action. IELs, compared with memory CD8+ 
T cells, contain increased levels of mRNA for metabolic enzymes, 
especially those involved in the generation of fatty acids and 
cholesterol esters (42, 43). In line with the expression of CD69, 
IELs seem arrested in a semi-activated state. Yet, in stark contrast 

to effector cells, IELs survive for a considerable period of time. 
For example, murine skin IELs are generated only during 
embryogenesis, but can be found throughout adult life and into 
old age. The skin and intestinal epithelia are lipid-rich, but avail-
ability of other nutrients may be limited (85). This may explain 
why skin TRM cells appear to use mitochondrial β-oxidation of 
exogenous lipids, mediated by intracellular transport proteins, 
including fatty-acid-binding protein-4 and -5, supporting their 
longevity and protective function (78). Similarly, natural IELs 
highly express surface molecules involved in lipid uptake, such 
as apolipoprotein E and low-density lipoprotein receptor (42). 
The increased presence of receptors and enzymes involved in 
lipid metabolism in IELs compared with conventional T  cells 
suggests that altered metabolic processes may be involved in 
maintaining their poised activation status. However, it remains to 
be determined if the increase in lipid metabolism sets IELs apart 
or if it reflects their semi-activated status, since recently activated 
conventional T  cells utilize the same pathways (86). Lipids are 
also required for the differentiation of CD8+ memory T  cells, 
the formation of which requires metabolic reprogramming 
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characterized by enhanced mitochondrial fatty-acid oxidation 
(87). Although, cell-intrinsic lipolysis is implicated in memory 
cell formation, suggesting the acquisition of fatty acids from the 
external environment is not critical, these lipids may have been 
obtained during the initial priming stage. These data imply that 
the metabolism of IELs reflects, in part, that of recently activated 
T cells and that lipolysis may be inhibited in IELs to arrest them 
in a poised activation status, thereby preventing progression to a 
quiescent memory status.

Role for the TCR in ieL Activation
The understanding of the role of the TCR on IEL development, 
differentiation, homing, and activation has long been hampered 
by the absence of a known selective or activating ligand. Recent 
work has identified tissue-specific ligands expressed in the 
thymus, driving the development and homing of either murine 
skin IELs or intestinal TCRγδ IELs, not peptide-MHC or lipid-
CD1 complexes, but the butyrophilin-like molecules skint-1 and 
butyrophilin-like 1 (Btnl1), respectively (88–90). The role of the 
TCRαβ expressed on natural CD8αα IELs remains unknown (91). 
The collective data from these studies strongly suggest that the 
TCRγδ is required for both thymic selection and imprinting of 
IEL identity as well as their maintenance in specific tissue niches. 
However, butyrophilins, part of the immunoglobulin superfamily 
[for detailed review see Rhodes et al. (92)], are, unlike MHC or 
CD1 molecules, not known to present ligands. Thus, it remains 
unclear if IELs are stimulated via their TCR or if they sense 
other cues, such as inflammatory, tissue damage or cell stress 
factors provided by IECs or accessory cells (93), or are under the 
influence of metabolic alterations as a result of cell damage or 
bacterial growth in the microenvironment which can enhance TH 
cell subset differentiation (94).

Agonist-driven positive selection of IELs in the thymus 
suggests that mature IELs at the epithelial barriers could subse-
quently be activated by specific TCR ligands. IEL TCR activation 
may be achieved by cell surface receptors, such as non-classical 
MHC molecules (95, 96). The parameters required for an agonist 
to activate IELs upon conditions of inflammation or tissue dam-
age exclude constitutively expressed surface molecules, such as 
skint-1 and Btnl1, unless a gradient reaching a critical activation 
threshold can be achieved. If an agonist able to activate IELs exists, 
it does not preclude direct IEL activation by microbial products 
such as observed for γδ T cells in both man and mouse (97–99). 
Such direct activation is commonly observed in conventional 
CD8+ T cells that have been pre-selected in the thymus and suc-
cessfully primed and expanded in the periphery. Reactivation of 
memory CD8+ T cells is readily achieved by cytokines and TLR 
ligands, resulting in secretion of IFNγ from polyclonal T cells that 
bridge innate and adaptive immunity (100). Similarly, peripheral 
γδ T cells can be directly activated by TLR ligands and combina-
tions of cytokines (99, 101).

Administration of anti-CD3ε antibodies, which directly 
stimulate the TCR signaling complex thereby bypassing TCR-
specific ligation, has often been used as a proxy to stimulate IELs 
in mice. However, its systemic activity, due to indiscriminate 
total T  cell activation in all tissues, results in “cytokine release 
syndrome,” increasing serum levels of IL-2, TNF, and IFNγ, and 

leading to intestinal phenotypes, such as diarrhea (102, 103). The 
small intestines from mice treated with anti-CD3 show increased 
epithelial ion transport, altered spontaneous muscle activity, and 
reduced IEC viability (104). The effect of anti-CD3 is rapid, with 
DNA fragmentation observed after 30  min in the areas most 
enriched with IELs, followed within hours by IEC shedding into 
the lumen (105). Similar effects on IEC viability were observed 
upon administration of anti-TCRγδ antibodies, but not with 
those stimulating TCRαβ (106). The effect on IEC shedding, 
however, was fully dependent on TNF receptor signaling and 
may not necessarily depend on IEL activation since conventional 
T cells can also secrete large amounts of TNF.

Following anti-CD3 stimulation, poised IELs acquire aspects 
of fully activated effector T  cells with higher expression of 
CD44, Ly-6C, OX40, FasL, and CD25 and reduced expression of 
CD45RB protein, accompanied by expression of cytotoxic media-
tors as well as cytokine transcripts (61, 107). Effects of anti-CD3 
on IEC viability appear to correlate well with the cytotoxic capac-
ity of IELs, especially since release of granzyme B is observed 
upon anti-CD3 stimulation (62). However, DNA fragmentation 
is independent of the pore forming protein perforin (62). This 
suggests that IECs are non-specifically targeted by their proximity 
to activated T cells or by their susceptibility to soluble mediators. 
The accumulative data postulate that in vivo activation of IELs 
can at least in part be achieved via TCR ligation. IEL activity can 
have a major impact on intestinal physiology, altering electrolyte 
balance and IEC viability. However, their potential to damage 
IECs markedly contrast with the requirement to maintain an 
intact single cell intestinal barrier to efficiently protect the host 
and questions if TCR stimulation accurately recapitulates the 
physiological role of IELs. IEC–IEL bidirectional interactions are 
instrumental to maintain IELs, but it remains unknown if IECs 
directly contribute to IEL activation and, if they do, what the 
identities of the activating cues are?

ieL Activation by Microbes
Commensal bacteria can invade tissues when opportunity arises. 
Such opportunities occur upon initial microbial invasion of 
new-borns before species-specific adaptive immunity has fully 
developed or when the host is immune compromised (108). 
Since, activating IELs may not require antigen processing or 
rely on presentation by MHC-like molecules, it remains possible 
that IELs recognize molecular patterns generated by bacterial 
non-peptide antigens or conserved unprocessed protein antigens 
produced by bacteria or released by epithelial cells upon damage 
or cell stress (109).

Invasion of pathogens or tissue damage could create the con-
ditions for commensal microorganisms to invade the intestinal 
tissues. Innate immunity relies on the detection of highly con-
served pathogen-associated molecular patterns (110). Receptors 
involved in the detection of invasion will respond to the microbial 
components present in both pathogen and commensal microor-
ganisms. But it has become clear that not all microorganisms 
evoke a similar response. Indicators of viability, such as the 
presence of prokaryotic mRNA invoke a much stronger immune 
response (111). The balance of immunity and tolerance at the 
epithelial interphase is also illustrated by the production of IgA, 
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the predominant antibody isotype critical at mucosal sites (112). 
IgA mainly coats pathogenic bacteria, which can confer colitis in 
axenic mice (113). IgA is a poor activator of the immune system; 
in line with the idea that strong immunity at mucosal sites is best 
avoided. IELs have been implicated in coordinating IgA response. 
TCRδ-deficient mice, harboring reduced IEL numbers, show 
reduced IgA levels in serum, saliva, and fecal samples. TCRδ-
deficient mice also produce much lower levels of IgA antibodies 
upon oral immunization (114).

Role for ieCs in ieL Activation;  
Co-stimulation
A requirement for co-stimuli or TH cell help is linked with 
the need for clonal expansion and differentiation, creating a 
significant delay in adaptive immunity. Immune surveillance by 
tissue-resident lymphocytes requires a swift response without 
prior cell expansion or differentiation, observed for γδ T cells and 
memory T cells, such as TRM cells (27, 115). This is in line with 
the hypothesis that the IEL response primarily serves to contain a 
potential threat, not necessarily resulting in microbe eradication 
or the establishment of immunological memory, thereby limiting 
microbial or toxin dissemination and keeping the single cell bar-
rier intact by avoiding intestinal pathology.

Homing of IELs to the small intestine seems consistent with 
oligoclonal activation by commonly encountered antigens. The 
poised activation status of IELs could ensure their rapid activation 
without the need for an array of instructive signals. IELs seem not 
to depend on signal 2, required for conventional T cell activation 
and protective immunity (116). CD28 as well as additional co-
receptors, such as CD2 and CD5, appear reduced or absent from 
IELs (43, 117–119). Furthermore, expression of MHC molecules 
or the costimulatory B7 proteins on at least keratinocytes is not 
required for activation of skin IELs (97). However, since the 
triggering of IELs could contribute to immunopathology, their 
activation is likely controlled on several levels, such as by signals 
derived from inflammation or tissue damage. The absence of a 
requirement for classic costimulatory signals for IEL activation 
suggests that close interactions with IECs play a prominent role.

OX40 (CD134, TNFRSF4) is expressed by activated T  cells 
controlling cell expansion (120), including IELs (121). Its expres-
sion correlates well with T cell activity observed in patients with 
IBD, active celiac disease, Crohn’s disease (CD), and ulcerative 
colitis (UC) (122, 123). In vitro activation of IELs with anti-
CD3ε antibodies results in the expression of both OX40 and its 
ligand (OX40L) (121). Of note, OX40L is not expressed upon 
activation of conventional T cells. Additional ligation of OX40 
seems to boost IEL activity and reduce the secretion of IL-10. 
This suggests that accumulation of IELs at sites of inflammation 
may alter their potential and that such co-stimulation may not 
necessarily depend on OX40L expression by IECs or myeloid 
cells (Figure 2).

Skin and intestinal IELs express the junctional adhesion-like 
molecule-1 (JAML-1), which provides co-stimulation upon liga-
tion with the coxsackie-adenovirus receptor (CAR) (124, 125). 
JAML signaling results in cytokine production from skin IELs and 
may provide additional context for full IEL activation, presumably 

as response to infection or tissue damage. However, the latter 
requires its expression to be regulated upon insult or microbial 
invasion, which remains to be determined. Furthermore, its liga-
tion by neutrophil-derived soluble JAML compromises intestinal 
barrier integrity and reduces wound repair through decreased 
IEC proliferation (126). Thus, the role of JAML—CAR in barrier 
defense remains to be clarified.

Role for ieCs in ieL Activation; Cytokines
Intestinal IELs can express receptors for TNF, leukemia inhibi-
tory factor, thymic stromal lymphopoietin (TSLP), stem cell 
factor (SCF; c-Kit ligand), transforming growth factor (TGF)β, 
IL-12, IL-15, and IL-21 (43, 127). TGFβ, most likely derived from 
IECs upon microbial stimulation, is required to maintain natural 
CD8αα IELs and to induce CD103 expression. The absence of 
TGFβ or its receptor results in markedly reduced numbers of 
IELs, while over expression increased the IEL population (50). 
How TGFβ influences IEL activity remains unknown.

Interleukin-15 plays a central role in maintenance of natural 
IELs and emphasizes the close interactions between IECs and 
IELs (128–131). IL-15 is presented in trans to IELs by epithelial 
cells, in the thymus, skin, and the intestine, which express both 
the IL-15Rα and IL-15 (132). IL-15R signaling induces the 
expression of anti-apoptotic molecules, Bcl-2 and Bcl-xL by IELs 
(133). The production of IL-15 is regulated, at least in part, by 
contact with microbial components. MyD88- and TLR2-derived 
signals are required for IEL maintenance via the induction of 
IL-15 production (65, 73, 75). TRM cells are similarly dependent 
on IL-15-mediated signals (134), whereby high levels of IL-15 
can TCR-independently trigger CD8+ T cells to become cytotoxic 
(135, 136). Upon IEC damage, IL-15 production increases (65), as 
observed during celiac disease, and correlates strongly with IEL 
activity (133, 137). IL-15 stimulation of IELs results in increased 
IFNγ and TNF production, granzyme-dependent cytotoxicity, 
NK receptor expression, and increased survival (138). Of note, 
the increase in IL-15 production in conjunction with additional 
cues, such as retinoic acid can stimulate DCs, thereby inducing 
the secretion of pro-inflammatory factors and indirectly activate 
IELs. IL-15 induces the secretion of IL-21 by IELs, observed 
in celiac disease, which may be part of a self-sustaining feed-
forward loop as observed in Th17 cells, enhancing IEL activation 
and cytotoxicity (139, 140).

Another important cytokine involved in T cell homeostasis is 
IL-7 (141). It is secreted by non-hematopoietic cells, especially 
thymic and IECs, with enhanced expression observed upon tissue 
damage (142–144). IEL development requires IL-7R signaling in 
the thymus, but local IL-7 expression by IECs can restore the 
γδIEL subset, not other γδ T cell subsets, suggesting extrathymic 
development or maturation of γδIELs may take place in the 
intestinal compartment (51, 142, 145). The use of acute IL-7 
reporter mice indicates that production of IFNγ by T cells, such 
as IELs, can modulate the level of IL-7 and IL-15 produced by 
IECs, thereby regulating IEC homeostasis, absorptive function as 
well as the composition of the microbiota (144, 146). Vice versa, 
IEC derived IL-7 can regulate IEL survival and proliferation, 
particularly induced CD8αβ IELs (147). Overexpression of IL-7 
results in lymphoid expansion and colitis (148).
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Intestinal epithelial cells show a basal production of TSLP 
that is important for host protection during helminth infections 
(149). Similar to IL-15, TSLP receptor stimulation of CD8+ T cells 
enhances expression of Bcl-2 (150), and may play a role in IEL 
survival. TSLP seems to enhance type 2-mediated immunity 
(Figure 2). Upon TSLP encounter, IECs and DCs produce IL-10 
and reduce IL-12 production, thereby reducing type 1 immunity 
(151). IELs are known to be able to secrete IFNγ and loss of 
intestinal integrity results in IEC-produced IL-12 (152), the pro-
totypical driver of type 1 immunity. In the absence of TSLP, mice 
are more susceptible to colitis and have increased levels of IFNγ 
producing cells. Salmonella typhimurium infection increases the 
expression of SCF produced by IECs (153). Its receptor, c-Kit, is 
expressed by IELs (127). The absence of SCF results in marked 
reduction of IEL numbers in mice, while its presence seems to 
play a role in IEL activation (154). Whether SCF and TLSP act 
as instructive cues initiating divergent IEL activation profiles 
remains to be investigated.

Containing invasive Microbes
An ascending bacterial load exists from duodenum to jejunum 
and ileum, accumulating in very high numbers in the cecum and 
colon. Of note, IEL numbers are descending from duodenum 
to ileum, with few found in the colon (4). The causality of this 
striking inverted relationship remains unknown. IELs can pro-
duce antimicrobial factors and tissue repair factors in response 
to bacteria that penetrate the intestinal epithelium (60). IELs 
play an important role in the regulation and differentiation of 
epithelial cells at the base of the crypts (58, 155). IELs thereby 
help to preserve the integrity of damaged epithelial surface by 
providing the localized delivery of an epithelial cell growth fac-
tor (60). The mucosal protection afforded by IELs is of critical 
importance particularly during the first hours after bacterial 
exposure (156), in line with the hypothesis that IELs function 
to contain microbes upon invasion and initiate barrier repair 
thereby reducing immunopathology. With respect to pathogenic 
infections, in the majority studied, IELs offer protection against a 
wide variety of intestinal species, including Eimeria vermiformis 
(64, 157, 158), Toxoplasma (159, 160), Encephalitozoon cuniculi 
(161), Norovirus (107), and Salmonella (159, 160). Interestingly, 
infections with at least the pathogens Salmonella and Toxoplasma 
have indicated that IELs migrate to the site of infection and 
into the lateral intra-intestinal space (160), possibly initiating 
IEL–IEL co-stimulation (121). Collective release of preformed 
antimicrobial peptides (65, 156, 162) could directly contribute to 
microorganism containment and clearance (163).

Upon intestinal infectious challenges, protection and pathol-
ogy are a result of the interplay between the microbes, the IELs, 
conventional T  cells, and other immune cells. During Eimeria 
infection, IELs’ production of IFNγ and TNF is instrumental 
in protective immunity, and expression of junctional molecules 
to preserve epithelial barrier integrity (158). However, elevated 
IFNγ and TNF levels in the intestinal mucosa also contribute 
to the pro-inflammatory cascade involved in barrier disrup-
tion and pathology (164). γδIELs are able to reduce pathology 
and their absence exaggerates mucosal injury upon Eimeria 
vermiformis infection (157). The absence of αβ T cells results in 

reduced capacity to clear the parasite, in part compensated by 
the adoptive transfer of CD4+ T cells. In the absence of γδIELs, 
Salmonella or Toxoplasma infection result in increased microbe 
transmigration due to reduced epithelial barrier integrity. This 
increased transmigration leads to increased immunity mediated 
by conventional T  cells (159). This indicates that IELs are not 
ultimately responsible for microbial clearance, but can modulate 
the initial response and recruitment of immune cells in order to 
moderate the risk of immunopathology.

Intraepithelial lymphocytes can contribute to viral immunity. 
Viral control depends largely on conventional T cells but, at least, 
αβIELs take part in viral clearance in the mucosa (165–167). 
Intestinal viral challenge, such as the non-enveloped RNA virus 
norovirus (MNV) present in many laboratory animal facilities, 
results in infection of IEC and myeloid cells (168). The infection 
can be controlled by IFNs, particularly IFNλ (169). Of note, the 
IFNλ (IFN type III) response seems to be operating particularly 
at epithelia barriers. This indicates that barrier immunity is 
kept local, to avoid systemic responses in which type I IFNs 
play a dominant role (170, 171). IELs, upon stimulation with 
plate-bound anti-CD3, can transcribe IFN genes, type I, II, and 
III, and the supernatant of in vitro activated IELs reduces viral 
infection (107, 172). In vivo anti-CD3 administration as well 
as culture supernatant from activated IELs results in IFN type 
I/III receptor-dependent expression of IFN responsive genes in 
intestinal IECs. Administration of anti-CD3 antibodies before 
intestinal viral challenge with murine norovirus can reduce viral 
load (107). However, due to the polyclonal stimulation of all 
T-lymphocytes, it remains unclear what contribution IELs pro-
vide and which properties may be uniquely attributed to them. 
It remains unknown if IELs are stimulated upon intestinal viral 
invasion and if so, how such invasion would enable the activation 
of IELs.

Besides microbicidal and cytotoxic activity, IELs produce 
cytokines and chemokines. Some chemokine transcripts are 
already present in IELs under steady state conditions, such as 
CCL5 and XCL1, but not those encoding for cytokines, such as 
IFNγ and TNF (43). This suggests that the recruitment of addi-
tional immune cells and release of these powerful cytokines and 
other chemoattractants such as CXCL1, CXCL2, and CXCL9 (65), 
might be delayed compared with cytotoxicity. The clearance of 
pathogens and the instigation of immunological memory involve 
careful orchestration of various cellular components. At epithelial 
sites, pathogen containment by innate-like T-lymphocytes may 
precede recruitment of myeloid cells and subsequent involvement 
of the adoptive arm of the immune response.

ieLs in iBDs
The initiation of an immune response is not taken lightly, especially 
at the intestinal barrier. When immune activation does take place, 
pathogen clearance, pathology, and the need to maintain tissue 
integrity and its repair are offset. The consequences of microbial 
invasion or aberrant immunity can be severe (81). IBD can affect 
any part of the intestine and present with extra-intestinal mani-
festations. Despite advances in IBD understanding, the cause(s) 
and mechanism(s) remain unknown and disease incidence is 
increasing with changes in the environment and life style likely 
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making a contribution (173). Disease occurrence and severity 
are further compounded by diet, dehydration, and antibiotic use 
(174) as well as age (175).

There are indications that IBD results from alterations in 
innate immunity resulting in excessive adaptive immune 
activation (176, 177). IBD seems to result from immune-
genetic predispositions and environmental factors, especially a 
dysregulated response to microorganisms (178). The presence 
of micro-infections or patches of affected intestinal tissue, 
associated with bacterial presence, next to seemingly unaf-
fected tissue suggest localized immune activation or inefficient 
immune resolution (179). Several immunologic and histo-
pathologic features of IBD, such as the presence of activated 
T cells secreting IFNγ and IL-17 and immunopathology (180), 
can be explained as a defect in mucosal immune regulation and 
as a consequence of persistent mucosal T cell activation (181). 
Several studies have shown that IL-12 production is increased 
in inflammatory lesions of patients with CD (182). In line with 
activated T cells, UC patients have an increased level of IL-7 
and IL- 15, which may perpetrate additional T cell activation 
(183, 184).

There is limited data for a role of IELs in IBD, either disease 
enhancing or reducing. Accumulation of γδIELs in inflamed 
areas of IBD patients have been reported, and associated with 
increased levels of IL-15 and TSLP (133, 151). Although identify-
ing lamina propria migrated γδ T  cells and γδIELs is difficult, 
these cells constitutively produce IFNγ in patients suffering from 
either CD or UC (185). It remains to be determined if reduced 
numbers of IELs contribute to increased susceptibility to inflam-
mation or are a consequence of ongoing inflammation, such as 
due to an increase in αβ effector T cells or activation-related cell 
death. Murine studies have demonstrated potential protective 
roles for γδIELs in intestinal inflammation as well as IBD models 
(59, 82, 186), but others have suggested that IEL expansion and 
activation can exacerbate the progression of colitis (187, 188). 
Lesions in IBD are mainly found in areas of reduced IEL density 
and highest load of bacteria, the colon, and ileum (178). The 
numbers of IELs correlate inversely with disease severity, and 
IEL numbers are restored to levels observed in healthy controls 
upon treatment with anti-TNF (189). This indicates vulnerability 
at those sites with altered immune surveillance and intense 
bacteria–IEC interactions, in line with the presence of adherent-
invasive Escherichia coli at IBD lesions (179).

Loss-of-function mutations of NOD2 are strongly associ-
ated with CD (190–193). This correlates with the loss of IELs 
seen in mice deficient for NOD2 (76), but detailed insights 
are lacking and NOD2 plays an important role in other cell 
populations such as DCs, able to influence type 1 and type 
3 immunity (194). Reduced proportions of γδIELs at the 
intestinal mucosa of CD patients suggested a protective role 
for these cells (189, 195, 196). IELs show increased activity at 
inflammatory sites in IBD patients, secreting IFNγ and TNF 
(189). Furthermore, IELs may enhance the production of IFNγ 
in the human colon (197). Nevertheless, murine IELs have been 
shown to be able to reduce the production of IFNγ production 
by conventional CD4 T cells, indicating their capacity to reduce 

type 1 immunity (198). In line with IELs forming an important 
part of the first line of defense is the increased susceptibility to 
infection of CD patients, which have reduced IEL numbers, with 
the intracellular parasite microsporidia (199). Unfortunately, 
the data on a role for IELs in preventing or reducing susceptibil-
ity to IBD remain inconclusive. The majority of IELs are found 
in the small intestine, a site not easily accessible, and IELs as a 
population of human T-lymphocytes are not well defined with 
respect to their identity and location. Often γδ T  cells, such 
as those found in the circulation, are used as a proxy for IELs. 
However, murine studies and data on human TCRδ-chain usage 
have shown IELs to be very different from γδ T cells found in 
other tissues [(55, 59) #1587].

CONCLUSiON

Intraepithelial lymphocytes are an integral part of the epithelial 
barrier. They do not exist as isolated cells monitoring the front line, 
but have close bidirectional interactions with IECs and possibly 
other immune cells. This close interaction enables the reception 
and provision of signals at very close range to maintain epithelial 
integrity. This interaction may be crucial in initiating local repair 
and containing low level of microbial invasion. Localized cues of 
potentially low dose would enable the activation of poised IELs 
without necessarily alerting the adaptive immune system. The 
single cell epithelial barrier is under constant threat of assault. 
Containing such threats locally with minimal immune activa-
tion is of great benefit to limit immunopathology and maintain 
optimal nutrient uptake.

How IELs, displaying many characteristics of effector T cells, 
are maintained in a poised state remains poorly understood. 
Differences identified in metabolic pathways may reflect their 
partial activation status or indicate differential metabolic wiring 
of IELs. The cues that enable full IEL activation remain ill-defined 
and the activity of IELs, the existence of different modes of action, 
are unknown. With technological advantages, such as multicolor 
flow cytometry and microscopy new players at the mucosal sites 
have been identified. This may now help us to unravel the com-
plex multiplayer immune surveillance network of the mucosal 
immune response with real potential to discover novel targets for 
therapies to alleviate or even cure the different forms of IBD and 
celiac disease.
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