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Abstract: Liquid crystal (LC)-based materials are promising platforms to develop rapid, miniaturised
and low-cost gas sensor devices. In hybrid gel films containing LC droplets, characteristic optical
texture variations are observed due to orientational transitions of LC molecules in the presence of
distinct volatile organic compounds (VOC). Here, we investigate the use of deep convolutional neural
networks (CNN) as pattern recognition systems to analyse optical textures dynamics in LC droplets
exposed to a set of different VOCs. LC droplets responses to VOCs were video recorded under
polarised optical microscopy (POM). CNNs were then used to extract features from the responses and,
in separate tasks, to recognise and quantify the vapours exposed to the films. The impact of droplet
diameter on the results was also analysed. With our classification models, we show that a single
individual droplet can recognise 11 VOCs with small structural and functional differences (F1-score
above 93%). The optical texture variation pattern of a droplet also reflects VOC concentration changes,
as suggested by applying a regression model to acetone at 0.9–4.0% (v/v) (mean absolute errors below
0.25% (v/v)). The CNN-based methodology is thus a promising approach for VOC sensing using
responses from individual LC-droplets.

Keywords: liquid crystal; gas sensing; volatile organic compound; CNN; LSTM; YOLO

1. Introduction

The study of liquid crystals as platforms for gas sensing attracts increasing interest
from the scientific community due to their fast and reversible optical responses, low energy-
demand, operation at room temperature and tunable selectivity [1]. These are advantages
when compared to the conventional semiconductor metal oxide [2] and polymeric [3] gas
sensors, that require high operating temperatures and lack selectivity. These LC properties
are valuable to develop new portable and low-cost devices for real-time detection of
odours and volatile organic compounds (VOC), which can find applications in fields
like industrial manufacture [4] and food quality control [5], air quality monitoring [6]
and medical diagnostics [7–10]. LC are anisotropic materials that possess self-assembly
properties and orientational molecular order. When LC molecules are orderly aligned along
an axis, they can rotate the plane of polarised light, allowing light transmission through
the material and generating interference patterns and colours (optical textures) observable
under polarised optical microscopy (POM). Perturbation of molecular order results in
changes in the optical textures and consequently light transmission. This property is the
basis for using LC materials for biological and chemical sensing [11–13], including analytes
in the gas phase [1,14,15]. Typically, the LC molecules have a specific orientation at a given
support or interface and the interaction with volatile organic compound (VOC) molecules
disturbs that orientation. In general, the VOC interaction monitoring is done by polarising
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optical microscopy observations of the materials [16,17] without automated analysis, or by
measuring the variations of light transmission of the materials throughout time [5,18–20],
which corresponds to 1D signals. More recently, approaches based on artificial intelligence
methods started to be employed to automatically identify VOCs based on features of the
LC responses [20–22]. Namely, we showed that a support vector machines classifier (SVM)
based on features manually extracted from the 1D optical signal generated by hybrid
gels containing LC spherical droplets embedded in a gelatin matrix (Figure 1a) accurately
classified VOCs from distinct chemical classes [20]. In hybrid gels, the presence of ionic
liquid at the interface between gelatin and the droplets results in LC radial configuration
(Figure 1b). In the presence of different VOCs the LC radial configuration is gradually
disturbed and recovered when the VOC is removed (Figure 1c). VOCs with different
chemical functionalities interact preferentially with different components of the gel. As a
result of the distinct interactions, LC orientational changes happen in different timings and
patterns, generating distinct dynamic optical texture variations, as previously reported [19].

Figure 1. Macroscopic and microscopic appearance of the hybrid gel. (a) Hybrid gel spread as a thin
film over a glass slide. (b) Polarising optical microscopy image, taken with crossed polarisers, of a
hybrid gel region before VOC exposure. (c) Evolution of the optical texture of LC droplets during an
exposure/recovery cycle with ethanol, acetone or acetone vapours.

The optical texture variations constitute interesting and information-rich 2D signals
along time. Thus, an alternative to using the 1D optical signal for VOC identification would
be the application of image recognition methods that could automatically learn the optical
textures time patterns associated to each VOC. Convolutional neural networks (CNN) are
suitable for this type of analysis, and can fully use the data richness of image sequences
without the need for manual feature extraction. So far the use of CNNs to analyse liquid
crystal-VOC interaction 2D data was only reported for sequences of images obtained from
a planar LC sensor [21,22]. Cao et al. [21] demonstrated that a CNN algorithm applied to
grayscale sequences of polarised optical microscopy images could improve the selectivity
of a planar LC-based sensor for water vapour and the VOC dimethyl-methylphosphonate
(DMMP). However, the time domain information was not fully explored since only 2D CNN
were used. Cao et al. [21] used Alexnet [23], a well-known object recognition CNN, but only
to extract 2D features from individual frames in the videos that were acquired. Then, these
features were combined for all the frames in the sequence and used for classification with
an SVM. Smith et al. [22] used the same dataset but explored the colors of the images and
used a more compact 2D CNN, the VGG16 [24], which allowed to reduce the number of
features with similar classification accuracy of DMMP.
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In the past, we demonstrated that the 1D signal corresponding to the intensity of
polarised light transmitted through hybrid gels contains VOC distinctive features [5,19,20].
Here, we developed a pattern recognition system based on CNN video analysis of the
configurational changes of LC droplets in a hybrid gel upon exposure to VOC samples.
Using information of individual droplets, the system successfully performed two distinct
tasks. In the first task, it accurately classified 11 VOCs representative of distinct chemical
classes (alkanes, alcohols, ketones, aromatics, chlorinated compounds). In the second task,
the system predicted the concentration of acetone vapours presented to the gel. These
results indicate that each VOC generates a typical and reproducible optical pattern at
the single droplet level. Naturally, the pattern varies also with the number of molecules
presented to the droplets. Our pattern recognition method does not require manual feature
engineering and fully exploits space and time information in the videos. The fast response
(less than 20 s) of single droplet responses combined with the success of CNN-based
approaches and the gel nature of the sensing material evidence the potential of the system
towards miniaturised and automated gas sensors, compatible with flexible substrates and
mouldable in different shapes.

2. Materials and Methods
2.1. Reagents

Gelatin from bovine skin (gel strength 225 g; bloom, type B) was purchased from Sigma-
Aldrich (Darmstadt, Germany), the liquid crystal 4-cyano-4′-pentylbiphenyl (5CB) was pur-
chased from TCI Europe (Zwijndrecht, Belgium), and the ionic liquid [BMIM] [DCA] (≥98%)
was purchased from IoLiTec (Heilbronn, Deutschland). The solvents dichloromethane and
hexane were purchased from VWR (Radnor, United States), and ethanol (purity ≥ 99.8%)
was purchased from Sigma-Aldrich. Acetonitrile (purity≥ 99.9%), chloroform, diethyl ether
(HPLC grade), diethyl acetate, heptane, methanol (HPLC grade), and toluene were supplied
by Fisher Scientific (Hampton, VA, USA). Acetone (purity ≥ 99.5%) was purchased from
Honeywell (Charlotte, NC, USA). Solvents were of analytical grade and used as received.

2.2. Video-Recording of the Sensor’s Optical Response to VOCs

Gelatin hybrid gels spread as thin films (30 µm thickness) over untreated glass slides
were used as VOC optical sensors, following procedures previously described [19,20].
The hybrid gel sensors were positioned inside a glass chamber placed in the stage of a
polarising optical microscope (Zeiss Axio Observer. Z1/7, (Zeiss, Oberkochen, Germany)
equipped with a 55 Axiocam 503 colour camera). The glass chamber was connected to
an automated gas delivery system assembled in-house that alternately pushed the VOC
sample or clean air (or nitrogen with 50% relative humidity) through the chamber in a
cyclic way. A cycle consists of an exposure stage (VOC is pushed into the chamber) and
a recovery stage (clean air or humid nitrogen are pushed into the chamber to remove
the VOC). The alterations in the LC order within the droplets were visible in real-time
and video-recorded with a 1936 × 1460 resolution using the microscope camera. For the
VOC classification task, exposures to samples of 11 VOCs (acetone, acetonitrile, chloro-
form, dichloromethane, diethyl ether, ethanol, diethyl acetate, heptane, hexane, methanol,
toluene) were recorded. To generate the VOC samples, the gas delivery system pushed air
through the headspace of a 30 mL vial containing 15 mL of pure solvent at 37 ◦C (saturated
atmosphere conditions). The concentration of VOC in the sample was between 12% and
15% (v/v), estimated as explained in a previous publication [20]. Each gel was subjected to
5 consecutive exposure/recovery cycles with one VOC. There were 11 gels and, in total,
55 cycles were performed. The videos were recorded in a single region of the gel and had
32 frames of coloured images (RGB). For the VOC concentration prediction task, we used
acetone as model VOC. Acetone can interact with the different components of the gel and
promote rich optical textures patterns. A gas delivery system was assembled to generate
concentrations of acetone between 0.9% and 4.0% (v/v). Acetone vapours were generated by
bubbling nitrogen through pure acetone. To obtain the different concentrations, two mass
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flow controller devices (MFC) were used to mix humid nitrogen and acetone vapours in
different proportions (Figure 2). Nitrogen was pumped by the dilution MFC and bubbled
through water to generate 50% relative humidity in the stream. Acetone vapours were
pumped by the carrier MFC. By keeping the dilution MFC flow rate constant (5 L/min)
and varying the carrier MFC flow rate (0.2, 0.28, 0.36, 0.44, 0.52, 0.6, 0.68, 0.76, 0.84, 0.92
and 1 L/min), increasing concentrations of acetone vapours in the humid nitrogen stream
were obtained (estimated 0.9%, 1.3%, 1.6%, 2.0%, 2.3%, 2.6%, 2.9%, 3.2%, 3.4%, 3.7% and 4.0%
(v/v) [25]) and sent to the sensor chamber (see Figure 2). Two independent gels were ex-
posed to a sequence of exposure/recovery cycles with the 11 increasing concentrations
of acetone. Videos were recorded in three distinct regions of each gel and had 78 frames
of coloured images (RGB). Thus, 6 cycles were recorded for each concentration. Overall,
66 cycles were performed.

Figure 2. Gas delivery system used to generate controlled concentrations of acetone vapours and
send them to the sensor chamber positioned in a polarised optical microscope. Two mass flow
controllers (MFC) allow to mix acetone and humid nitrogen vapours in different proportions, and the
electro-valve (in grey) switches between exposure and recovery stages. The MFCs and electro-valve
are controlled by an Arduino microcontroller.

2.3. Video Analysis Strategy

A large number of droplets can be observed in our videos (Figure 1b). These droplets
and their evolution through time (Figure 1c) are the subjects of our analysis. Therefore, we
start by detecting all the droplets in each video and by creating full cycle sequences for
individual droplets. Since droplets have varying diameters, it is then necessary to resize
the droplets image sequences to a common diameter. After that we extract features from
the video sequences with different 2D and 3D CNN approaches. Finally, a classification or
regression task is performed. Figure 3 presents a scheme of the overall system architecture.
The following sections detail each of the steps.
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Figure 3. Full architecture of video analysis system. YOLOV3 is responsible for detecting the droplets.
These droplets are assembled into sequences and resized prior to being fed to the classification or
regression model.

2.3.1. Droplet Detection

For droplet detection, we used YOLO-v3 [26], a state of the art deep learning archi-
tecture designed for fast object detection and classification, which divides images into
regions and then predicts bounding boxes and class probabilities for each region. After non-
maximal suppression, YOLO will provide an output with all the detected bounding boxes
and respective classes. In this work there is only one class: the droplet. The YOLO network
produces bounding boxes around droplets on single images and not on 3D images/image
sequences. Therefore, we obtained droplet bounding boxes for every frame and then assem-
bled them into sequences according to the following criteria. For pairs of bounding boxes
in the same frame, the intersection over union (IoU), computed as the area of intersection
divided by the area of overlap was computed. IoU scores over 0.3 were considered to
be detecting the same droplet (it may happen despite non maximum suppression) and
only the one with greater area is kept. Bounding boxes from the first frame are set as
reference. Then, every bounding box in the next frames that achieves an IoU score above
0.5 with one of the reference ones is associated with it, meaning that it is very likely to be
circumscribing the same droplet on a different frame. After this association, sequences that
contain very few bounding boxes, less than 25% of the sequence total number of frames,
were also discarded. Finally, the mean bounding box coordinates in the entire sequence are
computed to obtain the sequence width and height.

2.3.2. Feature Extraction

For feature extraction we use CNNs [27], which are the most widely used deep
learning models for image and video applications. Two different CNN architectures were
tested for feature extraction. One is a full 3D CNN, where the third dimension is time,
and the other one combines a 2D CNN applied to every image in the sequence with a Long
Short Term Memory (LSTM) [28] which is a type of recurrent neural network that extracts
time domain information.

The 3D CNN is inspired in the Lenet-5 model [29]. It is also composed by two sets of
convolutional and MaxPooling layers followed by two fully connected layers. However
some changes were introduced, namely ReLU activation functions were used instead of
tanh, and a batch normalization layer was introduced between each convolutional layer
and its activation function, as well as a dropout layer immediately after. Additionally,
Lenet-5 inputs and convolutional filters (kernels) are 2D whereas in this network they are
3D. This architecture is represented in Figure 4.
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Figure 4. 3D CNN architecture. Format: number of channels or filters @ image dimension. This
model is composed of two sets of convolutional and subsampling layers followed by two fully
connected layers.

The 2D CNN is a deeper model composed by three sets of two convolutional layers
(with ReLU activation) and a MaxPooling layer, totaling 9 layers. Padding is applied in the
convolutional layers and there is a dropout layer before the final classification or regression
layer (output layers are described in the next section). This architecture is illustrated in
Figure 5.

Figure 5. 2D CNN architecture. This CNN is composed of three convolutional blocks, each with two
convolutional layers and a MaxPooling layer, followed by a flattening layer.

The 2D CNN is applied to every frame in the image sequence (the same CNN),
extracting features that are then fed to an LSTM which will learn time features for each
sequence. This LSTM is of the type “Many to One” since its input is a sequence of features
and the output is a single value, obtained through the returned values of the last cell, which
will subsequently be used to predict a VOC class or concentration. The amount of cells that
compose the LSTM is the same as the sequence length.

Figure 6 presents a scheme on how LSTM and 2D CNN models are combined.

Figure 6. LSTM + CNN2D architecture scheme. The CNN represented by the green boxes is the
same applied to every frame in the sequence. TS denotes time step. Each time step corresponds to a
different frame in the sequence.

2.3.3. Classification and Regression

Depending on which task the models were applied to, the last layer in the neural network
was either a 11 unit softmax activation function (for 11 VOC Classification) or a linear unit,
which is a single neuron without any activation function (for concentration regression).

Additionally, a stacking ensemble [30] was used to combine the predictions obtained
from a number of base models from each architecture. Each base model was of the same
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type (CNN3D or CNN2D+LSTM) but trained using a different combination of parameters
such as the number of filters, filter sizes, amount of dropout and number of units in the
fully connected layers. The meta model aggregates the base models outputs to produce the
final prediction, as illustrated in Figure 7. The Gaussian Naive Bayes classifier was used
as meta-model.

Figure 7. Architecture of the stacking ensemble: Several base classification models are applied to
the same data and the meta model learns how to best combine the predictions from the different
base models.

2.3.4. Performance Evaluation

CNN models for VOC classification are evaluated using accuracy and F1-score,
for each VOC and globally using macro F1-score. Accuracy is the fraction of the total
samples that were correctly classified which is computed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

For each VOC, we consider TP (true positives) as the number of correctly classified
samples from that VOC and TN (true negatives) as the number of correctly classified
samples from all the other VOCs. Similarly, FP (false positives) is the number of incorrect
classifications of a given VOC and FN (false negatives) corresponds to the combined
number of missed detections from all the other VOCs.

The per VOC F1-score is the harmonic mean between its Precision and Recall, com-
puted as:

F1 = 2× Precision× Recall
Precision + Recall

(2)

where Precision is the proportion of correctly classified samples of a given VOC out of all
samples classified as that VOC, computed as:

Precision =
TP

TP + FP
(3)

and Recall is the proportion of correctly classified samples of a VOC out of all the samples
from that particular VOC, computed as:

Recall =
TP

TP + FN
(4)

The macro F1 is the average (unweighted) of the F1 score obtained for each VOC.
CNN models designed to estimate concentration are evaluated using mean absolute

error (MAE), specifically:

MAE =
1
n

n

∑
k=1
|ek| (5)

where ek represents the difference between true concentration and predicted one for
droplet k, and n is the total number of droplets.
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YOLO models for droplet detection are evaluated using average precision (AP) which
is the most commonly used metric to evaluate the performance of object detection algo-
rithms. The implementation provided in [26] for mAP calculation was used. In this case,
mAP and AP are the same since there is only one type of object to detect.

3. Results

This section presents the results obtained in both tasks, VOC recognition and acetone
concentration prediction, as well as an analysis on the impact of droplet diameter on
these results.

For the VOC recognition task, the 3 first exposure cycles from each VOC were selected
for the training set, the fourth cycle for the validation set and the last one for the test
set. Every cycle is kept in the form of an image sequence formed by 32 RGB frames with
1936 × 1460 pixels each.

For the acetone concentration task, four of the exposure cycles were selected for the
training set, one for the validation set and remaining one for the test set. In this case, every
exposure video is composed by 78 RGB frames with 1936 × 1460 pixels.

In both tasks, the training set is used to train the neural networks, the validation set is
used to select the best hyper-parameters and avoid overfitting by means of early stopping,
and the test set is used only to evaluate performance.

3.1. Droplet Detection

The YOLO network used to perform the droplet detection was an implementation
made available on GitHub (https://github.com/wizyoung/YOLOv3_TensorFlow, ac-
cessed on 5 January 2021).

Ground truth annotations were manually created for droplets bigger than 12 µm × 12 µm.
With the set of parameters in Table 1, and after the model loss stopped decreasing on the
validation set, training was stopped.

Table 1. YOLO parameters during training.

Parameters Value

Batch Size 5
Image Resize 416 × 416

Keep Aspect Ratio True
Batch Norm Decay 0.99
L2 Weight Decay 5 × 10−3

Optimizer Momentum
Learning Rates 1 × 10−3, 3 × 10−4, 1 × 10−5

Fine Tuning Whole Model
NMS Threshold 0.5
mAP Threshold 0.5

On the VOC recognition test set YOLO was able to achieve an AP of 0.94. Figure 8
illustrates the detection outputs. This figure shows an image from the test set, ‘unseen’ by
the model, where the YOLO bounding boxes are represented in red and the ground truth
bounding boxes are shown in white.

https://github.com/wizyoung/YOLOv3_TensorFlow
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Figure 8. Droplet Bounding Boxes. Ground truth bounding boxes are shown in white whereas YOLO
detection are shown in red. (Left) whole Frame; (Right) zoomed in section.

On the acetone concentrations test set, YOLO achieved an AP of 0.87. After the YOLO
frame by frame detections were obtained, they were assembled into sequences resulting in
the following number of sequences in each set (Table 2).

Table 2. Number of droplet sequences in each data set.

Task Train Validation Test

VOC recognition 4295 1368 1345
Acetone concentration 4513 920 699

Since CNN models have fixed input sizes and the droplets have a wide range of
diameters, all images in each sequence were resized to a common size of 75 × 75 pixels
before being used in the subsequent tasks.

3.2. VOC Recognition

For classification, 3 dimensional CNNs (CNN3D) and LSTMs with 2 dimensional
CNNs (CNN2D+LSTM) working as feature extractors were used and a softmax was used
as output layer. The parameters of these networks are presented in Table 3. To select
the hyper-parameters a grid search is performed and the set that achieves best overall
performance in the validation set is selected. The ensembles of CNN-3D used 9 base models
and the ensembles of CNN2D+LSTM used 12 base models, corresponding to the total
number of combinations of different hyper-parameter values. Every model was trained
with the ‘Adam’ optimizer and using Categorical Crossentropy as the loss function.

Table 3. CNN Parameters. Hyper-parameters are shown in bold.

Parameters CNN3D CNN2D+LSTM

Number of Filters 16, 32 8, 16, 32

Filter Dimensions (10 × 10 × 10),
(10 × 15 × 15), (10 × 20 × 20) (3 × 3), (5 × 5), (7 × 7)

Stride 1 1
Max-Pool window 2× 2× 2 2× 2

Max-Pool stride 2 2
Dropout Rate 0.2, 0.35, 0.5 0.5
Units FCL 1 32 16, 32
Units LSTM - 16, 32

Units Softmax 11 11

The results obtained with single and ensemble models are presented in Table 4.
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Table 4. VOC recognition F1-score on test set. The best macro F1-score is shown in bold.

Single Models Ensemble Models

VOC CNN3D CNN2D+LSTM CNN3D CNN2D+LSTM

Acetone 1 0.981 1 1
Acetonitrile 0.569 0.887 0.732 0.962
Chloroform 0.807 0.977 1 1

Dichloromethane 0.167 0.834 0.467 0.763
Diethyl ether 0.876 0.803 1 0.96

Ethanol 0.965 0.978 0.972 0.991
Diethyl acetate 0.465 0.608 0.191 0.594

Heptane 1 1 1 1
Hexane 0.978 0.990 1 1

Methanol 0.951 0.989 1 1
Toluene 0.451 0.940 0.889 0.982

Macro 0.748 0.908 0.841 0.932

For the best model, corresponding to the CNN2D+LSTM ensemble, the confusion ma-
trix with the prediction results obtained in the identification of the 11 VOC, is represented
in Figure 9.

Figure 9. Confusion matrix for CNN2D+LSTM ensemble. Values in the diagonal represent correct
predictions and off diagonal values represent incorrect predictions.

To evaluate the impact of droplet diameter on the performance of VOC detection, we
plot in Figure 10 an histogram of droplet diameters where the bin colour represents the
accuracy in predictions of the droplets in that diameter range.

Figure 10. Test set accuracy by droplet diameter for ensemble models. (Left) CNN3D ensemble;
(Right) CNN2D+LSTM ensemble.
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3.3. Acetone Concentration

For this task, the same CNN architectures were used for feature detection but a linear
unit was used in the output layer. Instead of the Categorical Crossentropy, the Mean
Squared Error loss function was used since this is now a regression problem. The optimizer
was again ‘Adam’.

The predictions of individual YOLO droplet sequences in the test set are plotted in
Figure 11, along with average predictions.

Figure 11. CNN3D and CNN2D+LSTM test set concentration predictions. (Left) individual droplet
predictions; (Right) average predictions.

From these predictions the following mean absolute errors were obtained (Table 5).

Table 5. Test set MAE for the two CNN architectures used to predict acetone concentration.

Model MAE% (v/v)

CNN3D 0.2425
CNN2D+LSTM 0.2669

Regarding the influence in performance of the droplet diameter, Figure 12 presents
the results that were obtained for MAE as a function of droplet diameter.

Figure 12. CNN3D test set MAE as a function of droplets diameters. (Left) individual droplet
prediction error; (Right) MAE by droplet diameter.

4. Discussion
4.1. YOLO Detection

The YOLO network was able to detect droplets in individual frames with high average
precision. It obtained an AP of 0.97 for the VOC classification test set and 0.87 for the
concentrations test set. The bounding boxes that were obtained are very close to the ground
truth ones, perfectly encapsulating the droplet, as illustrated in Figure 8. The majority of
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false detections occurred for very small droplets that were not included in the manually
annotated ground truth.

4.2. VOC Recognition

F1-scores obtained for the classification of 11 VOC are shown in Table 4, for both single
models and corresponding ensembles. The best macro F1-score 0.932 was obtained for
the CNN2D+LSTM ensemble. For single models, CNN2D+LSTM outperformed CNN3D,
with macro F1-scores of 0.901 and 0.748, respectively. Both ensembles performed better than
corresponding single models, with improvements for almost every VOC. The average im-
provements were nearly 10% in the case of CNN3D and around 3% for the CNN2D+LSTM.
This suggests that the best hyper-parameters that were chosen for the single models are
not the most suitable for every VOC or every droplet diameter. The selected 11 VOCs
present small structural and functional differences, including alkanes, ketones, alcohols,
aromatics and chlorinated VOCs. Due to their distinct chemical properties, the selected
VOCs interact preferentially with distinct components of the gel. For example, hydrophobic
compounds (such as heptane, hexane, toluene) are likely to interact with the LC inside
the droplets, while those that can form hydrogen bonds (such as ethanol, methanol, ace-
tone) preferentially interact with the biopolymer matrix, but also with the ionic liquid and
liquid crystal. As a result of the distinct interactions, LC orientational changes happen in
different timings and create distinct dynamic optical texture variations (see Supplementary
Videos S1 and S2), as previously described in the team’s past works [19,20]. Our results
show that the pattern of those variations represents VOC fingerprints since the imple-
mented models achieved excellent VOC classification performances.

To analyze the impact of droplet diameter on the quality of predictions, an histogram
of droplet diameters for the test set was plotted in Figure 10 where the bin colour represents
the accuracy obtained in the classification of the droplets in that diameter range. This
figure shows that the number of droplets decreases with increasing diameter, but that
with an increase in diameter, there is also an increase in accuracy. While sequences of
smaller droplets (<20 µm) only achieve accuracies below 70%, with the increase in diameter,
the accuracy increases near to 100%. Taking in consideration the number of sequences
available for each droplet diameter range, the results indicate VOC recognition task is
optimised by droplets with diameter larger than 24 µm and using the CNN2D+LSTM
architecture (Figure 10). This might be associated with richer colour palettes and response
dynamics from larger droplets compared to smaller ones. Furthermore, 24 µm is close to the
30 µm thickness of the gel. Droplets with diameter smaller than 24 µm might be embedded
deeper in the gel matrix than the larger ones and as such, the number of molecules of VOC
that reaches the LC may be limited and insufficient to promote LC orientational transition
patterns sufficiently distinct between different VOCs.

Regarding individual VOC recognition, several architectures perfectly classified some
of the VOCs, like acetone, hexane and methanol and heptane is even perfectly classified
by all the models. Diethyl acetate and dichlorometane are the hardest VOCs to classifiy
across architectures, in fact for the best model (CNN2D+LSTM ensemble) the worst results
are registered with diethyl acetate which achieves an F1-score of only 0.594, followed by
dichlorometane with an F1-score of 0.763. This is related with the diameter of droplets
exposed to diethyl acetate which, in the majority of cases, is under 24 µm. Since smaller
droplets are harder to classify this affects the performance obtained for this VOC. It also
affects the performance of dichlorometane because most of the miss-classified diethyl
acetate sequences were wrongly classified as dichlorometane, as shown in the confusion
matrix from Figure 9.

4.3. Acetone Concentration

Predicted concentration values obtained by CNN3D and CNN2D+LSTM on the test set
are presented in Figure 11. It is possible to observe that despite a large variance, estimates
from both models are mostly centered around the true value and consequently the mean
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concentrations are close to the real ones for both architectures, particularly for lower values
of the flow. The best MAE (0.2425% (v/v)) was obtained by the CNN3D but CNN2D+LSTM
was close with a MAE of 0.2669% (v/v) (Table 5). Acetone molecules can interact with all the
hybrid gel components, for example by hydrogen bonds with the gelatin matrix and ionic
liquid, and by dipole-dipole interactions with the liquid crystal molecules. Thus, when the
gel is exposed to increasing concentrations of incoming acetone molecules, the number of
interactions with the gel components increases and ultimately promotes a gradual increase
in the number of LC molecules that undergo orientational transitions. As a result, there is a
relation between the optical texture variation patterns and the acetone concentration, that
is captured by the implemented regression model.

Regarding the impact of droplet diameter on these results, the histogram of droplet
diameters shown in Figure 12 reveals that the large majority of droplets has diameter
between 20 µm and 40 µm. From the plot of droplets error and from the bin colors in
the histogram, which represent the MAE, we observe a tendency of bigger droplets to
obtain better (lower MAE) concentration estimates. The exception is in the penultimate
bin (<60 µm) where the error is higher, a variation which is interpreted as due to the small
samples size.

5. Conclusions

In this work we explored a VOC pattern recognition approach which is fully auto-
mated and takes advantage of the full extent of information carried by LC optical textures,
namely morphological and colour changes along time. In our approach, CNN were used
to analyse the optical textures dynamics in LC upon exposure to a set of 11 distinct VOCs
containing compounds with very small structural differences but from distinct chemical
groups (acetone, acetonitrile, chloroform, dichloromethane, diethyl ether, ethanol, diethyl
acetate, heptane, hexane, methanol and toluene). From the video analysis of individual LC
droplets, the proposed system was able to accurately classify the 11 VOCs (F1-score higher
than 93%). In a separate task, the system was used to predict the concentration of acetone
vapours exposed to the gel and achieved mean absolute errors under 0.25% (v/v). These
results confirm the rich information content carried by optical textures of LC droplets in
hybrid gels, and show that video analysis is an alternative to 1D optical signal analysis
for VOC sensing. Individual droplets respond fast (in less than 20 s) and are sufficient for
VOC discrimination and quantification. Furthermore, the hybrid gel production method is
simple and scalable [19] and so are the proposed CNN models. Therefore, the system has
potential to be implemented in the form of a miniaturised gas delivery system and optical
detection device based, for example, on the currently available advanced smartphone
cameras. Such systems contribute to the development of small, fast and sustainable gas
sensing devices.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average precision
CNN Convolutional neural network
DMMP Dimethyl-methylphosphonate
FN False negatives
FP False positives
IOU Intersection over union
LC Liquid Crystal
LSTM Long short time memory
MAE Mean Absolute Error
mAP Mean average precision
MFC Mass flow controller
NMS Non maximum suppression
POM Polarised optical microscope
ReLU Rectified linear unit
RGB Red Green Blue
SLPM Standard litre per minute
SVM Support vector machine
VOC Volatile organic compound
TN True negatives
TP True positives
TS Time step
YOLO You only look once
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