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Abstract: The alarming rise of multidrug-resistant bacterial strains, coupled with decades of
stagnation in the field of antibiotic development, necessitates exploration of new therapeutic
approaches to treat bacterial infections. Targeting bacterial virulence is an attractive alternative
to traditional antibiotics in that this approach disarms pathogens that cause human diseases,
without placing immediate selective pressure on the target bacterium or harming commensal species.
The growing number of validated virulence protein targets for which structural information has been
obtained, along with advances in computational power and screening algorithms, make the rational
design of antivirulence drugs a promising avenue to explore. Here, we review the principles of
structure-based drug design and the exciting opportunities this technique presents for antivirulence
drug discovery.

Keywords: structure-based drug design; crystallography; NMR; modelling; docking; antibiotics;
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1. Introduction

The use of chemotherapeutic agents to treat bacterial infections began with the sulphonamides
and penicillin in the 1930s, marking one of the most significant medical breakthroughs of the twentieth
century. The so-called golden era of antibacterial drug design followed suit, with the development
of almost all of the antibacterial drugs in use today occurring between the 1940s and 1970s [1,2].
The widespread therapeutic use of these drugs, or agents derived from them, has contributed
dramatically to global public health and an increase in life expectancy [3].

Unfortunately, widespread resistance to the drugs developed in the twentieth century has been
emerging at an alarming rate. This problem is compounded by the failure to discover and develop new
classes of replacement drugs. Antibiotic development has stagnated to such a degree that only eight
of the 51 drug candidates currently in the clinical pipeline differ substantially from existing classes
of antibiotics [4]. Indeed, antibiotic resistance now undermines the ability to treat many bacterial
infections [5–7], and signals the dawn of a post-antibiotic era [8]. Clearly, the status quo of antibiotic
development is not sustainable.

Nearly all of the golden-era antibiotics were discovered via empirical whole-cell screening
programs, which identify inhibitors that prevent bacterial growth—and thus target essential cellular
processes such as cell wall synthesis (i.e., β-lactams) or DNA replication (i.e., fluoroquinolones).
As such, traditional antibiotics impose enormous pressure for selecting resistant variants in a
population, which often occurs within a few years of clinical use [9]. Additionally, antibiotics that
target central growth pathways—which are common among pathogenic and non-pathogenic species
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alike—result in off-target perturbation of the microbiome that can open up new niches for colonization
by resistant pathogens [10].

Antivirulence drugs have gained considerable research interest in the past decade as an alternative
approach to traditional antibiotics [11]. Virulence—which is synonymous with pathogenicity—is
classically defined as the ability of an organism ′to enter into, replicate within, and persist at host sites
that are inaccessible to commensal species′ [12]. Antivirulence drugs disrupt the process of infection,
but in contrast to antibiotics, they do not directly affect bacterial growth or viability. The earliest
examples of the antivirulence approach include inactivation of bacterial toxins, such as tetanus and
diphtheria [13,14]. More recently, a myriad of other virulence factors have been suggested as promising
antivirulence targets (as reviewed by [15–18]). Some of the most attractive antivirulence strategies
include inhibition of quorum sensing and virulence regulation [19], virulence factor secretion and
function [20], and bacterial adhesion and colonization [21] (Figure 1). This ′disarm—don′t kill′

approach avoids some of the selective pressure imposed by antibiotics, potentially providing an
evolution-resistant antimicrobial [22]. Additionally, since antivirulence drugs are specific to pathogenic
processes, they leave healthy microbiota largely intact [18]. While numerous antivirulence drug
candidates have been documented [23], only three antivirulence therapeutics have gained US Food and
Drug Administration (FDA) approval, all of which are antibody-based [9]. This suggests an emerging
opportunity for the development of small molecule antivirulence drugs. While high-throughput
screening (HTS) has been a mainstay of the pharmaceutical industry, its success rate has been extremely
low in the field of antimicrobial development [24]. As structural information for validated virulence
targets becomes more available, structure-based drug design (SBDD) is poised to become the new
frontier in the antivirulence field, offering new possibilities to push antivirulence therapeutics into the
mainstream. Here, we examine the application of SBDD to the field of antivirulence drug development.
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Figure 1. Overview of bacterial virulence pathways that have been targeted for inhibition via SBDD.
Pathogen adhesion to the host cell; 1. Inhibitors of pili biogenesis and assembly (e.g., chaperone/usher
pathway). Folding and disulfide bond formation in secreted virulence factors; 2. Inhibitors of
periplasmic thiol oxidoreductase (e.g., DsbA). Virulence effector injection into the host cell; 3. Inhibitors
of the type 3 secretion system (T3SS). Acyl homoserine lactone (AHL) quorum sensing signal generation;
4. Inhibition of AHL synthase (e.g., LasI). Effector protein toxicity; 5. Toxin neutralization to prevent
host cell damage. Toxin protein secretion into the extracellular milieu; 6. Inhibitors of the type
2 secretion system (T2SS) to block toxin translocation across the outer membrane. Transcriptional
activation of virulence genes in response to stress or quorum signals; 7. Inhibitors of AHL binding to
cognate transcription regulators (e.g., LasR).
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2. Principles of Structure-Based Drug Design

2.1. Rationale and Target Selection

SBDD is a powerful tool that uses knowledge of the three-dimensional (3D) structure of a biological
target to efficiently search chemical space for ligands with high binding affinity. Use of SBDD began in
the mid-1980s, and publications describing its success in developing new therapeutics for HIV/AIDS
began to emerge in the early 1990s [25,26]. Structural knowledge of the HIV protease allowed for the
design of new protease inhibitors, five of which became clinical and commercial successes [26,27].
Many other widely-used drugs, including zanamivir (Relenza; GlaxoSmithKline) [28] for influenza,
the cyclooxygenase inhibitor celecoxib (Celebrex; Pfizer) [29], and the antileukemic Bcr-Abl tyrosine
kinase inhibitor imatinib (Gleevec; Novartis) [30], owe their origins to SBDD.

SBDD begins with the choice of a suitable target. An antivirulence target should be present only
in the pathogen, and be essential for bacterial pathogenesis but not directly involved in bacterial
survival. The vast majority of antivirulence targets are proteins, although RNA molecules may also be
targeted, as is the case for the well-known antibiotics tetracycline and streptomycin [31]. The target
should ideally be validated in vivo by testing a knockout strain of the bacteria for virulence in an
animal model of infection. Accurate structural information about the target must then be obtained.
Three main sources of structural information have been used for SBDD: X-ray crystallography, nuclear
magnetic resonance (NMR), and homology modelling. X-ray crystal structures are the most common
source of drug design data, owing to the typically high resolution available and the ability to work
with proteins that range in size from small peptides to 998 kDa [32]. Indeed, 83.8% of the total
protein structures in the Protein Data Bank (PDB) as of December 2018 were determined via X-ray
crystallography. Ordered water molecules are also visible in crystal structures, the organization of
which can often provide a starting point for drug lead design. NMR structures are another valuable
source for drug design, provided that the target is smaller than 35 kDa [33]. The low resolution of
structures gained by cryo-electron microscopy (EM) has precluded their use in SBDD in the past,
however, best recent cryo-EM structures have surpassed the ~2.5 Å atomic resolution threshold and
may thus be useful for drug design in the future [34]. Experimentally determined structures are curated
in the PDB, which currently contains over 83,000 bacterial protein entries out of more than 145,000
total entries. For cases in which no experimentally determined structure is available, a homology
model can be used for drug design provided there is substantial sequence similarity between the
proteins [35,36]. Advanced homology modeling software uses experimentally determined structures as
a template to predict the 3D-folds of another protein that has similar amino acid sequence [37]. Several
free programs, including SWISS-MODEL [38] and Phyre2 [39] provide fully automated homology
modeling. Commercial programs such as Modeller [40] or the modelling tools built into software
suites such as Discovery Studio (BIOVIA) [41] offer additional control over the modelling process.
Although homology models are routinely used in the absence of experimentally determined structures,
it is noted that they are not ideal for SBDD since the accuracy of the binding pocket can be less reliable,
particularly when sequence identity is below 40% [37].

The next step in SBDD involves using the available structure or model to select a specific ligand
binding site. The target usually has a well-defined binding pocket, such as a receptor ligand binding
site or enzyme active site. Algorithms are now available to predict the suitability of a binding pocket
based on criteria such as its rigidity or hydrophobic character as calculated from high-resolution protein
structures [42,43]. Although much less common, drugs targeting protein-protein interactions (PPIs) are
increasingly being pursued by drug discovery groups [44]. An important, but often overlooked, aspect
of target choice is the conformational flexibility of a protein during ligand binding. While the structure
of the protein in the crystal represents a snapshot ‘frozen’ in one position, the biologically active form
of the protein may undergo dramatic conformational changes upon ligand binding. This highlights
the potential importance of being able to model protein and ligand flexibility in SBDD. Several
programs such as GOLD [45], SLIDE [46] and FlexE [47] can be used to this end, however, the increased
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computing time required can be prohibitive [48]. Additionally, these programs only account for side
chain flexibility, which can be insufficient when modelling more complex protein backbone motions as
in the case of receptors [49].

2.2. Methods of SBDD

Once a target has been selected, there are three main methods that are used to identify or
design new ligands based on its structural information: Inspection of substrate and known inhibitors,
virtual screening, and de novo design. In the first method, inspection of substrates, cofactors,
or known inhibitors of the protein is used to inform the modification of these compounds to become
inhibitors [25,50,51]. In virtual screening, libraries of available small molecules are docked into the
region of interest in silico and scored based on their predicted interaction with the site. The third
approach involves de novo design of small molecule fragments that are positioned in the target site,
scored, and then linked in silico to give one complete molecule (Figure 2). The final linked compounds
are then chemically synthesized and tested for biological activity. Recent examples of these three
approaches in the context of antivirulence drug discovery are discussed below.
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Figure 2. A typical workflow for virtual high-throughput screening and de novo drug design.
(A) The virtual screening procedure used to select active compounds from a large library of existing
molecules. SAR, structure-activity relationship. (B) The procedure for de novo design of ligands via
the fragment-based approach using programs such as LUDI or SPROUT.

3. Substrate- and Known Inhibitor-Based Design

It is frequently useful to take the first cue in drug design from Nature. When a substrate or
cofactor of a target protein is known, it can be structurally modified to create natural-product based
inhibitors [52]. Indeed, the HIV protease inhibitors that began the SBDD revolution were themselves
based on the unique Phe-Pro and Tyr-Pro cleavage site motifs present in the HIV polyprotein
substrates [26]. Typically, the process begins with a co-crystal structure of the target protein in
complex with the substrate, cofactor, binding partner, or drug lead. Modifications are then made
based on the interactions with the target site to increase inhibitor potency or improve pharmacokinetic
properties. Substrate modification has been applied to quench quorum sensing, which is a population
density-dependent mode of communication used by pathogenic bacteria to coordinate virulence
via the production and detection of acyl homoserine lactone (AHL) signal molecules (Figure 1).
A potent quorum sensing inhibitor was derived from an endogenous Pseudomonas aeruginosa AHL
by exchanging the hexanone ring for a phenolic ring, resulting in downstream inhibition of elastase
virulence factor production [53]. Later, the complex structure of AHL with its cognate response
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regulator TraR from Agrobacterium tumefaciens guided the design of the potent quorum sensing inhibitor
N-(heptylsulfanylacetyl)-L-homoserine lactone [54] (molecule 1, Figure 3).

Peptidomimetics also fall under the umbrella of substrate-inspired drug design. These small
(<2 kDa) peptide-like fragments mimic the interaction interface between larger proteins, thereby
outcompeting the endogenous binding interaction. Unlike small molecules, peptidomimetics are
particularly effective for disrupting protein-protein interaction as they can occupy the large surface
area of a binding cleft [55]. Peptidomimetics have been successfully demonstrated to inhibit bacterial
secretion systems, which are used by Gram-negative species to transport virulence factors through
the normally-impermeable outer membrane (Figure 1). Synthetic peptides mimicking the coiled-coil
regions of the translocator protein EspA and the needle protein EscF of the Escherichia coli type 3
secretion system (T3SS) effectively inhibited the T3SS dependent hemolysis of red blood cells [56].
Our group recently demonstrated the first structure-guided inhibition of the type 2 secretion system
(T2SS) in P. aeruginosa using peptidomimetics. The synthetic peptides targeted the interface between
XcpV-XcpW, which form a core binary complex in the secretion pseudopilus as determined via protein
complex structures. The peptides inhibited toxin secretion in vitro and significantly attenuated the
virulence of P. aeruginosa in a Caenorhabditis elegans model of infection [57], further validating the
feasibility of targeting virulence pathways to treat bacterial infections.

While peptidomimetics can provide an important proof-of-principle in the laboratory,
their practical use in the clinic is severely limited by poor bioavailability, low stability, rapid
degradation and clearance from the blood [58]. Small molecules that incorporate only the key structural
elements of larger peptidomimetics are thus an attractive alternative, as demonstrated in the case
of chaperone-usher pathway inhibitors, termed pilicides. These molecules inhibit the assembly of
adhesive pili, which are used by Gram-negative pathogens for binding, invasion, and biofilm formation
on epithelial cells (Figure 1). Pilicides were designed based on structural studies of the chaperone PapD
and its cognate pilus subunits, which revealed a critical Arg8 and Lys112 cleft in the chaperone with
which pilus subunits normally interact [59]. Small molecule mimetics of the C-terminus of the pilus
subunits effectively disrupted pilus-dependent virulence phenomena, including bacterial attachment
and biofilm formation [59,60]. This original pilicide has since been modified to inhibit curli biofilm
biogenesis via a similar mechanism, resulting in attenuated virulence of E. coli in murine bladder
infection [61] (molecule 2, Figure 3).

4. Virtual Screening of Chemical Libraries

4.1. Background

In silico docking enables rapid screening of very large collections of molecules—up to 100,000
per day when using a cluster of parallel computers [62]. The docked molecules typically originate
from a large public database such as the National Institutes of Health Clinical Collection, from which
hit molecules can readily be obtained for testing in biochemical assays. Many compounds are also
available from commercial sources. At the core of each docking program is an algorithm that scores
the validity of docking poses. Shape, van der Waals forces, electrostatic interactions, solvent accessible
surface area and the formation of hydrogen bonds are all approximated by a docking score. A detailed
evaluation of the computational methods used in virtual screening will not be provided here, as this
has been extensively reviewed elsewhere [49]. Different algorithms place different weightings on
each binding metric, thus a consensus scoring approach is recommended. If the same compound is
predicted to bind tightly by multiple algorithms, this molecule can be more confidently selected as
a lead.

Docking in its simplest form began with rigid-body systems, where both protein and ligand
assume fixed conformations and ligand binding poses are searched in six-dimensional space via
rotation or translation [63]. Many reports have emphasized the importance of accounting for
protein and ligand flexibility in scoring, thus, most current software offers these options (Table 1).
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There are now more than 60 different docking programs available for academic and commercial use,
reviewed in depth elsewhere [49,64–66]. AutoDock, GLIDE (Schrödinger) and GOLD (The Cambridge
Crystallographic Data Centre, Cambridge, UK) are three predominant programs whose application in
antivirulence drug discovery will be discussed below.

4.2. AutoDock

AutoDock is a free suite of docking programs that is used to predict how a small, flexible ligand
will bind to a target of known 3D structure. The AutoDockTools front-end graphical interface is used
to set up and analyze a docking experiment. Then ‘autodock’ performs the docking calculations of
the ligand to the target protein, which is represented by a set of grids pre-calculated by ‘autogrid’.
Older versions of the software (versions 2.4-4.0) use Monte Carlo simulated annealing to search ligand
conformations, and a grid-based approach for energy evaluation [67]. A genetic algorithm is used to
generate a series of docking poses and cluster them based on energy similarity. Interestingly, studies
have shown that it is the most populated cluster, and not necessarily the lowest-energy cluster that
best-predicts the native state of the docked ligand [68–70]. AutoDock versions 4.0 and up incorporate
the Assisted Model Building with Energy Refinement (AMBER) force field [71], along with free energy
scoring functions based on known inhibition constants for a large sample of protein-ligand complexes.

An offshoot of the original program, called AutoDock Vina, eliminated the empirical scoring
function and the genetic algorithm energy clustering of former versions in favour of knowledge-based
scoring. This is accomplished via Monte Carlo sampling and the Broyden-Fletcher-Goldfarb-Shanno
method for local optimization. AutoDock Vina yielded significant improvement in both prediction
accuracy and docking time [72]. PSOVina is a particle swarm optimization derivative of the AutoDock
Vina framework that dramatically reduces execution time without compromising docking accuracy [73],
highlighting the potential for swarm intelligence in screening.

Table 1. A comparison of widely used SBDD computer programs.

Program Search
Strategy

Flexible
Ligand?

Flexible
Protein Side
Chains?

Description Free for
Academia?

Virtual
screening

AutoDock
[67,74] GA/MC yes yes

Exhaustive search of
interaction energy grid
followed by simulated
annealing energy scoring

yes

GOLD [45] GA yes yes
Positions ligand and minimizes
energy via an evolutionary
algorithm

no

eHITS [75] IC yes no

Ligands are divided into rigid
fragments, which are docked
individually, then
reconstructed

no

GLIDE [76] Hybrid yes no
Protein-ligand coulomb-vdW
energy minimization and an
empirical GlideScore

no

FlexE [47] IC yes yes
Incremental construction by
sampling ligand conformations
and target ensembles

no

ICM [77] MC yes yes
Monte-Carlo energy
minimization of protein and
ligand

no

De novo
ligand
design

LUDI [78] EG yes no Empirically-derived energy
scoring of fragments no

SPROUT
[79] AI yes no Template atoms or fragments

are linked to make skeletons no

MCSS [80] Hybrid yes no
CHARMm-based exhaustive
search for target site functional
group minima

no

GA, genetic algorithm; MC, Monte-Carlo, IC, incremental construction; EG, empirical geometry; AI, artificial
intelligence; FF, force field.
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An example of the application of AutoDock to antivirulence drug design is the structure-based
screening of the ZINC chemical database using a Phyre homology model of the YscN ATPase, a key
enzyme in the Yersinia pestis T3SS [74]. Docking results were obtained via the DOVIS large-scale virtual
screening pipeline, using AutoDock 4.0 as the engine. YscN was modeled as a rigid-body molecule,
and the ligands were allowed to be flexible. The average free energy of ligand binding was calculated
for each cluster, in order to down-select the top 20,000 compounds from the sampled 5 million. Further
minimization using CHARMm and re-scoring with LigScore2 narrowed the lists to 50 compounds,
which were tested in vitro. Several best-performing compounds inhibited YscN ATPase activity at
concentrations below 50 µM. These compounds were also effective at blocking T3SS-mediated YopE
secretion by Y. pestis, and one compound was able to fully inhibit Y. pestis cytotoxicity towards cultured
mammalian cells at concentrations below 50 µM (molecule 4, Figure 3). The identified hit molecules
also inhibited the homologous BsaS protein from Burkholderia mallei [74].

4.3. Glide

Grid-based LIgand Docking with Energetics (Glide) is another popular docking program offered
by Schrödinger [76]. Glide performs a near-exhaustive search of the positional, orientational,
and conformational space available to the ligand by using a series of hierarchical filters. As with
AutoDock, target proteins are represented by a pre-computed grid. Next, a set of initial ligand poses is
selected from an exhaustive search of the minima in the ligand torsion-angle space. The poses selected
from this initial screen are then minimized according to molecular mechanics and a distance-dependent
dielectric model. A Monte Carlo procedure uses nearby torsional minima to properly orient peripheral
groups, then, an empirical GlideScore is computed [76]. The GlideScore approximates ligand binding
free energy by rewarding and penalizing a combination of many terms known to influence ligand
binding, including electrostatic and van der Waals forces. Glide has been used to discover several
effective antivirulence molecules, including inhibitors of Staphylococcus aureus response regulator
AgrA [81] and the P. aeruginosa quorum sensing receptors LasR and RhlR [82].

S. aureus AgrA is a transcription factor for the expression of several predominant toxins
and virulence factors that mediate the pathogenesis of this bacterium. Specifically, the toxins
alpha-hemolysin (Hla) and phenol-soluble modulin α damage host cell membranes to facilitate
bacterial evasion of host defences [83]. Expression of these toxins involves a complex quorum
sensing cascade, a key step of which is the phosphorylation and subsequent dimerization of the
N-terminal regulatory domain of AgrA. As no crystal structure of the N-terminal regulatory domain
of S. aureus AgrA was available, a homology model was constructed via the Swiss-Model server
based on the regulatory domain of the sigma 54 transcriptional activator NtrC1 from Aquifex aeolicus.
Glide was used to dock compounds from the National Cancer Institute library of 90,000 small
molecules. Compounds were docked to a grid covering a 10 Å cube centered on the phosphoryl
acceptor residue Asp 59. The 107 top-scoring compounds were tested in vitro. At 10 µg/mL, four
compounds inhibited Hla secretion by more than 70%, in addition to markedly decreasing hemolysis of
rabbit erythrocytes. Interestingly, one of the top four compounds was the FDA-approved nonsteroidal
anti-inflammatory drug diflunisal [81] (molecule 3, Figure 3), presenting an opportunity for off-label
testing as an antivirulence prophylactic or adjuvant in humans.

In another study, Glide was used to dock 1,920 natural compounds against the P. aeruginosa
LasR and RhlR quorum sensing receptors [82]. These receptors bind AHL signalling molecules (as
discussed in Section 3), causing conformational changes that allow DNA binding and transcriptional
activation of downstream virulence genes (Figure 1). Quorum sensing controls approximately 350
genes in P. aeruginosa, of which ~30% encode virulence factors [84]. The crystal structure of LasR (PDB
ID: 2UV0) was used for docking, while a homology model was used for RhlR. Grid generation was
performed around the ligand binding site and ligands were docked flexibly via the standard Glide
protocol. Four top-scoring compounds, namely rosmarinic acid, naringin, chlorogenic acid, and morin
significantly inhibited the production of protease, elastase and hemolysin at concentrations between
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750 to 1000 µg/mL. Other virulence determinants, such as biofilm formation and swarming motility,
were also attenuated by the compounds [82].

4.4. GOLD

GOLD stands for Genetic Optimization for Ligand Docking. Unlike Glide, which treats the target
protein as rigid, GOLD treats the target protein side-chains as flexible. This ability affords GOLD a
more realistic and customizable docking methodology, with a wide range of constraints available to
tailor docking towards a known motif or critical H-bond interaction. Like AutoDock, GOLD uses a
genetic algorithm to probe ligand flexibility. This involves an evolutionary process whereby ligand
geometry parameters are mapped onto ′chromosomes′, which are then subjected to iterative rounds
of mutation, crossover, scoring and selection to optimize binding orientation. GOLD also scores
the displacement of loosely bound water molecules upon ligand binding, which is a fundamental
requirement prior to forming a new H-bond with a drug [45]. In general, GOLD excels with hydrophilic
targets with some lipophilic character in the active site, but it performs significantly worse than Glide
when binding is mainly mediated by hydrophobic contacts [49].

In one study using GOLD, a peptidomimetic fragment library was screened for inhibitors of
DsbA [85]. This dithiol oxidoreductase protein is a key component of the oxidative folding system
in Gram-negative bacteria, and plays a particularly important role in virulence factor assembly
in the periplasm prior to secretion (Figure 1). Bacterial strains lacking Dsb enzymes are viable,
but avirulent [86]. The 1.6-Å resolution crystal structure of Proteus mirabilis DsbA in complex with
a DsbB-based hexapeptide inhibitor (PDB ID: 4OD7) [87] was used as a starting point to screen for
more ‘drug-like’ compounds in silico. One initial hit molecule scored well using three different
scoring methods available in GOLD (GoldScore, ChemScore, and ChemPLP), and was thus selected
for further modification. The derivative with two additional methoxy groups on the phenyl ring
of the lead yielded the best activity (molecule 5, Figure 3), with an IC50 of ~1 mM as measured by
synthetic substrate fluorescence [85]. This activity is ~200 fold lower than that observed for larger DsbB
peptidomimetics [88], indicating that DsbA may not be an ideal candidate for small molecule inhibition.

 

                         
 
 
 

    
 
      
  
 
 
 
 
 
 
 
 
  

5 DsbA inhibitor  
IC50 ~ 1000 µM 

1 LasR inhibitor 
IC50 = 6 µM  

2 pilicide/curlicide (FN075) 
IC50 = 50 µM 

4 T3SS ATPase inhibitor (7146) 
IC50 < 20 µM 

3 AgrA inhibitor (diflunisal) 
IC50 < 10 µg/mL 

6 AHL synthase inhibitor 
(trans cinnamaldehyde) 
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Figure 3. The structures of antivirulence compounds that have been discovered using SBDD
techniques. IC50, half-maximal inhibitory concentration. 1, LasR quorum sensing inhibitor
N-(heptylsulfanylacetyl)-L-homoserine lactone [54]; 2, bifunctional pilicide/curlicide FN075 [61]; 3,
AgrA transcription factor inhibitor diflunisal [81]; 4, Type 3 secretion system (T3SS) inhibitor 7146 [74];
5, DsbA thiol disulfide oxidoreductase inhibitor [85]; 6, acetyl homoserine lactone (AHL) synthase
quorum sensing inhibitor trans cinnamaldehyde [89].
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GOLD has also been applied to elucidate the mechanism of binding of known quorum quenching
molecules [89]. Using a reporter strain of E. coli that expressed the functional AHL synthases LasI
and RhlI of P. aeruginosa, pure compounds of plant origin were screened for AHL synthase inhibition.
The most potent inhibitor, trans-cinnamaldehyde (molecule 6, Figure 3), was then docked to a LasI
crystal structure. Based on the docking pose, the authors postulated that trans-cinnamaldehyde
forms hydrophobic and Pi-Pi interactions with Phe27, Trp33 and Phe105, and one H-bond with
Arg30 of LasI. These residues are completely conserved, and form the putative binding pocket for
S-adenosylmethionine—the source of the homoserine lactone ring required for AHL synthesis [89].
The orientation of the bound inhibitor will help inform its chemical modification to improve affinity,
perhaps exploiting the well-conserved acyl-chain binding tunnel [90]. Similarly, another study used
Gold scores to identify N-acetyl glucosamine as an inhibitor of LasR, TraR, and CviR quorum sensing
receptors [91].

5. De Novo Ligand Design Based on Protein Structure

5.1. Background

De novo ligand design is the most recent addition to the SBDD toolkit. Since its inception in the
early 1990s, de novo design has seen significant improvement owing to increasing computational
power and improved algorithms. Most of the de novo design programs follow a similar operation
pipeline: small functional groups are docked into the target site, scored, and then linked to form a
whole molecule (Table 1). Since de novo SBDD involves docking fragments of molecules, this technique
is synonymously referred to as fragment-based design. Common programs include LUDI (Discovery
Studio, BIOVIA, San Diego, CA, USA; discussed below), SPROUT (Keymodule Ltd., Leeds, UK),
and MCSS (Schrödinger LLC, New York, NY, USA). While de novo design can lead to the creation of
novel compounds, this also means that costly custom synthesis of compounds is required for in vitro
validation. Current versions of LUDI and other programs now incorporate algorithms to predict the
synthetic feasibility of new compounds, thus ensuring only practical molecules are pursued. De novo
methods have been used to design several antivirulence drugs.

5.2. LUDI

LUDI builds new ligands for the cleft of a given protein of known 3D structure. This program uses
rules about energetically favourable nonbonded contacts to score interactions between specific moieties
of the protein and ligand. These rules are statistically derived from analysis of the crystal packing
observed in small organic structures from the Cambridge Structural Database (CSD). The program
works in three steps to score and connect small fragments. First, interaction sites that are suitable to
form hydrogen bonds or fill hydrophobic pockets are identified using the empirical data from the
CSD. Small fragments from a library are then docked into the protein target site in such a way that
H-bonds and ionic interactions with the protein are maximized, and lipophilic groups on the ligands
fill hydrophobic pockets in the protein. The final step involves appending further fragments, some or
all of which are connected to form a complete molecule [78]. The newly-connected putative ligands
then receive an overall binding score using a simple algorithm based on empirical binding constants
of protein-ligand complexes [92].

Recently, LUDI was used to target AphB, a Vibrio cholerae LysR-type transcriptional regulator
that regulates the expression of genes encoding cholera toxin and the toxin-co-regulated pilus [93].
The crystal structure of AphB from V. cholerae (PDB ID: 3SZP) was used for inhibitor design. 1491
commercially-available fragments were extracted from a database of FDA approved drugs and screened
in LUDI. Fragments were selected based on critical interactions with residues in the active site of AphB
and the Gibbs free energy of binding. Three top-scoring fragments were used as the basis for multiple
linked-fragment molecules. The resulting novel scaffolds were then subjected to a substructure search
in the PubChem database, which identified 1087 drug-like small molecules. These molecules were
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docked using Glide XP. Among the top seven hits was ribavirin, an FDA-approved antiviral drug
(Figure 4). In vitro testing via NMR and isothermal calorimetry confirmed ribavirin binding to AphB,
with a dissociation constant ~300 µM. Ribavirin at 100 µg/mL effectively inhibited cholera toxin
production by cultured V. cholerae. Most impressively, ribavirin inhibited the intestinal colonization of
V. cholera, significantly improving survival in a mouse model of infection [93].
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site of V. cholerae AphB (PDB ID 3SZP) [93]. The inhibitor interacts with key labeled residues; H-bonding
is shown by dashed lines. Ribavirin is shown in orange, and the AphB backbone is shown as
green ribbons.

Another virulence protein that has been targeted with LUDI is Staphylococcal accessory regulator
A (SarA) [94]. This protein is a transcriptional activator of S. aureus quorum sensing, and it has
been implicated in downstream biofilm formation and virulence protein secretion in this pathogen.
The crystal structure of SarA (PDB ID: 2FRH) was processed, and the known active site comprised of
three key residues (D88, E89 and R90) within a 7.7 Å radius sphere was screened for fragment
binding. Fragments were then linked in LUDI and the resulting compounds were subject to
CHARMm energy minimization, followed by docking with two separate programs to rank binding
affinity [95]. The optimized fragment-based inhibitor 4-[(2,4-difluorobenzyl)amino] cyclohexanol was
later synthesized and tested in vitro. At 200 µg/mL, this compound significantly inhibited S. aureus
biofilm formation and adherence to HEp-2 cells, in addition to attenuating virulence in a rat model of
medical implant infection [94].

5.3. De Novo Binding Protein Design

In addition to the de novo design of small molecule as outlined above, similar principles have
been successfully applied to create small (4-12 kDa) binding proteins that bridge the gap between
monoclonal antibodies and small molecule drugs. A recent study created a massively parallel de
novo protein design pipeline that was successfully used to generate antivirulence proteins against
Clostridium botulinum toxin (BoNT) [96]. First, a virtual library of over 4000 protein backbone
geometries, with varying topologies and disulfide connectivities was generated in the Rosetta software
suite. The helical segments of each backbone were then superimposed on the interface helices in the
previously solved BoNT- B synaptotagmin-II co-crystal structure (B synaptotagmin-II is the natural
target of BoNT). Hotspot residues from the endogenous complex were added to seed the helix of the
binding protein. Rosetta combinatorial sequence optimization was then used to design the remaining
residues to maximize binding affinity and stability. Yeast display and deep sequencing were used to



Molecules 2019, 24, 378 11 of 16

test and identify successful binding proteins. Several proteins bound to botulinum toxin with 1–20 nM
affinity and protected rat cortical neurons from entry and damage by the toxin [96].

6. Conclusions and Outlook

As the global burden of bacterial resistance to traditional antibacterial drugs continues to rise,
the need for new alternatives is becoming increasingly dire. In some cases, clinical isolates have been
described that are resistant to all previously effective antimicrobial agents [97]. The high throughput
screening programs that have dominated the search for new antibacterial drugs have failed to deliver,
and a consensus has emerged that new approaches are needed [98]. The development of new drugs
targeting virulence pathways is one such approach, which has seen a steady increase in research activity
over the past decade [18]. Likewise, the use of SBDD in all fields of pharmaceutical development
experienced a similar burgeoning in recent years. The increasing availability of high-resolution
structures of virulence proteins, along with faster, more accurate computer docking and design
programs, have coalesced to facilitate the rational design of antivirulence compounds as described
in this review. While the plethora of druggable virulence targets offers exciting prospects for new
pharmaceuticals, more basic research into virulence pathways, models of virulence, and how to
minimize the development of antivirulence drug resistance is required. Evaluating the effectiveness
of antivirulence drugs requires conditions that more closely resemble the pathogen’s physiological
niche, in contrast to the straightforward growth inhibition assays used for traditional antibiotics.
This will require greater up-front investment from pharmaceutical companies, which may be a difficult
proposition in an industry already weary of antimicrobial drug profitability. However, the field of
antivirulence research is still in its infancy, and will undoubtedly continue to grow in future years.
In the post-antibiotic era, rationally-designed antivirulence drugs have the potential to become an
indispensable weapon against bacterial infection.
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