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Abstract

Recurrence and poorly differentiated (grade 3 and above) and atypical cell type endometrial

cancer (EC) have poor prognosis outcome. The mechanisms and characteristics of recur-

rence and distal metastasis of EC remain unclear. The extracellular matrix (ECM) of the

reproductive tract in women undergoes extensive structural remodelling changes every

month. Altered ECMs surrounding cells were believed to play crucial roles in a cancer pro-

gression. To decipher the associations between ECM and EC development, we generated

a PAN-ECM Data list of 1516 genes including ECM molecules (ECMs), synthetic and degra-

dation enzymes for ECMs, ECM receptors, and soluble molecules that regulate ECM and

used RNA-Seq data from The Cancer Genome Atlas (TCGA) for the studies. The alterations

of PAN-ECM genes by comparing the RNA-Seq expressions profiles of EC samples which

have been grouped as tumorigenesis and metastasis group based on their pathological

grading were identified. Differential analyses including functional enrichment, co-expression

network, and molecular network analysis were carried out to identify the specific PAN-ECM

genes that may involve in the progression of EC. Eight hundred and thirty-one and 241

PAN-ECM genes were significantly involved in tumorigenesis (p-value <1.571e-15) and

metastasis (p-value <2.2e-16), respectively, whereas 140 genes were in the intersection of

tumorigenesis and metastasis. Interestingly, 92 of the 140 intersecting PAN-ECM genes

showed contrasting fold changes between the tumorigenesis and metastasis datasets.

Enrichment analysis for the contrast PAN-ECM genes indicated pathways such as GP6 sig-

naling, ILK signaling, and interleukin (IL)-8 signaling pathways were activated in metastasis

but inhibited in tumorigenesis. The significantly activated ECM and ECM associated genes

in GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways may play crucial
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roles in metastasis of EC. Our study provides a better understanding of the etiology and the

progression of EC.

Introduction

Extracellular matrix (ECM), a critical component of tissues, is an interlocking mesh of fibrous

proteins and polysaccharides including collagen, elastin/nidogen, laminins, and proteoglycans

that form a well-organized structure in multicellular organisms [1]. The basic structure of the

ECM complex, as described in Fig 1A, provides a supporting structure for cells to anchor [2].

In addition, soluble molecules, such as glycopeptidases and growth factors, are present in

spaces among cells and the ECM structure, may regulate cell proliferation, differentiation, and

the movement [3], as well as many secreted signaling molecule such as semaphorin III family

members genes (SEMA3F) also plays there role in Endometrial cancer [4]. The ECM networks

and various cytokines and growth factors create a microenvironment for cell growth and

development. ECM receptors at the cell surfaces mediate 2-way signals for cells to sense the

microenvironment and react to the stimuli [5]. In cancer patients, tumor cells do not grow

along, and their behaviours are regulated by their own biology and also by interacting with the

surrounding microenvironment [6]. Many components of ECM, like fibrous collagen and

elastin create tissue stiffness [7]. Increases in collagen linearization and tissue stiffness in pre-

cancerous tissues of breast cancer were reported, and such changes increase the tumor inci-

dence and progression [7]. Proteolysis is a significant factor that leads to metabolic

reprogramming of ECM dynamics, and disruption of these control mechanisms causes ECM

dysregulation and disorganization, which may contribute to malignant processes or cancer [8,

9]. The ECM paves the way for cancer cell development by creating a favourable microenvi-

ronment, more-intense stiffness, etc. [10].

Endometrial cancer (EC) is a commonly occurred malignancy of the female reproductive

tract that arises from the uterus lining [11]. While the occurrence of the disease varies widely

among countries, EC has become the most common female cancer in areas like North Amer-

ica, Europe, and middle-income developing countries such as South Africa and India [12]. In

most cases, women with more-aggressive EC have higher-grade tumors, and the disease

spreads from the uterus within 1 year [13]. About 75% of EC patients are diagnosed at an early

stage (International Federation of Gynecology and Obstetrics (FIGO) stages I and II) and have

an excellent prognosis with a 5-year survival rate of 80% [14, 15]. However, survival rates

decrease in severe cases, at 52% and 27% for patients at stages III and IV, respectively [15]. EC

is classified into two groups, type I and II endometrioid tumors [16]. Type I is estrogen-depen-

dent [17], obesity is the major risk factor [18], and it has a favourable prognosis; in contrast,

type II tumors occur in elderly, non-obese women, are estrogen-independent and exhibit

worse outcomes [16, 19]. The most common treatment for patients with EC is surgery com-

bined with adjuvant radiotherapy for early-stage type I EC, and combined with chemotherapy

for type II EC [11]. Many studies showed that women with a family history of EC have a higher

risk of developing EC in their lifetime [20]. The pathological classification of EC is based on

the FIGO system [21, 22]. Stage I cancer is described as the tumor only being found in the

uterus or womb and not having spread to other parts of the body. Stage II or beyond is

described when a tumor has spread out of the uterus, depending on the migration site and

invasion of lymph nodes.
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ECM plays a critical role in the female endometrium, being involved in major remodelling

changes every month. The ECM of the reproductive tract in women undergoes extensive struc-

tural remodelling for decidualization, implantation, and renewal of the endometrial layer each

month, while abnormal ECM changes can contribute to processes such as endometriosis,

infertility, and cancer development and metastasis [23]. The invasive property is considered as

cancer cells intrude into surrounding normal tissues and metastasize. Alterations of ECM,

ECM-associated molecules, and the local ECM microenvironment that can promote tumor

progression are illustrated in Fig 1. Some of the ECM molecules such as aggrecan, nidogen,

collagen type VIII chain α1 and type XI chain α2, were overexpressed in stage III EC [24],

matrix metalloproteinase (MMP)-9, an ECM degradation enzyme, might play a vital role in

uterine cancer progression [25]. Previous studies by Grabarek B et.al [26] also shows normal

human dermal fibroblast cells along with JAK/STAT signaling pathways regulates the

Fig 1. Extracellular matrix (ECM) components and their alterations during tumor development and progression. (a)

ECM components, including proteoglycans, collagens, integrins, and many other substances, form a network structure, and

(b) alterations of ECM networks may allow tumor cells to migrate from the original site to distant organs and develop into

tumors.

https://doi.org/10.1371/journal.pone.0231594.g001
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numerous miR’s expression under the influence of adalimumab therapy, indicating ECM mol-

ecules can be targeted for treatment effectiveness. However, the regulatory mechanisms of

ECM and ECM-associated molecules in EC are still unclear.

The ECM and the ECM associated molecules involved in the microenvironment surround-

ing the cells seem to play important roles in tumor development; however, a comprehensive

analysis of the regulatory mechanisms of ECM during EC development is still lacking. In this

study, we attempted to establish a PAN-ECM Data List by collecting ECM and ECM-related

genes through a literature survey and incorporation of related databases. Subsequently, we

retrieved the gene expression profiles of EC samples at different stages (normal, early, and late)

from The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (TCGA-UCEC)

data, and used different bioinformatic analysis tools including DESeq2, FunRich, Ingenuity

Pathway Analysis (IPA), and Weighted correlation network analysis (WGCNA) to identify

and verify the key ECMs and their associates that may participate EC progression. A flow chart

and an overview of the computational analysis used in this study was shown in Fig 2.

Materials and methods

Construction of the PAN-ECM Data List

Through a literature survey (S1 Table) and incorporation of data from related databases

(MatrisomeDB; http://matrisomeproject.mit.edu/) [27], a complete PAN-ECM Data List was

generated for further analysis. The Matrisome project provides information on ECM proteins

which are collected by computational identification methods, and a proteomics pipeline was

developed to characterize compositions of ECM tissues and tumors [28]. However, several

essential molecules were lacking, such as ECM-associated regulatory factors (e.g., SMC3),

ECM synthetic/degradation enzymes (e.g., UXS1, XYLT1, and XYLT2), cell adhesion mole-

cules (e.g., CDH1 and CD44), ECM microenvironment-associated molecules (e.g., SMAD1
and SMAD7), etc. that were previously identified as playing critical roles in ECM regulation

[29–35].

Therefore, we herein focused on developing a complete dataset for ECM research and called

it the PAN-ECM Data List. The construction pipeline is depicted in Fig 2A. ECM-associated

genes were collected from a literature search using such keywords as cell adhesion molecules,

extracellular matrix protein, proteoglycan, collagen, glycoprotein, ECM regulator, ECM

micro-environment associated, proteoglycans and secreted factors, etc. Additionally, ECM

genes in MatrisomeDB were also integrated into the PAN-ECM Data List, and their functions

were annotated from functional annotation databases including Gencard.

EC data collection and analysis of differentially expressed genes (DEGs)

Inclusion and exclusion criteria for UCEC sample and the classification of DEGs. The

RNA-Seq level 3-gene expression data for normal and solid tumors from UCEC patients were

collected from TCGA [36] (Broad GDAC Firehose database: http://firebrowse.org/?cohort=

UCEC). In total, 35 normal samples, and 476 tumor samples were used for this study. Based

on FIGO staging for endometrial carcinoma, the tumor samples at stage IA was classified as

early-stage samples, samples obtained from patients at stage II and above were classified as

late-stage samples. In this study, 159 samples were late-stage and 317 samples were early-stage

samples. Based on the description of the pathology in FIGO staging, EC tumors at stage IB

has� 50% invasion of the myometrium. To avoid the interferences, the data from the samples

at stage IB patient was excluded in this study.

Both raw read counts and normalized fragments per kilobase of transcripts per million

mapped reads (FPKM) values (FPKM-UQ) at the gene level were used for further analysis.
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Clinical XML files were also downloaded to retrieve stage and related clinical information,

which was used to recognize tumorigenesis and metastasis samples, as explained in FIGO

guidelines [21, 22]. Tumorigenesis DEGs were identified by comparison the DEGs from early-

stage (stage IA) to normal samples, and metastatic DEGs were identified by comparing the

DEGs from late-stage (stage II or above) to early-stage EC samples (stage IA).

Statistical analysis. Expression data were pre-processed and analyzed using DESeq2, an R

package [37], and log2 fold change cutoffs of>1.5 and adjusted p values of<0.01 were used to

determine significant DEGs. With thousands of genes tested in an RNA-Seq, multiple compar-

ison adjustments were necessary. The Bonferroni method was applied for filtering DEGs; this

controls the mean number of false positives, that can be used for multiplicity adjustment [38].

Samples at different stages were taken for a comparative analysis to identify tumorigenesis-

and metastasis-associated DEGs during EC development, as illustrated in Fig 2B. A Chi-

squared test was applied to test whether ECM genes were significantly associated with EC

tumorigenesis or metastasis.

Fig 2. An overview and flowchart of the study. This study includes three main parts, (a) construction of the PAN-ECM Data List, (b)

Identification of the ECMs, ECM-associateds molecules, the involved signaling pathways participating in EC development, and (c) Networking

analyses for verification of the key ECM genes involved in EC progression.

https://doi.org/10.1371/journal.pone.0231594.g002
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Analysis of ECM regulatory mechanisms during EC development

To identify potential functions and regulatory roles of the ECM during EC development, as

shown in Fig 2C, three different network analytical approaches were applied: a canonical path-

way network analysis, molecular interaction network analysis, and co-expression network

analysis. The canonical pathway network analysis was performed by using an Ingenuity Path-

way Analysis (IPA) [39], that uses the popular activation z-score analytical method. It was pro-

posed by Kraèmer et al. in 2014 [39], and it measures activation states, (either increased or

decreased) of pathways affected by DEGs. We used a statistical approach to define a quantita-

tive z-score, which determines whether a biological function has significantly more “increased”

predictions than “decreased” predictions (z-score >0) or vice versa (z-score <0). In general

practice, an absolute z-score of>2 or<-2 may be significant. A molecular interaction network

analysis was performed using FunRich [40] to generate networks based on predicted or experi-

mentally validated interactions, such as protein-protein interactions and gene-gene regulation

to identify critical ECM-involved networks or critical ECM hub genes. The coexpression net-

work analysis was performed using WGCNA, an R package [41], for EC samples. The Blockwi-

seModules function was applied to construct gene coexpression hierarchical clustering, and

dynamic tree cut methods were used to identify co-expression networks.

Results

PAN-ECM Data List

Based on a literature survey, a list of ECM and ECM-associated molecules including 1516

ECM-related genes, called as PAN-ECM Data List was generated (S1 Table). The PAN-ECM

genes were then classified into 15 categories according to their biological functions and locali-

zations: cell surface receptors, cytoskeleton, cell adhesion molecules, collagens, ECM receptor

cofactors, ECM receptors, ECM, ECM-associated regulatory factors, ECM synthetic/degrada-

tion enzymes, ECM-affiliated proteins, ECM glycoproteins, ECM regulators, ECM microenvi-

ronment-associated, proteoglycans, and secreted factors. Numbers of genes in different

categories of the PAN-ECM Data List are given in Fig 3.

Tumorigenesis and metastasis DEG analysis

Total of 20,531 DEGs from EC patients was retrieved from TCGA. Background distribution of

1516 PAN-ECM genes in a total of 20,531 DEGs is 7.38%. Based on FIGO staging for endome-

trial carcinoma development, we investigated the expression level of the DEGs and classified

the DEGs from normal endometrium as the normal group, the DEGs from EC samples at

stage IA as an early-stage group, DEGs from EC samples at stage II and the above as late-stage

group. By comparing the expression level, 7880 DEGs were considered to be tumorigenesis-

associated (early vs. normal) and 1677 DEGs were metastasis-associated (late vs. early), respec-

tively. In those tumorigeneses- and metastasis-associated DEGs, 831 (S2 Table) and 241 (S3

Table) DEGs were PAN-ECM genes, respectively. Interestingly, the 831 tumorigenesis-associ-

ated PAN-ECM genes of 7880 DEGs (10.54%, Chi-squared p<1.571e-15) and the 241 metasta-

sis-associated PAN-ECM genes of 1677 DEGs (14.37%, Chi-square p<2.2e-16) were

significant, as compared to the background distribution of 7.38% in the total of 20,531 DEGs.

Detailed information about fold change values in correlation with tumorigenesis and metasta-

sis and the list of 140 intersecting PAN-ECM DEGs were shown in Table 1. These PAN-ECM

genes were separated into four different categories according to their fold changes as up/up

(37 genes), up/down (35 genes), down/up (57 genes), and down/down (11 genes) in tumori-

genesis and metastasis, respectively. It indicates that 48 PAN-ECM genes were either up/up or
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down/down throughout all stages during EC development, whereas 92 PAN-ECM genes were

expressed in contrasting direction of fold change (up/down or down/up) at tumorigenesis and

metastasis stages.

Pathway analysis of tumorigenesis- and metastasis-related PAN-ECM

genes

IPA was applied for pathway analysis for the identified EC-associated PAN-ECM genes (Fig

4A). Numerous signaling pathways associated with the140 intersecting PAN-ECM DEGs were

identified (Fig 4B). The identified pathways included GP6 signaling, IL-8 signaling, ILK

Fig 3. PAN-ECM Data List description generated by a literature search. Bar chart indicated the distribution of total 1516 PAN-ECM

genes in the 15 classified categories. Numbers of the PAN-ECM genes in each category are shown at the top of each bar.

https://doi.org/10.1371/journal.pone.0231594.g003
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Table 1. The expression of 140 intersecting PAN-ECM DEGs in EC at tumorigenesis and metastasis stages.

Up/Up Genes (37#) (FC_T�,

FC_M†)

Up/Down Genes (35#) (FC_T�,

FC_M†)

Down/Up Genes (57#) (FC_T�, FC_M†) Down/Down Genes (11#) (FC_T�,

FC_M†)

ATP1A3 (1.30, 1.17) ADAM28 (1.16, -0.72) ADAM33 (-2.54, 1.05) LOXL4 (-1.91, 0.59) ADAMTSL3 (-1.97, -0.69)

C1QL1 (1.62, 1.27) ADAMTS6 (1.41, -1.09) ADAMTS1 (-2.36,

0.61)

MAG (-4.30, 1.48) CLEC3B (-3.98, -0.62)

C1QL4 (4.78, 0.90) ADAMTSL2 (1.41, -0.70) ADAMTS3 (-2.22,

1.41)

MEGF10 (-1.87, 1.03) DPT (-6.28, -1.04)

CAMK2N2 (1.76, 0.77) BMPR1B (1.04, -0.59) ADAMTSL4 (-2.36,

0.59)

NCAM1 (-4.28, 1.21) MASP1 (-4.75, -0.62)

CCL7 (1.53, 0.84) CCL24 (2.69, -1.37) AGTR1 (-4.45, 1.49) NELL2 (-1.89, 0.92) MATN2 (-1.70, -0.68)

COL10A1 (1.42, 1.42) CELA3A (3.42, -1.07) ANGPT1 (-2.62, 1.06) NTF4 (-3.87, 1.82) NDP (-1.47, -0.68)

COL11A1 (2.44, 0.99) CELA3B (2.05, -0.88) ANGPTL7 (-2.52, 1.30) PAPLN (-0.84, 0.85) OGN (-5.52, -0.98)

COL11A2 (1.46, 0.98) CST1 (6.09, -1.15) CADM3 (-3.20, 1.09) PCOLCE2 (-2.53,

0.83)

OVGP1 (-2.43, -1.81)

COL26A1 (4.72, 0.88) CST4 (6.22, -1.96) CCL11 (-1.74, 0.82) POSTN (-2.72, 0.60) PLG (-1.70, -1.64)

COL9A1 (3.51, 1.90) CTSV (5.15, -0.77) CHRD (-1.70, 0.94) PRL (-1.52, 0.96) SFRP4 (-2.05, -0.94)

COMP (1.85, 2.00) DMBT1 (3.05, -1.43) CHSY3 (-1.18, 0.63) RELN (-1.98, 1.13) VWA3B (-1.52, -0.96)

CRLF1 (1.32, 0.63) FBLN1 (1.13, -0.68) COL19A1 (-1.18, 0.62) SCG2 (-1.13, 0.94)

DCSTAMP (1.28, 0.60) GAD1 (5.24, -0.89) COL20A1 (-2.10, 1.51) SEMA6D (-2.26, 0.73)

EGFL6 (1.92, 0.66) GDF5 (3.84, -1.05) COL4A4 (-1.88, 1.67) SRPX (-3.80, 0.82)

ERBB2 (0.60, 0.73) HHIP (1.68, -0.62) COL6A3 (-2.20, 0.80) SYT1 (-3.47, 0.77)

EREG (2.84, 0.84) IHH (2.89, -1.52) COL6A6 (-2.89, 1.26) TGM1 (-1.48, 0.72)

F2 (2.89, 0.77) IL19 (4.92, -0.89) COL8A2 (-1.13, 0.91) THBS2 (-2.14, 0.65)

FGFR4 (1.83, 0.61) ITIH2 (2.00, -0.86) CRHBP (-4.00, 0.64) TLL1 (-2.59, 0.63)

FZD9 (1.49, 0.81) LMAN1L (3.55, -1.15) DNM3 (-1.10, 0.67) TPO (-2.49, 0.94)

IL11 (2.52, 1.21) MATN1 (1.04, -0.65) EYS (-0.79, 0.67) WFIKKN2 (-2.37,

0.92)

INHBE (1.30, 0.62) MMP26 (2.47, -3.07) FAP (-2.45, 0.69)

ITGB6 (2.12, 0.92) MUC13 (2.62, -0.88) FN1 (-1.05, 0.79)

KCP (1.75, 0.70) MUC5AC (6.62, -0.90) FREM1 (-2.34, 0.62)

LIF (1.46, 1.24) MUC5B (4.57, -1.13) FSTL3 (-1.43, 0.60)

MATN4 (1.92, 0.62) PF4V1 (4.66, -1.07) GDF6 (-2.56, 1.05)

MMP1 (4.57, 1.05) PLA2G10 (2.46, -0.72) GREM1 (-2.92, 0.77)

MMP10 (3.71, 1.14) BDNF (1.63, -1.76) HGF (-2.38, 0.60)

MMP13 (4.07, 1.12) S100A3 (2.23, -0.61) HPSE (-1.08, 0.66)

PRSS1 (3.87, 1.34) S100A7 (5.31, -1.33) IGSF10 (-2.65, 0.69)

PRSS3 (2.75, 1.01) SEMA3E (2.18, -0.84) IL5 (-1.53, 1.00)

RSPO4 (1.73, 1.28) SERPINA11 (4.81, -1.87) IL6 (-2.88, 1.51)

SFTPB (2.76, 1.08) NTF3 (1.43, -1.18) IMPG2 (-3.78, 0.66)

SLIT1 (1.25, 0.59) TNFSF14 (1.29, -0.79) ISM2 (-1.86, 0.78)

SST (3.72, 2.93) TPH1 (1.79, -0.84) ITGB3 (-1.54, 1.02)

TMPRSS15 (2.33, 0.99) WIF1 (2.75, -1.06) ITLN1 (-1.70, 0.87)

TNF (2.55, 0.61) LAMA2 (-3.10, 0.68)

WNT7A (3.64, 0.97) LGI2 (-3.55, 1.07)

Total of 140 intersecting PAN-ECM genes were identified and grouped as Up/Up, Up/Down, Down/Up, Down/Down expression in EC at tumorigenesis and metastasis

stages respectively.
#Number of genes.

�The fold change of DEGs in tumorigenesis (FC_T).

†the fold change of DEGs in metastasis (FC_M).

https://doi.org/10.1371/journal.pone.0231594.t001
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signaling, neuroinflammation signaling pathway, colorectal cancer metastasis signaling, leuko-

cyte extravasation signaling, and osteoarthritis pathway.

Interestingly, several signalling pathways were expressed in opposite fold changes at

tumorigenesis and metastasis stages. GP6 signaling pathway was inhibited with the lowest

z-score (-0.832) in tumorigenesis but activated in metastasis with the highest z-score

(3.605). IL-8 signaling (z-score = -1), ILK signaling (z-score = -1), and neuroinflammation

signaling pathways (z-score = -0.447) were also inhibited at tumorigenesis, but activated in

metastasis. Moreover, pathways such as colorectal cancer metastasis signaling (z-

score = 1.133 in tumorigenesis and 1.889 in metastasis), leukocyte extravasation signaling

(z-score = 1 and 1), and osteoarthritis (z-scores = 0.447 and 1.341) were activated at both

tumorigenesis and metastasis stages.

Pathway analyses were also carried out for the identified tumorigenesis and metastasis-asso-

ciated PAN-ECM genes, detailed canonical pathways generated from 831 tumorigenesis- and

241 metastasis-associated PAN-ECM genes were shown in S1 Fig. Notably, GP6 signaling

pathway had the highest z-score (4.14) in the metastasis-associated PAN-ECM genes and the

lowest z-score (-1.414) in the tumorigenesis-associated PAN-ECM genes, that resembles the

results from the analyses for the intersecting PAN-ECM genes. The PAN-ECM genes involved

in the GP6 signaling pathway were listed in Fig 5. The PAN-ECM genes including COL4A4,

COL6A6, ITGB3, PI3K, and αIIbβ3 in GP6 signaling pathway were upregulated in metastasis

and downregulated in tumorigenesis.

Fig 4. Diagram of the intersecting PAN-ECM genes and their involved canonical pathways in association with tumorigenesis and

metastasis of EC by IPA analysis. (a) The diagram shows the PAN-ECM genes in the intersection between tumorigenesis and metastasis.

(b) The heat map represents the intersecting PAN-ECM gene involved canonical pathways and their expressions in tumorigenesis and

metastasis of EC. The orange color indicates activation of functions/pathways, blue color indicates inhibition of functions/pathways.

Intensive color indicates higher absolute z-score.

https://doi.org/10.1371/journal.pone.0231594.g004
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Functional enrichment analysis of tumorigenesis- and metastasis-

associated DEGs

To depict the possible roles of the intersecting PAN-ECM genes in tumorigenesis and metasta-

sis of EC, the disease-related and bio functions of the DEGs from IPA were enumerated in

Fig 5. Tumorigenesis- and metastasis-associated PAN-ECM genes and their expressions inGP6 signaling pathway which were generated

using QIAGEN’s Ingenuity1 Pathway Analysis (IPA1, QIAGEN Redwood City) Software (27). Typical EC related tumorigenesis- and

metastasis-associated PAN-ECM genes were identified. Most of them were collage-related genes and were downregulated in tumorigenesis and

upregulated in metastasis of EC. The PAN-ECM genes in volved in GP6 signaling pathway with opposite expression in tumorigenesis and

metastasis of EC were colored. Green colour genes indicates an inhibition z-score of -1.414. Red colour genes indicates an activation z-score of

4.146; The color is more intensive, the absolute z-score is higher.

https://doi.org/10.1371/journal.pone.0231594.g005
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Table 2. Interestingly, the most correlated bio functions, cell movement, colony formation, cell

proliferation, cell migration, adhesion of immune cells, and invasion of cells were activated

with higher z-scores (>2) in metastasis and inhibited in tumorigenesis with lower z-scores

(<-2). The bio functions, such as cell death and survival, cell-to-cell signaling, proliferation of

epithelial cells, cellular growth, and cell cycle mitogenesis, were activated in both metastasis

and tumorigenesis of EC. It suggested that the differential activation and inhibition of the bio

functions of the PAN-ECM genes may lead to EC progression.

Network analysis of intersecting PAN-ECM genes between tumorigenesis

and metastasis DEGs

To decipher the possible regulatory mechanisms of the ECM involved microenvironment dur-

ing EC development, a molecular interaction network was generated by applying the 140 inter-

secting PAN-ECM genes using FunRich analysis. The generated network is shown in Fig 6.

Each network consists of connected PAN-ECM genes with a hub gene. As indicated, hub

Table 2. Diseases and bio-functions of the intersecting PAN-ECM genes associated with differential expressions in tumorigenesis and metastasis of EC.

Diseases and bio-functions Tumorigenesis (z-

score)

Metastasis (z-

score)

Cardiovascular system development and function: cell movement of endothelial cells -2.116 0.761

Cellular growth and proliferation: colony formation of cells -1.377 2.021

Cell death and survival, hematological system development and function: cell viability of myeloid cells -1.217 2.177

Cellular movement, hair and skin development and function: cell movement of epithelial cell lines -1.05 2.418

Cellular movement: migration of cells -0.755 3.864

Cell-to-cell signaling and interaction, hematological system development and function, immune cell trafficking:

adhesion of immune cells

-0.487 2.381

Cellular development, cellular growth and proliferation: proliferation of myeloma cell lines -0.478 2.146

Free radical scavenging, small molecule biochemistry: biosynthesis of hydrogen peroxide -0.462 2.202

Cellular development, cellular growth and proliferation: proliferation of prostate cancer cell lines -0.349 2.195

Post-translational modification: phosphorylation of proteins -0.34 3.06

Cell-to-cell signaling and interaction, cellular growth and proliferation: induction of cells -0.232 2.201

Proliferation of connective tissue cells -0.194 2.391

Cellular growth and proliferation, connective tissue development and function, tissue development -0.128 2.402

Lipid metabolism, small molecule biochemistry: synthesis of leukotriene -0.111 2.352

Cellular movement: invasion of cells 0 2.138

Cell-to-cell signaling and interaction, hematological system development and function: binding of lymphocytes 0.068 3.174

Cellular movement: invasion of tumor cell lines 0.113 2.72

Cell-to-cell signaling and interaction, hematological system development and function: binding of mononuclear

leukocytes

0.119 2.584

Cell-to-cell signaling and interaction: binding of myeloid cells 0.221 2.697

Cellular growth and proliferation, tissue development: proliferation of epithelial cells 0.528 4.022

Cellular movement: migration of ovarian cancer cell lines 0.577 2.194

Cell signaling, molecular transport, small molecule biochemistry, vitamin and mineral metabolism: release of Ca2+ 0.603 3.046

Cellular development, cellular growth and proliferation: proliferation of stem cells 0.672 2.167

Cell-to-cell signaling and interaction: binding of lymphoma cell lines 0.757 2.366

Cell signaling, molecular transport, vitamin and mineral metabolism: quantity of Ca2+ 1 2.387

Cell death and survival: apoptosis of gonadal cells 1.076 2.19

Cellular growth and proliferation: expansion of cells 1.258 2.01

Activated pathways are coloured orange (z-score >2) and inhibited pathways are coloured blue (z-score <-2). The absolute z-score is higher, the color is more intensive.

https://doi.org/10.1371/journal.pone.0231594.t002
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genes with the most intensive connections were FN1, ITGB3, ERBB2, and BMPR1B. In addi-

tion, the hub genes with the contrasting fold change in tumorigenesis and metastasis included

100A7, FBLN1, SERPINAS, TNFSF14, BMPR18, and GDF5, which were upregulated in tumor-

igenesis and downregulated in metastasis, and FSTL3, ADAMTS1. COL4A4, HGF, MAG, FN1,

ITGB3, NCAM1, AGTR1, and DNM3, which were downregulated and upregulated in tumori-

genesis and metastasis, respectively.

Gene coexpression network analysis

The gene coexpression network was constructed using the retrieved 20,531 genes from EC

tumor samples using a systematic unsupervised method, WGCNA. As shown in Fig 7A,

numerous modules were generated, whereas four modules consisting of the highest propor-

tions of PAN-ECM genes, ranging 11%~52%, were selected for further analyses Fig 7B. Signifi-

cantly involved pathways among the modules are enumerated in Table 3.

As described previously, high grade and re-occurred EC have poor prognosis outcome.

Therefore, we attempted to dig the possible mechanisms and the characteristics of the ECM

microenvironment during high-grade EC at metastasis stage. The pathway analyses for metas-

tasis-associated PAN-ECM genes listed in Table 3 showed that module 1 and 2 possessed the

Fig 6. Molecular network of PAN-ECM genes that intersected in tumorigenesis and metastasis. The molecular interaction network of

the intersecting PAN-ECM genes are shown. Upregulated and downregulated genes are shown in red and green, respectively. Some

genes, such as S100A7, FBLN1, SERPINAS, TNFSF14,BMPR18, and GDF5 were upregulated in tumorigenesis and downregulated in

metastasis. In contrast, FSTL3, ADAMTS1. COL4A4, HGF, MAG, FN1, ITGB3, NCAM1, AGTR1, and DNM3 were downregulated an

upregulated in tumorigenesis and metastasis respectively.

https://doi.org/10.1371/journal.pone.0231594.g006
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highest proportions (52% and 30% respectively) of PAN-ECM genes, where those PAN-ECM

genes are involved in three pathways, GP6 signaling, dendritic cell maturation, and osteoar-

thritis pathways, suggesting that those PAN-ECM genes and their involved pathways may play

crucial roles during EC metastasis.

In addition, colorectal cancer metastasis signalling, IL-6 signaling, and IL-8 signaling also

were also predicted to be activated during EC metastasis, whereas RhoGDI signaling pathway

was predicted to be inhibited in metastatic EC. The molecular network of coexpression mod-

ule 1 containing the highest proportion of PAN-ECM genes including COL1A1, BGN, NID1,

ADAM12, COL1A2, INHBA, THBS1, SPARC, FBN1, and CSPG4 was shown in Fig 7C. The

typical metastasis-associated hub genes were identified.

Discussion

In this study, PAN-ECM Data List was generated, that covers not only ECMs, but also syn-

thetic and degradation enzyme for ECMs and ECM associated molecules and the regulators,

also present in the extracellular microenvironment surrounding cells. The PAN-ECM Data

List has a total of 1516 ECMs and ECM-associated genes. Comparison to the Matrisome Proj-

ect [28], there were 489 additional genes that contribute in 9 categories including cell surface

receptor, cytoskeleton, cell adhesion molecules, ECM receptor cofactors, ECM receptors, ECM

membrane-associated, ECM-associated regulatory factors, ECM synthetic/degradation

enzymes, and ECM microenvironment associated. Some of the genes were reported to be

involved in many critical biological processes, for instance, integrin subunit alpha 2b (ITGA)
and intercellular adhesion molecule 1 (ICAM1) genes, which is an ECM receptor and a

Fig 7. Gene coexpression network during endometrial cancer (EC) development. (a) A WGCNA study for gene coexpression network analysis

between late and early stages of EC disease was carried out to determine the relationships between PAN-ECM genes and the other co-expressed

differential exressed genes (DEGs) during EC development was varried out. (b) Percentage of PAN-ECM genes in each generated WGCNA module

was indicated. (c) The identified hub genes and their molecular interaction of the molecular network of the genes in module 1 by FunRich analysis.

https://doi.org/10.1371/journal.pone.0231594.g007
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molecule that can bind to integrin, respectively, both play crucial roles in tumor development

[42]. In addition, the cell surface receptor category includes transforming growth factor-beta

receptor genes (TGFBR1 and TGFBR3), and that the elevated TGFBR levels could induce colla-

gen expression in metastatic breast cancer cells [43]. Several genes in the cell adhesion mole-

cule category, such as CD44 and CADM1, were involved in cancer cell migration and the

regulation of ECM adhesion [44, 45]. ITGB3 and BMPR2 genes were key regulators of cell

migration and invasion of cancer cells [46, 47]. XYLT1 in ECM synthetic/degradation enzymes

play important roles in the initiation step of the biosynthesis of glycosaminoglycan [48]. Dif-

ferential expression of XDH gene modulated the migration of human breast cancer cells [49].

One forty ECM and ECM-associated genes have been identified, that may participate in

tumorigenesis and metastasis of EC. Numerous identified genes have been reported to partici-

pate in the development of other cancers, for instance, COL11A1, MMP1, COL10A1, HHIP,

and COL6A6 could be prognostic and predictive indicators of early-stage non-small cell lung

cancer (NSCLC) [50]; upregulation of ITBG3 and COL4A3 genes could respectively promote

colorectal cancer and breast cancer development [51, 52]. Alterations of EGFL6 associated

with metastasis of ovarian cancer [53].

Table 3. Gene clustering of the metastasis-associated PAN-ECM differentially expressed genes (DEGs) by WGCNA module analysis.

Canonical pathway (IPA Knowledgebase database) Metastasis

PAN-ECM (241+) (z-

score)

Module 1 (77) (z-

score+)

Module 2 (74) (z-

score+)

Module 3 (164) (z-

score+)

Module 4 (253) (z-

score+)

GP6 signaling pathway 4.15 2.11 1.41 0.00 0.00

Dendritic cell maturation 2.45 2.24 2.45 0.00 0.90

Osteoarthritis pathway 2.31 1.34 0.45

Colorectal cancer metastasis signaling 2.89 2.14

Wnt/Î2-catenin signaling 2.45 -2.00 0.00

Neuroinflammation signaling pathway 2.45 0.00 1.73 0.00 0.30

ILK signaling 2.45 1.89

Role of pattern recognition receptors in recognition of

bacteria and viruses

2.24 0.00 2.45 0.00 0.38

Neuregulin signaling 2.24 0.00 2.24 0.00

Signaling by Rho family GTPases 2.00 0.00 2.53 0.00

IL-6 signaling 2.00 3.00

ErbB signaling 2.00 0.00 2.71 0.00

Growth hormone signaling 2.00 0.00 2.65

Glioblastoma multiform signaling 1.89 2.71

Leukocyte extravasation signaling 1.63 2.53 -1.67

HMGB1 signaling 1.41 0.00 2.83

IL-8 signaling 1.34 0.00 3.46 -1.00 -0.71

Role of NFAT in cardiac hypertrophy 1.34 2.71

eNOS signaling 1.00 0.00 2.65

FGF signaling 0.82 0.00 2.65 0.00

Acute-phase response signaling 0.45 2.45

GÎ±12/13 signaling -0.45 0.00 3.00

RhoGDI signaling -1.00 -1.34

LXR/RXR activation -1.00 0.00 0.00 0.00 0.45

The canonical pathways involved in each modules was listed and sorted by z-score.
+Number of genes.

https://doi.org/10.1371/journal.pone.0231594.t003
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Interestingly, several PAN-ECM genes involved signaling pathways, GP6 signaling path-

way, ILK signaling pathway, and IL-8 signaling pathway were significantly inhibited in tumori-

genesis and activated in metastasis of EC, suggesting that those specific PAN-ECM genes may

participate in EC metastasis and progression. To our knowledge, PAN-ECM gene involved

GP6 signaling in association with EC progression has not been reported. GP6, a glycoprotein,

is mainly expressed in platelets. GP6 signaling pathway was primarily thought to participate in

platelets and their precursor megakaryocyte activation [54]. Aggregation of platelets may

shield circulating tumor cells from immunosurveillance and to promote tumor progression

and metastasis [55]. Another report suggested that GP6 served as the primary signaling recep-

tor for collagen, which induces platelet activation and thrombus formation [54]. Defect of GP6

could cause malfunction of platelet reactivity to collagens in blood and lung cancer metastasis

[56, 57]. An elevated level of serum platelets lowered the chemotherapy response rate and

increased the risk of recurrence in EC [58]. Our current study identified several collagen genes

that were upregulated in metastatic EC, suggesting that the upregulated collagens may activate

GP6 signaling and protect the EC cells from immunosurveillance and promote tumor

metastasis.

ILK signaling pathway was shown to represent an essential kinase activity and also regu-

lated the decidualization of endometrial stromal cells [59]. It also played a role in hormone-

dependent cancer progression and regulated a variety of cellular functions including cell sur-

vival, migration, and angiogenesis, its gain or loss of function resulted in oncogenic transfor-

mation and progression of invasive and metastatic phenotypes [60]. IL-8 signaling belongs to

CXC chemokine family. Many studies confirmed high levels of IL-8 in HER2-enriched and

basal-like (ER–) primary breast cancer, whereas patients with a low level of IL8 had better

prognosis [61].

The hub gene they interact with the other PAN-ECM genes may play crucial roles in regu-

lating the EC development and the progression. From the molecular network analysis (Fig 6),

we identified several hub genes, such as FN1, ITGB3, and BMPR1B, interacted with the other

ECM molecules intensively. These genes were associated with many critical biological func-

tions related to cancer cell metastasis. FN1 was previously reported to be associated with

adverse or poor prognosis of breast and ovarian cancer [62]. Increased expression of ITGB3
could promote and control the metastasis of breast cancer and EC [63, 64]. BMPR1B was cor-

related with cell proliferation, suggesting that it may play a role in protecting against endome-

triosis progression [65]. A previous study by Frida et al.’s team explained the transformation of

normal cells to malignant and metastatic tumor cells. VCAN, an ECM gene was initially down-

regulated but upregulated in metastasizing cells in the prostate and colorectal cancers [66].

Our results showed that the metastatic EC associated ECM genes were highly expressed at a

late stage and might participate in EC progression.

From the coexpression network analysis identified several modules possessing higher pro-

portions of ECM genes. Interestingly, the GP6 signaling pathway along with the dendritic cell

maturation and osteoarthritis pathways were activated in modules 1 and 2 and in metastatic

DEGs (Table 3). Notably, GP6 signaling was identified not only by functional enrichment

analysis but by coexpression network analysis. PAN-ECM genes, such as COL1A1, COL1A2,

BGN, NID1, ADAM12, INHBA, THBS1, SPARC, and CSPG4, were identified to act as hub

genes. Increased expressions of COL1A1 and COL1A2 genes were associated with lower sur-

vival of ovarian cancer patients [67]. BGN gene could enhance migration and invasion of EC

[68]. NID1 gene was found to be a new therapeutic target biomarker in breast cancer and EC

invasion [69]. ADAM12 was a tumor marker and has negative prognostic value for overall sur-

vival in ovarian cancer [70]. Strong colocalization of INHBA was highly associated with malig-

nant endometrial tissues [71]. THBS1 expression might associate with the survival of EC
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patients [72]. Overexpression of SPARC gene could promote migration of EC [73]. Increased

expression of CSPG4 gene was correlated with disease reappearance in patients with breast

cancer [74].

Increased matrix stiffness has a profound effect on tumor development and progression

[75]. Upregulation of collagen and integrins is known to participate in stiffness [76, 77].

Increased matrix stiffness resulted in increases in cell outgrowth and sprouting, which were

correlated with cancer metastasis [78]. Collagen expressions, mainly types I, III, and VI, have

been studied in the past few years, and higher expressions of those ECM genes were positively

correlated with matrix stiffness [27, 79–81]. In this study, many collagen-associated genes,

such as COL4A4, COL19A1, and COL6A6 (Table 1), showed decreased expressions at early

stages and increased expressions at the late stage of EC. These findings suggested that those

ECM genes may participate in EC progression.

Conclusions

In this work, we compiled a comprehensive PAN-ECM Data List including ECM and ECM-

associated genes. The ECM genes including collagens and integrins and the signaling pathway,

GP6, ILK signaling, and IL-8 signaling pathways, were highly correlated with metastatic EC.

The identified PAN-ECM genes and their participated signaling pathways may lead to the

development of novel biomarkers and new therapeutic strategies for the re-occurred, poor

prognosis of high-grade EC.
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