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A B S T R A C T   

The incidence rate of ulcerative colitis (UC) is increasing annually, and glucocorticoid (GC) resistance (GCR) is a 
common cause of UC-induced remission failure. Our previous studies have shown that the expression of miR- 
642a-5p is downregulated in UC with GCR, suggesting that miR-642a-5p may be related to the GC response. 
Therefore, we investigated the mechanism by which miR-642a-5p regulates the GC response in THP-1 cells. 

We found that after treatment with miR-642a-5p mimics and DEX, the expression levels of glucocorticoid 
receptor (GR) in the nucleus and NF-κB p65 and p50 in the cytoplasm were increased (P < 0.05). miR-642a-5p 
mimics transfected into THP-1 cells could synergize with dexamethasone (DEX) to reduce lipopolysaccharide 
(LPS)-induced inflammatory factor levels such as TNF-α, IL-1β, IL-6 and IL-12 (P < 0.05). Bioinformatics analysis 
and luciferase reporter assays confirmed that TLR4 is a target gene of miR-642a-5p. miR-642a-5p mimic pre-
treatment enhanced the inhibitory effect of DEX on TLR4 induced by LPS and inhibited the expression of TLR4 on 
the cell surface (P < 0.05). Additionally, miR-642a-5p further prevented the nuclear import of NF-κB P65 and 
inhibited the phosphorylation of ERK, p38 and JNK. 

These results suggest that miR-642a-5p can inhibit the inflammation by suppressing the TLR4 signalling 
pathway in THP-1 cells. It also highlights the TLR4 signalling pathway as a potential therapeutic target in anti- 
inflammation.   

1. Introduction 

Ulcerative colitis (UC) is a nonspecific chronic inflammatory disease 
of the intestinal tract with unknown aetiology. In recent years, the 
prevalence of UC has remained high in developed Western countries but 
has gradually increased in newly industrialized countries, including 
China, and even exceeds that in some Western countries [1–3]. Gluco-
corticoids (GCs) are still the most commonly used drugs to induce 
remission in patients with moderate or severe UC. However, reports 
indicate that 30%–40% of patients with acute UC have GC resistance 
(GCR) [4,5]. Approximately 30% of patients with severely refractory UC 
must undergo colectomy [6,7]. 

Some studies have suggested that microRNAs (miRNAs) may be 

involved in the GC response. miRNAs can regulate the GC response by 
posttranscriptional regulation of multiple mRNA targets of GC receptor 
(GR) signal transduction related to cell proliferation and cell death 
[8–11]. Studies have shown that in children with UC, miRNAs in the 
serum of children sensitive to GCs were detected by high-throughput 
sequencing, and 18 differentially expressed miRNAs were obtained 
[12]. miR-144–3p was most significantly upregulated in GC-sensitive 
UC children [13]. Chen et al. screened miRNAs in the serum of 
GC-sensitive, GC-resistant and healthy subjects and found that miR-195 
expression was reduced in the GC-resistant group [14]. Our previous 
work showed that downregulated microRNAs had a significant corre-
lation with several signal transduction pathways (the PI3K-Akt and 
MAPK signalling pathways) and target genes (HSP90B1, MAPK13, 
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MAPK9, PIK3AP1 and TLR4) related to GC resistance. And we found that 
miR-642a-5p is related to GCR in UC patients for the first time, but the 
specific mechanism is unclear [15]. Based on the results of bioinfor-
matics analysis, the target gene of miR-642a-5p may be TLR4, which is 
closely related to the GC response. And we found the expression of 
miR-642a-5p was significantly decreased in colonic mucosa samples 
from patients, and that of TLR4 was increased in the GCR group 
compared with the GCS group, while the expression levels of the other 
inflammatory factors (TNF-α, IL-1β, IL-6 and IL-12) increased accord-
ingly (Results were not published, see supplementary material 1). 

Therefore, this study aimed to elucidate that whether miR-642a-5p 
can increase glucocorticoid sensitivity by suppressing the TLR4 signal-
ling pathway in THP-1 cells. This study may provide us with a new 
theoretical basis and target for the treatment of glucocorticoids resistant 
UC. 

2. Material and methods 

2.1. Cell culture 

THP-1 cells, known to be lipopolysaccharide (LPS)-responsive 
through their expression of TLR4 [16], were seeded in T25 cell culture 
flasks and cultured in medium containing 10% FBS. The cell culture 
flasks were placed in an incubator at 37 ◦C and 5% CO2. Cell morphology 
was observed daily with an inverted microscope. 

2.2. miR-642a-5p mimic synthesis and transfection 

We entrusted Guangzhou RiboBiotechnology Co., Ltd. to synthesize 
miR-642a-5p mimics, which were used to transfect THP-1 cells as 
described by Xiaoguang Wang et al. [17]. Configure miR-642a-5p 
mimics with a final concentration of 50 nM. The THP-1 cells were 
divided into 6 groups: the control + miR-NC group, LPS + miR-NC 
group, dexamethasone (DEX)+LPS + miR-NC group, control +

miR-642a-5p mimics group, LPS + miR-642a-5p mimics group and DEX 
+ LPS + miR-642a-5p mimic group. Cells were stimulated with LPS 100 
ng/ml for 1 h, and DEX 1 μM, a concentration optimised in a previous 
study [18], for 24 h. 

2.3. Bioinformatics analysis and construction of TLR4-overexpression 
plasmid 

To elucidate the underlying mechanism by which miR-642a-5p 
promotes GC sensitivity, we performed in silico target prediction of 
miR-642a-5p target molecules as described in our previous article [15]. 
Targetscan (http://www.targetscan.org/vert 80/), Miranda 
(http://www.microrna.org/microrna/home.do) and Microcosm (htt 
p://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/) were 
used to analyze target genes associated with glucocorticoid resistance 
for miR-642a-5p. Then a TLR4-overexpression plasmid (TLR4 cDNA 
ORF Clone, Human, C-GFPSpark® tag) containing the full-length 
sequence of 2520 bp was purchased from Yiqiao Shenzhou Company 
(see Supplementary material 2 for the sequence). Corresponding trans-
fection reagent was used for transfection (in 20 ml of medium). 

2.4. Quantitative real-time PCR analysis (qPCR) 

Total RNA was extracted from THP-1 cells using TRIzol reagent 
(Qiagen, Hilden, Germany). Complementary DNA was synthesized using 
SYBR PrimeScript RT reagent kits (TaKaRa, Dalian, China) as described 
by Fathi et al. [19]. qPCR was performed on an ABI Prism 7900 HT 
sequence detection system (Applied Biosystems, Foster City, CA, USA) 
using the SYBR Green method. Primers specific for miR-642a-5p, U6, 
TLR4 and GAPDH (see Supplementary material 3 for the primers) were 
purchased from GeneCopoeia (Guangzhou, China). GAPDH and U6 were 
used as negative control. All PCR experiments were identical and run as 

follows: 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s, 
65 ◦C for 5 s, and 95 ◦C. Relative miRNA and mRNA expression levels 
were calculated based on the number of PCR cycles. The comparative 
2− ΔCT method was used to calculate the relative expression level of each 
target gene with GAPDH used as the internal control. Each sample was 
run in triplicate. 

2.5. Cell proliferation assay 

Cell viability was determined by 3-(4,5-dimethylthiazole-2-yl)-2,5- 
diphenyltetrazolium bromide (MTT) assay using a reported method 
[20]. The cells were seeded in a 96-well tissue culture plate (0.1 × 106 

cells/well) and stimulated according to the specified experimental 
procedure. The absorbance at 550 nm was measured with a microplate 
reader. The effects of treatments on cell viability were calculated based 
on the ratio of the OD of the treatment group relative to the OD of the 
untreated control group. 

2.6. Annexin V/PI detection 

Cell apoptosis was analysed using an Annexin V-FITC Apoptosis 
Detection Kit (Xinbosheng Biotechnology) as described by Fathi et al. 
[19]. At last, the samples were analysed using a flow cytometer (Elite, 
Beckman Coulter, Fullerton, CA, USA). 

2.7. ELISA 

THP-1 cells were seeded into 96-well cell culture plates at a con-
centration of 0.1 × 106/ml, and the final experimental volume was 200 
μL/well. The expression levels of the inflammatory factors IL-1, IL-6, IL- 
12 and TNF-α were determined with an ELISA detection kit (BD 
Bioscience, San Diego, CA, USA) as described by Fathi et al. [19]. 

2.8. Immunofluorescence staining 

The cells from each experimental group were fixed with 4% para-
formaldehyde (PFA), permeabilized with 0.02% Triton X-100, incubated 
with diluted primary antibody against GR (1:100, Santa cruz, sc- 
393232), antibody against NF-κB P50 (1:200, Santa cruz, sc-sc-8414). 
Then the cells were then incubated in diluted secondary antibody 
(1:300, Santa cruz, sc-2359) for 2 h at room temperature. Hoechst nu-
clear stain (Sigma) was added and incubated for 5 min at room tem-
perature. The cells were mounted on coverslips using Vectashield hard- 
set mounting medium (Vector Laboratories, Peterborough, UK). Images 
were acquired on a Delta Vision RT microscope using a 60 × /1.42 Plan 
Apo objective and a Sedat filter set (Chroma 89000). Images of DAPI- 
and Alexa 488-stained cells were obtained by excitation at 405 and 488 
nm, respectively, using a CoolSNAP HQ (Photometrics) camera with a Z 
optical spacing of 0.5 μm. The original images were deconvolved using 
softWoRx software. ImageJ was used to process the images. 

2.9. Western blotting 

The protein expression of cells in different treatment groups was 
determined by Western blotting as described by Adibki et al. [20]. The 
protein content was quantified using a Bradford Assay Kit (ab102535, 
Abcam). SDS–PAGE gels (Tris-Gly, 4–20%, Beyotime) were used to 
separate the proteins, and samples containing 10 μg of protein were 
added to each well. After electrophoresis, the proteins were transferred 
to polyvinylidene difluoride membranes (Millipore) over 90 min at 4 ◦C. 
Then the membranes were blocked in 5% BSA at room temperature for 2 
h. The membranes were then incubated overnight at 4 ◦C with the 
appropriate primary antibody (see Supplementary material 4 for specific 
information). The next day, the membranes were incubated with the 
secondary antibodies (1:500, Santa cruz, sc-2359) at room temperature 
for 1 h. Grey images showing protein expression were obtained. To 
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quantitatively assess the images, the ‘gel analysis’ function in the ImageJ 
program was used. 

2.10. Luciferase assay 

Plasmids were constructed and transfected into cells based on the 
experimental treatment conditions (blank group, wild-type TLR4+miR- 
NC group, wild-type TLR4+miR-642a-5p group, mutant TLR4+miR-NC 
group, and mutant TLR4+miR-642a-5p group). 48 h after plasmid 
transfection, the medium in the 12-well plate was discarded. Fifty 
microlitres of diluted 1 × PLB was added to each well, and the culture 
plates were placed on a shaker for 20–30 min to ensure that the cells 
were completely lysed. Ten microlitres of supernatant was added to each 
well of a white, opaque 96-well microtiter plate. Then 100 μl of pre-
mixed Luciferase Assay Reagent II was added. After 2 s, the signal was 
measured in the dark to assess luciferase activity. After the measure-
ment, 100 μl of premixed Stop & Glo reagent was added to each well. 
After standing for 2 s, the signal was measured to assess the activity of 
the control (Renilla luciferase). Three values were measured for each 
sample: RLU1-firefly luciferase reaction intensity; RLU2-endosperm 
Renilla luciferase reaction intensity; and the ratio of the two values, 
namely, RLU1/RLU2. 

2.11. Flow cytometry 

The cells were transferred to ice, washed with precooled FACS buffer 
(10 mM PBS, 10 mM HEPES and 0.25% BSA without Ca2+ or Mg2+) and 
subjected to fluorescence staining with direct labeling. The cells were 
blocked with mouse IgG (50 g/mL) at room temperature for 10 min, then 
diluted mouse anti-human TLR4-FITC direct labelling antibody or 
mouse allotype control IgG1 was added, and the cells were incubated at 
4 ◦C for 45 min. The cells were washed one last time with FACS buffer 
and fixed with CellFIX (BD Biosciences). Flow cytometry was performed 

with a dual-laser FACSCaliber instrument (BD Biosciences) using Cell-
Quest software (BD Biosciences) as described by Adibki et al. [20]. 

2.12. Statistical analyses 

All statistical analyses were performed using GraphPad Prism 6.0 
software. The data are presented as the mean ± SD (x ± s, n ≥ 3). 
Comparisons between two groups were performed using an independent 
sample t-test. Comparisons among multiple groups were performed 
using analysis of variance (ANOVA) and ANOVA post-hoc tests. Com-
parisons of individual samples were performed using the Mann–Whitney 
t-test. Differences for which P < 0.05 were considered statistically 
significant. 

3. Results 

3.1. miR-642a-5p had no effect on the proliferation or death of THP-1 
cells 

After THP-1 cells were transfected with miR-642a-5p mimics, cell 
viability was detected by MTT assay. The results showed there was no 
significant difference in cell viability in the miR-642a-5p mimic trans-
fection group compared to the blank control group or miR-NC control 
group (Fig. 1A). Subsequently, we further assessed whether miR-642a- 
5p combined with DEX would have an effect on the cells. The results 
showed that miR-642a-5p had no significant impact on the effects of LPS 
or DEX (Fig. 1B). Finally, the effect of miR-642a-5p on THP-1 cell death 
was detected by Annexin V/PI double staining. The results showed that 
there was no significant difference in cell death rate in the miR-642a-5p 
mimic transfection group compared to the blank control group or miR- 
NC control group (Fig. 1C and D). 

A: The viability of the miR-642a-5p mimic transfected cells was 
determined by the MTT assay. B: The effects of LPS or DEX induced in 

Fig. 1. miR-642a-5p had no effect on the proliferation or death of THP-1 cells.  
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the miR-642a-5p mimic transfected cells was determined by the MTT 
assay. C-D: The cell death rates between the groups were detected by 
Annexin V/PI double staining. n = 3. 

3.2. miR-642a-5p synergized with DEX to promote GR translocation into 
the nucleus, then decrease the levels of LPS-induced inflammatory factors 

Immunofluorescence staining showed that LPS could prevent DEX- 
induced GR from entering the nucleus. However, transfection of the 
cells with miR-642a-5p mimics alone had no significant effect on the 
nuclear entry of GR but promoted the effect of DEX on the nuclear entry 
of GR (Fig. 2A and B). We further verified the change in GR expression 
levels by Western blotting. Compared with that in the control group, 
miR-642a-5p mimic transfection slightly increased the nuclear GR level. 
Compared with that in the DEX group, the nuclear level of GR in the 
miR-642a-5p + DEX group was significantly increased, indicating that 
miR-642a-5p could promote the anti-inflammatory effect of DEX 
(Fig. 2C–E). Meanwhile, we investigated whether miR-642a-5p would 
exhibit anti-inflammatory effects in THP-1 cells induced with LPS. As 
shown in Fig. 2, LPS (100 ng/ml) treatment for 24 h significantly 
increased the secretion of the inflammatory factors IL-1β, IL-6, TNFα and 
IL-12. Pretreatment with DEX significantly reduced LPS-induced in-
flammatory cytokine production. After transfection of the cells with 
miR-642a-5p mimics, the miR-642a-5p mimics synergized with DEX to 
reduce the LPS-induced increase in inflammatory factors (Fig. 2F–I). 

3.3. Bioinformatics analysis and luciferase reporter assays confirmed that 
TLR4 is the target gene of miR-642a-5p 

We found by bioinformatics analysis that the miR-642a-5p seed 
sequence matched positions 398–404 and 1361–1367 of the 3′UTR of 

TLR4 (Fig. 3A). To validate the targeting of these transcripts to miR- 
642a-5p, we cloned the 3′UTR of TLR4 into a dual-luciferase reporter 
gene vector for dual-luciferase reporter experiments. Cotransfection of 
luciferase plasmids with miR-642a-5p mimics resulted in a reduction in 
luciferase activity compared to what was observed upon transfection 
with control mimics. Deletion of the miR-642a-5p recognition site did 
not result in decreased luciferase activity following mutation of the 
3′UTR of TLR4 (Fig. 3B). These data suggest that miR-642a-5p directly 
targets TLR4. 

And transfection of miR-642a-5p mimics into cells reduced the 
expression level of TLR4 mRNA (Fig. 3C and D). In addition, we further 
examined the effect of miR-642a-5p on the expression level of TLR4 
under LPS induction. The results showed that miR-642a-5p enhanced 
the inhibitory effect of DEX on TLR4 induced by LPS (Fig. 3E) and 
inhibited the expression of TLR4 on the cell surface (Fig. 3F). 

3.4. miR-642a-5p regulates the MAPK and NF-κB pathways by targeting 
TLR4 

Studies have shown that TLR4 is closely related to the MAPK and NF- 
κB signalling pathways [21,22] We then examined the nuclear transfer 
of NF-κB. As shown in Fig. 4A, LPS increased the nuclear expression of 
NF-κB P65 and P50. The pretreatment of cells with miR-642a-5p mimics 
increased the cytoplasmic expression levels of NF-κB P65 and prevented 
the nuclear import of NF-κB P65 (Fig. 4A and B). 

Studies have shown that TLR4 is closely related to the MAPK and NF- 
κB signalling pathways. We then tested these pathways. The results 
showed that LPS could induce and upregulate the expression of TLR4, 
MyD88, and TAK1 and increase the phosphorylation levels of ERK, p38 
and JNK, while DEX could inhibit their phosphorylation. In contrast, 
pretreatment of the cells with miR-642a-5p mimics further decreased 

Fig. 2. Transfected miR-642a-5p mimics synergized with DEX to promote GR translocation into the nucleus in cells. 
A–B: Immunofluorescence detection of the expression of GR in or out of the nucleus. C–E: Western blot detection of the expression of GR translocation into the 
nucleus. F–I: ELISA detection of the expression levels of the inflammatory factors TNFα, IL-1β, IL-6, and IL-12 in cells transfected with miR-642a-5p mimics. n = 3. * 
indicates P < 0.05. 
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phosphorylation levels (Fig. 4C and D). 

4. Discussion 

miRNAs have been found to play an important role in the GC 
response in IBD. However, there are few studies on the role of miRNAs in 
GC-resistant UC. The present findings suggested that miR-642a-5p may 
have suppressive roles in several cancers [17,23,24], and only one 
research reported that miR-642a-5p contributed to LPS-induced hyper-
permeability and apoptosis of pulmonary microvascular endothelial 
cells [25]. In this study, miR-642a-5p affected LPS-induced expression of 
members of the TLR4 signal pathway for inhibition. miR-642a-5p 
decreased NF-κB expression and nuclear entry which promoted the 
anti-inflammatory effect of GR in the nucleus, thus synergizes with GCs 
to inhibit inflammation. 

Previous studies have shown that complex inflammatory responses 
are related to the pathogenesis of UC [26,27]. Bioinformatics software 
predicted that TLR4 is a target gene of miR-642a-5p. Current studies 
suggest that the TLR4/NF-κB pathway is closely related to regulation of 
the expression of inflammatory cytokines [28–30]. Increased expression 
of IL-1β, IL-6, IL-12, and TNF-α has been detected in active UC, and this 
increased expression is associated with the severity of inflammation 
[31–33]. A number of studies have shown that TLR4 is the main medi-
ator of the LPS response [34–36], and TLR4 signal transduction can 
promote intestinal injury in DSS-induced or TNBS-induced colitis 
[37–39]. We had verified the increased expression of TLR4 in clinical 
intestinal mucosa specimens from patients with GC-resistant UC, which 
was negatively correlated with the expression level of miR-642a-5p 
[15]. And increased expressions of IL-1β, IL-6, IL-12, and TNF-α have 
been detected in miR-642a-5p mimic-pretreated cells in this study. Thus 
we speculate that miR-642a-5p may increase glucocorticoid sensitivity 
by suppressing the TLR4 signalling pathway. 

However, there have been few studies on TLR4 directly related to 
GCR in UC patients. Studies in other systems, such as drug resistance in 
asthma, suggest that gram-negative bacilli activate the TLR4/TAK1 
signal pathway and play a role in altering cellular responses to GCs [40]. 

In rheumatic diseases, TLR4 gene polymorphisms are closely related to 
the GC response [41]. Many studies have shown that NF-κB activation 
through various pathways can inhibit the production of 
anti-inflammatory factors by preventing GR from binding specific DNA 
regions of the GRE, the first step in the GC response, leading to GC 
resistance [42–44]. Our study also found miR-642a-5p mimic enhanced 
the inhibitory effect of DEX on TLR4, promoted GR translocation into 
the nucleus, and decreased the levels of LPS-induced inflammatory 
factors. 

TLR4 binds to MyD88’s TIR domain by recognizing bacterial LPS and 
activates MAPK and JNK pathways, leading to the activation of NF-κB, 
which induces a series of inflammatory responses [21,45]. Our research 
showed that LPS could upregulate the expression of TLR4, MyD88, 
TAK1, increase the phosphorylation levels of ERK, P38 and JNK. DEX +
miR-642a-5p mimics inhibited their phosphorylation. miR-642a-5p 
mimic-pretreated increased cytoplasmic expression of NF-κB P65 and 
P50, prevented NF-κB entry into the nucleus, thus synergizes with GCs to 
inhibit inflammation. These are consistent with previous studies [21,42, 
45]. 

Thus, this study demonstrates for the first time that miR-642a-5p 
exerts a protective effect against LPS-induced inflammation by regu-
lating the production of cytokines corresponding to the TLR4 signal 
pathway. The synergistic activities of miR-642a-5p and GCs can reduce 
the body’s inflammatory response and promote sensitivity to GCs.The 
above conclusions will be verified again in animal experiments. It may 
also be necessary to re-verify whether miR-642a-5p has other mecha-
nisms of action besides TLR4. 
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