
Journal of

Imaging

Article

Efficient Deconvolution Architecture for
Heterogeneous Systems-on-Chip

Stefania Perri 1,* , Cristian Sestito 2, Fanny Spagnolo 2 and Pasquale Corsonello 2

1 Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy
2 Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria,

87036 Rende, Italy; cristian.sestito@unical.it (C.S.); f.spagnolo@dimes.unical.it (F.S.);
p.corsonello@unical.it (P.C.)

* Correspondence: stefania.perri@unical.it; Tel.: +39-0984494765

Received: 17 July 2020; Accepted: 22 August 2020; Published: 25 August 2020
����������
�������

Abstract: Today, convolutional and deconvolutional neural network models are exceptionally
popular thanks to the impressive accuracies they have been proven in several computer-vision
applications. To speed up the overall tasks of these neural networks, purpose-designed accelerators
are highly desirable. Unfortunately, the high computational complexity and the huge memory
demand make the design of efficient hardware architectures, as well as their deployment in resource-
and power-constrained embedded systems, still quite challenging. This paper presents a novel
purpose-designed hardware accelerator to perform 2D deconvolutions. The proposed structure applies
a hardware-oriented computational approach that overcomes the issues of traditional deconvolution
methods, and it is suitable for being implemented within any virtually system-on-chip based on
field-programmable gate array devices. In fact, the novel accelerator is simply scalable to comply
with resources available within both high- and low-end devices by adequately scaling the adopted
parallelism. As an example, when exploited to accelerate the Deep Convolutional Generative
Adversarial Network model, the novel accelerator, running as a standalone unit implemented
within the Xilinx Zynq XC7Z020 System-on-Chip (SoC) device, performs up to 72 GOPs. Moreover,
it dissipates less than 500 mW@200 MHz and occupies ~5.6%, ~4.1%, ~17%, and ~96%, respectively,
of the look-up tables, flip-flops, random access memory, and digital signal processors available
on-chip. When accommodated within the same device, the whole embedded system equipped with
the novel accelerator performs up to 54 GOPs and dissipates less than 1.8 W@150 MHz. Thanks to
the increased parallelism exploitable, more than 900 GOPs can be executed when the high-end
Virtex-7 XC7VX690T device is used as the implementation platform. Moreover, in comparison with
state-of-the-art competitors implemented within the Zynq XC7Z045 device, the system proposed
here reaches a computational capability up to ~20% higher, and saves more than 60% and 80%
of power consumption and logic resources requirement, respectively, using ~5.7× fewer on-chip
memory resources.

Keywords: image deconvolution; generative adversarial networks (GANs); field-programmable gate
array (FPGA); heterogeneous embedded systems

1. Introduction

In the last few years, both Convolutional and Deconvolutional Neural Networks (CNNs and
DCNNs) have been extensively used in deep-learning applications, such as object generation [1],
image segmentation [2] and high-resolution imaging [3]. In such a scenario, while deconvolutions
aim at extrapolating new features from inputs, to furnish upsampled outputs, convolutions compact
the most relevant features through a downsampling process. Despite this difference, the operations are

J. Imaging 2020, 6, 85; doi:10.3390/jimaging6090085 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0003-1363-9201
https://orcid.org/0000-0002-9528-1110
http://dx.doi.org/10.3390/jimaging6090085
http://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/6/9/85?type=check_update&version=2


J. Imaging 2020, 6, 85 2 of 17

performed in a similar way. Deconvolutions, in fact, can be thought as convolutions executed on padded
and strided inputs [4]. It represents the backbone of segmentation and super-resolution algorithms
and it constitutes the basis of generative neural networks, successfully adopted to: synthesize realistic
photographs or cartoons; perform images translation tasks; predict future frames in video sequences.

In typical deep-learning applications, owing to the huge amount of Multiply Accumulations
(MACs) needed to perform convolutions and deconvolutions, the overall computational complexity can
become an issue, especially when operating in real time is mandatory [5]. The bottleneck introduced by
these operations is even more emphasized when software-based designs are implemented by Central
Processing Units (CPUs), which provide limited parallelism. Conversely, as is well known, the use
of Graphics Processing Units (GPUs) certainly can alleviate performance issues, but, unfortunately,
they are not suitable for energy-constrained environments. Indeed, the latter can take advantages
from Application-Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs)
that are widely recognized as appropriate hardware platforms to trade-off performance and power
efficiency [6]. As a further advantage, FPGA-based designs also ensure flexibility and low costs to be
achieved. However, although, as exhaustively reviewed in [7], plenty of FPGA-based accelerators can
be found in the literature for CNNs, existing works focusing on the design of FPGA-based engines
suitable for hardware-accelerating DCNNs are still few [8–18] and this problem is still open.

This paper presents a novel purpose-designed custom hardware accelerator to perform
deconvolutions efficiently. The proposed Deconvolution Layer Processing Element (DLPE) was
designed with embedded capability, to be easily integrated within virtually any heterogeneous
FPGA-based System-on-Chip (SoC). Such a design approach was selected since it is effective in boosting
performance and trading off power consumption and costs [19]. In fact, it merges the powerfulness of
a dedicated Processing System (PS), suitable for control and non-time critical tasks, and the flexibility
of a Programmable Logic (PL) fabric that can host hardware accelerators purposely designed for
computationally intensive operations, such as convolutions and deconvolutions.

The FPGA-based hardware structure proposed here to speed up deconvolutions has been designed
with a wide variety of applications in mind. Therefore, the main objectives have been: (1) achieving
high-speed performance; (2) limiting the hardware resources requirements and the power consumption;
and (3) making the accelerator easily scalable to comply with resources available within both high-
and low-end FPGA-based SoCs. As demonstrated in the following, the novel accelerator satisfies all
the above goals not only by smartly using logic and routing resources, but also by adopting an efficient
data transfer policy to read and write data from/to an external memory. The proposed design complies
with the Advanced eXtensible Interface (AXI4) protocol [20] and, therefore, it can be easily integrated
within modern heterogeneous embedded systems.

As a case study, the novel engine has been employed to accelerate Deep Convolutional Generative
Adversarial Networks (DCGANs) [21]. Such a kind of applications could certainly benefit from the
latest advanced highly integrated hardware/software platforms, such as the Xilinx’s Versal™ Adaptive
Compute Acceleration Platform (ACAP), very recently presented in [22]. However, for purposes
of comparison with state-of-art competitors, the Xilinx Zynq XC7Z020 (Xilinx, San Jose, CA, USA),
XC7Z045 (Xilinx), XC7Z100 (Xilinx) [23] and the Virtex-7 XC7VX690T (Xilinx) [24] devices have been
used as the implementation platforms to characterize the proposed accelerator when running either
as a Standalone Unit (SU) or as a part of an Embedded System (ES). When compared to the designs
presented in [9,11,15–18], both the SU and the ES implementations proposed here exhibit remarkably
higher throughput and they employ significantly lower amounts of Look-Up Tables (LUTs), Flip-Flops
(FFs), on-chip Blocks of Random Access Memory (BRAMs), and Digital Signal Processors (DSPs).
As an example, when implemented within the XC7Z020 device, the proposed ES is 50% faster than [9],
performs ~20.7× more GOPs, and it occupies 49.8%, 42.7%, 36.6% and 5% less LUTs, FFs, BRAMs,
and DSPs, respectively, dissipating just 1.73 W@150 MHz.

Ultimately, the main contributions and novelties provided in this work can be summarized
as follows:



J. Imaging 2020, 6, 85 3 of 17

• an easily scalable engine for deconvolution is proposed that can be fruitfully employed within
different CNNs/DCNNs models;

• the novel architecture exploits both data- and circuit-level parallelism, thus it is suitable for
accelerating deconvolutions within both high- and low-end FPGA-based SoCs;

• the on-chip DSPs resources are fully exploited to perform both multiplication and addition
operations, therefore speed performance higher than the state-of-the art competitors is achieved
with reduced logic resources requirements and power consumption;

• the proposed hardware accelerator complies with the Advanced eXtensible Interface (AXI4)
protocol [20] and, therefore, it can be easily integrated within modern heterogeneous
embedded systems;

• input and output data streams are read and written from/to an external memory through
the raster-order transfer policy; the latter allows data packets to be moved concurrently,
thus improving the global latency.

The rest of the paper is organized as follows: Section 2 provides a background on deconvolution
algorithms and related works concerning FPGA-based accelerators; Section 3 describes the architecture
of the proposed hardware accelerator; tests and results are discussed in Section 4; finally, in Section 5,
conclusions are drawn.

2. Background, Related Works, and Motivations

Representative examples of CNN and DCNN models requiring deconvolutions are provided by
the Fully Convolutional Network (FCN) described in [25], the U-Net architecture presented in [26],
the Super-Resolution CNN (SRCNN) discussed in [3], and the generative DCNNs demonstrated
in [21]. By examining those network models, it can be easily observed that although a CNN
consists of cascaded convolutional layers (CONVs), a DCNN comprises a certain number of cascaded
deconvolutional layers (DECONVs). In both cases, cascaded layers are interleaved by optional stages,
such as non-linearity, normalization, pooling [5] and unpooling [27]. To meet a precise task, such as
classification and segmentation, along the whole architecture of a CNN, each CONV extracts even
more abstract features from 2D input feature maps (ifmaps). Moreover, different bottom layers concur
to dictate the target of each model. As an example, while classification networks adopt fully connected
layers to arrange extracted features in categories, segmented images are built by means of up-sampling
stages, including DECONVs [28]. This means that performing deconvolutions efficiently provides
benefits not only to DCNNs, but also to a certain class of CNNs.

Generally speaking, a DECONV layer receives a set of NC 2D H × W ifmaps and produces NF
2D Ho × Wo output feature maps (ofmaps). To do this, NF sets of NC 2D K × K filters kernels are
used. More precisely, each ifmap is filtered by using its own kernel and the NC results obtained in this
way are combined by means of a pixel-wise addition, thus providing an ofmap. This mechanism is
repeated for all the NF sets of filters. Ultimately, it can be said that at the top-level, DECONVs act quite
similarly to CONVs. However, when the bare deconvolution and convolution operations are examined,
significant differences become more or less evident, depending on the computational strategy adopted
within DECONVs.

The method adopted in [4] computes deconvolutions by executing typical convolutions on
zero-padded and strided ifmaps. More exactly, with K, S, and P being the kernel size, the stride,
and the padding, respectively, the deconvolution result is obtained by interleaving S − 1 zeros between
each pair of consecutive input pixels and then performing the classical convolution operation adopting
the kernel size K’ = K, the stride S’ = 1, and the padding P’ = K − P − 1. As an example, such a strategy
is exploited in the FlexiGAN framework presented in [8] to generate accelerators for Generative
Adversarial Networks (GANs). Unfortunately, this approach requires data and filter be properly
reorganized thus making additional control logic necessary and severely limiting the achievable overall



J. Imaging 2020, 6, 85 4 of 17

performance. As a further drawback, the above-described zero-padding and striding strategies lead to
unbalanced workloads since they introduce useless zeroed MAC operations.

The efficient design strategy recently presented in [17] overcomes the above issues by performing
a kernel conversion to calculate all the pre-addable weight combinations. The output of this process is
a new set of filters that can be directly applied to the ifmaps to perform a traditional 3D convolution.
Such a strategy allows drastically reducing the computational complexity and introduces remarkable
speed-up either over other FPGA accelerators or over GPU platforms.

A completely different technique has been recently proposed in [9]. Such an approach multiplies
each input pixel by the relative K × K deconvolution kernel, thus furnishing a block of K × K output
products. It is worth noting that neighboring input pixels lead to overlapping output blocks. With S
being the supported stride, up to K − S overlapping rows and columns must be properly managed to
provide the correct deconvolution result. Unfortunately, the Deconvolution Engine (DE) proposed in [9]
does not manage overlaps efficiently. In fact, to recognize no-overlapping blocks, it applies the reverse
looping that requires the computation of input coordinates at each filtering step, with obvious penalties
in terms of computational complexity and delay.

Appreciable improvements were introduced in [10–16,18]. The accelerator proposed in [10] was
purposely designed to accomplish the semantic segmentation. It uses separate convolution and
deconvolution engines, but, due to its hardware resources requirements, it is not easily exploitable
within low-end FPGA-based SoCs. Moreover, while multiplications are performed as fast as
possible, by exclusively exploiting DSP slices, the additions required to proper manage overlapping
rows/columns are performed through configurable logic resources, thus severely limiting the achievable
performance. As a further drawback is that the accelerator does not support the final cropping. Therefore,
as demonstrated in [11], auxiliary logic modules must be introduced to crop pixels on the borders
around the ofmaps.

The above-described structure was further improved in [12], where a unique engine is
used to perform both convolutions and deconvolutions to meet the remote segmentation task.
Such an accelerator employs just one MAC unit that operates in a serial manner, whereas it exploits
a high level of parallelism at both fmaps and filters levels. Unfortunately, due to its high hardware
resources requirements, this accelerator can be actually exploited only within high-end FPGA-based
SoCs. Moreover, it is not the most attractive solution for achieving the highest speed. In fact, it requires
up to 4 clock cycles to furnish each deconvolved pixel, depending on how many overlapping pixels
must be managed [12].

The innovative solutions proposed in [13,14] avoid the use of dedicated deconvolution engines
by transforming deconvolutional layers into convolutional ones. In such a case, NF × S ofmaps are
provided instead of just NF, thus making a very high parallelism level necessary to achieve reasonable
speed performance. Consequently, once again, the resulting hardware resources requirement makes
the use of a high-end FPGA device necessary.

Although all the previous works faced the acceleration of 2D deconvolutions, the solution proposed
in [15] is suitable also for 3D scenarios. It exploits the sparsity of input activations and weights to
reduce the number of useless multiplications, introducing a compression scheme that further enhances
the efficiency of the computational unit. However, the approach presented in [15] requires non-zero
weights to be encoded in coordinate format. This task involves the calculation of the output coordinates
of each deconvolved pixel, thus preventing the integration of such an accelerator in streaming-based
heterogeneous embedded systems.

As demonstrated in [16,18], also the well-known Winograd algorithm can be exploited to deploy
deconvolutional layers of GANs on FPGAs efficiently. Indeed, the Winograd algorithm transforms
2D convolutions into element-wise multiplications implemented by simple additions and shifts
operations. Despite the impressive speed performance achieved in [16,18] also thanks to the high
parallelism adopted, this computational method introduces area and power overheads due to the pre-
and post-processing operations required to transform feature maps and filters in the Winograd domain.



J. Imaging 2020, 6, 85 5 of 17

3. The Proposed Hardware Accelerator

The approach adopted here to deconvolve one H × W ifmap by a K × K kernel with stride S
consists of four main steps. In the first one, the generic input pixel I(i,j) is multiplied by the kernel
and the resulting block of K × K products is properly arranged within the ofmap by occupying the K × K
area starting at the position (I × S, j × S). As expected, neighboring resulting blocks, obtained from
neighboring input pixels, have up to K–S overlapping rows/columns, which are summed up in
the second step. Then, the above steps are repeated for all the input pixels. Finally, P pixels on
the borders around the resulting ofmap are cropped, thus generating a H0 ×W0 ofmap, with H0 and W0

being defined in Equation (1).
HO = S× (H − 1) + K − 2P

WO = S× (W − 1) + K − 2P
(1)

The example depicted in Figure 1 shows how this approach deconvolves a 3 × 3 ifmap by using
K = 3, S = 2 and P = 1. When deconvolved by the referred 3 × 3 kernel, the orange pixel I(0,0) in
the ifmap leads to the orange 3 × 3 block of pixels starting at the location (0,0) in the intermediate ofmap.
Similarly, by deconvolving the red pixel I(1,1) in the ifmap, the 3 × 3 red block starting at the location
(2,2) in the intermediate ofmap is obtained. In addition, so on for all the other pixels. To complete
the deconvolution correctly, the overlapping pixels within neighboring blocks in the ofmap are summed
up. Finally, since P = 1, one pixel is cropped on the borders around the ofmap, as highlighted in grey.

Figure 1. The adopted deconvolution approach.

The top-level architecture of the novel accelerator, hereby named DLPE, is depicted in Figure 2.
It can process TN ifmaps (if0, . . . , ifTN−1) and TM kernels in parallel, thus operating on TM ofmaps (of0,
. . . , ofTM−1) at the same time. In particular, the DLPE can receive PN pixels from each ifmap and can
furnish PM elements for each ofmap contemporaneously, with PM = S × S × PN. Obviously, TN, TM, PN,
and PM strictly depend on the resources availability within the specific device chosen as the realization
platform. Anyway, when the number NC of ifmaps and/or the number NF of kernels to be processed
are greater than TN and TM, respectively, the overall computation is completed within multiple steps,
as discussed in the following.

Figure 2. The top-level architecture of the Deconvolution Layer Processing Element. FSM: The Finite
State Machine.

The novel accelerator has been designed supposing that both ifmaps and kernels are stored within
an external Double Data Rate (DDR) memory and, as shown later, they can be simply uploaded



J. Imaging 2020, 6, 85 6 of 17

and streamed towards the DLPE by auxiliary circuitries, such as Direct Memory Access (DMA) and/or
Video DMA (VDMA) modules. Although the F-bit pixels of the ifmaps are streamed-in directly to
the DE, the N-bit kernels coefficients are preliminarily locally stored within the Kernel Buffer and then
provided to the DE at the proper time. The Accumulation Logic (AL) exploits fast adder trees to
accumulate provisional results produced at the various computational steps and collected within
on-chip memory resources until the last step is performed and the final ofmaps are generated. The Finite
State Machine (FSM) orchestrates all the operations and makes the whole accelerator AXI4 [20]
compliant. In fact, it takes care of managing all the activities related to data transfers, including
the AXI4-Stream transactions through which the packed kernels coefficients and the ifmaps are received.

The Kernel Buffer, shown in Figure 3, mainly consists of a register file able to store K × K × TM ×

TN N-bit coefficients. At each clock cycle, the buffer receives the homologous coefficients related to
the TN ifmaps if0, . . . , ifTN−1 and packed within one TN ×N-bit word. This strategy allows uploading all
the kernel coefficients processed in parallel by the DE within just K × K × TM clock cycles. The Separate
and Route logic properly dispatches the coefficients to the DE. The latter is the computational core
of the proposed DLPE and, as illustrated in Figure 4, it consists of TM × TN Deconvolution Units
(DUs) operating in parallel. At each clock cycle, the generic DUin

out receives PN adjacent input pixels
I(i,j), I(i,j + 1), . . . , I(i,j + PN − 1) from the ifmap ifin, with in = 0, . . . , TN − 1, and deconvolves them
with the relative K × K kernel Cin

out as required to compute the ofmap ofout, with out = 0, . . . , TM − 1.
The input pixels are multiplied in parallel by the coefficients of the kernel and PN blocks of K × K
products are computed contemporaneously.

Figure 3. The Kernel Buffer.

Figure 4. The architecture of the novel Deconvolution Engine.

Each DU was structured as depicted in Figure 5 to manage efficiently the overlapping rows/columns
between these neighboring blocks of products. Figure 5 shows that the generic DU consists of the K



J. Imaging 2020, 6, 85 7 of 17

modules Rowx, with x = 0, . . . , K − 1, each using an appropriate number of DSPs, depending on
the supported parallelism level. Furthermore, to guarantee the proper time alignment of the overlapping
products, First-In-First-Out (FIFO) Buffers are exploited.

Figure 5. The structure of the generic DU.

To better explain how the generic DU performs deconvolutions, let us consider, as an example,
the kernel size K = 5, the stride S = 2 and PN = 4. In this case, x ranges from 0 to 4 and five modules Rowx
are required, each one, as reported in Figure 6, consisting of 20 DSPs. The latter are named dy, with d =
0, . . . , 3 and y ranging from 0 to 4, to indicate that they multiply the input pixel I(i,j + d) by the kernel
coefficient C(x,y). The additional DSPs x0, . . . , x7 are required only within the modules Row0, Row1,
and Row2 to manage the overlapping rows. On the contrary, the S × PN results computed by Row3
and Row4 are directly provided by the DSPs 00, 01, 10, 11, 20, 21, 30, and 31. All the multiplications and
the additions performed in the examined example by the generic DU are summarized in Figure 7 that
also shows, for each entry, the related row and column indices within the intermediate ofmap currently
computed. Since K – S = 3, as highlighted by colored entries, each block of products computed by
the DU has three columns and three rows overlapped with neighboring blocks.

To better explain how the generic DU performs deconvolutions, let us consider, as an example,
the kernel size K = 5, the stride S = 2 and PN = 4. In this case, x ranges from 0 to 4 and five modules Rowx
are required, each one, as reported in Figure 6, consisting of 20 DSPs. The latter are named dy, with d =
0, . . . , 3 and y ranging from 0 to 4, to indicate that they multiply the input pixel I(i,j + d) by the kernel
coefficient C(x,y). The additional DSPs x0, . . . , x7 are required only within the modules Row0, Row1,
and Row2 to manage the overlapping rows. On the contrary, the S × PN results computed by Row3
and Row4 are directly provided by the DSPs 00, 01, 10, 11, 20, 21, 30, and 31. All the multiplications
and the additions performed in the examined example by the generic DU are summarized in Figure 7
that also shows, for each entry, the related row and column indices within the intermediate ofmap
currently computed. Since K – S = 3, as highlighted by colored entries, each block of products computed
by the DU has three columns and three rows overlapped with neighboring blocks.

It is easy to observe that several kinds of overlapping products must be managed. The products
related to the PN adjacent input pixels, currently received by the DU, have the row index equal to
i and the column index ranging between j and j + 3. These products are reported in Figure 7 with
black characters and their overlaps are managed through the red interconnections visible in Figure 6.
Conversely, the products reported in Figure 7 with red characters are being computed at the next
clock cycle, when the DU is receiving the next PN adjacent pixels, i.e., I(i,j + 4), . . . , I(i,j + 7), as input.
The column overlaps related to these products are managed through the blue interconnections used
in Figure 6 to transfer the delayed outputs produced by the DSPs 32, 33 and 34 towards the DSPs
00, 01, and 02, respectively. Finally, the products reported in Figure 7 with blue characters involve



J. Imaging 2020, 6, 85 8 of 17

the pixels I(i + 1, j), . . . , I(i + 1, j + 3), which belong to the (i + 1)-th row of the ifmap currently processed.
To receive these pixels as input, the DU must wait for all the pixels of the i-th row have been processed.
As above illustrated in Figure 5, to guarantee the proper time alignment of these overlapping products,
appropriate Buffers are exploited. In the examined example, they are required at the output of the three
modules Row2, Row3, and Row4. These overlapping products are managed within the modules Row0,
Row1 and Row2 through the DSPs x0, . . . , x7 and the green interconnections depicted in Figure 6.
Thanks to the fully pipelined adopted architecture, after the initial latency, each DU furnishes S × S ×
PN deconvolved pixels at every clock cycle. These deconvolved pixels are reported in the white entries
of Figure 7 as provided by the modules Row0 and Row1.

Obviously, resources requirements, latency and throughput rate of the DE depend on the ifmaps
size H ×W, as well as on K, S, TN, TM, and PN. In the generic scenario, each DU needs [K × K + S × (K
− S)] × PN DSP slices to perform multiplications and to sum the overlapping neighboring products

that are time aligned through S × (K – S) × PN row buffers, each being S ×(W − 1) + K
S × PN

− 2 depth.

Figure 6. The architecture of the module Rowx for PN = 4, K = 5, S = 2.



J. Imaging 2020, 6, 85 9 of 17

Figure 7. The operations performed by the generic DU when PN = 4, K = 5, S = 2. Black: operations performed at the current clock cycle; red: operations performed at
the next clock cycle; blue: operations performed on the pixels belonging to the (i + 1)-th row and the (j), . . . (j + 3)-th columns; green: operations performed on the
pixels belonging to the (i + 1)-th row and the (j + 4)-th column.



J. Imaging 2020, 6, 85 10 of 17

The novel DE has been designed taking into account also the treatment of border pixels. This is
a key aspect, since it affects the data flow of the input streams. In fact, each of the TM × TN DUs
operating in parallel receives its own ifmap in the raster order. At the end of each row, the DE stops

the incoming stream of pixels for S × (W − 1)+K
S × PN

−
W
PN

clock cycles. During this time, the zero-padding is
applied through a proper multiplexing logic directly controlled by the FSM that also manages the AXI4
protocol signals coherently with the desired wait. At the end of the current step, the DE provides
S × (H − 1) + K

S −H padding rows, before acquiring the next group of ifmaps to perform the subsequent
computational step.

As above explained, each of the parallel DUs inside the DE outputs TM × TN blocks of S × S
× PN deconvolved pixels. The homologous pixels within these blocks are accumulated to compose
an intermediate ofmap. In turn, the intermediate ofmaps are accumulated step-by-step to each other
until the DLPE provides the final result. The AL purposely designed to operate in this way is depicted
in Figure 8a. The Route module receives blocks of deconvolved pixels from the DUs and sends them
to S × S × TM × PN adder trees taking into account that each group of TN homologous data must
feed the same Adder Tree. The latter exploits DSPs to execute accumulations as fast as possible.
The intermediate ofmaps provided by the adder trees are temporarily stored within local Simple Dual
Port RAMs (SDPRAMs). They are resumed later to be accumulated with the intermediate ofmaps
produced at the next step. During the last computational step, the final deconvolved pixels are
generated. The Quantize and Group module quantizes the final deconvolved pixels to F-bit values
and properly arranges them into packed words to be processed by the next layer, as required by
the referenced DCNN (or CNN) model. Such packed words are stored within the Output Buffer
Memory to be then sent towards the external DDR memory. In the meantime, the bank of Multiplexers
visible in Figure 8a drives SDPRAMs with zeros input. In this way, the SDPRAMs are prepared for
the next deconvolution task without wasting additional initialization time.

Figure 8. The Accumulation Logic: (a) the architecture; (b) the ofmap arrangement for PN = 4 and S = 2.

The adopted packing strategy takes into account that the DLPE produces TM × TN blocks of S × S
× PN pixels per clock cycle. The example depicted in Figure 8b shows one 6 × 24 ofmap produced with
S = 2 and PN = 4. Different colors are used to highlight the pixels furnished in parallel at a certain



J. Imaging 2020, 6, 85 11 of 17

clock cycle so that, as an example, all the pixels located at the yellow entries are furnished at the
5th clock cycle. To ensure that the final ofmap is stored within the external DDR in the raster order,
each block of pixels can be arranged in two words, each containing the pixels within the same row.
Hence, in the example, the Quantize and Group module would furnish two 2 × PN × F-bit words
at every clock cycle. In the generic operating condition, this module packs the final deconvolved pixels
within TM × S words, each being S × PN × F-bit wide.

4. Implementation and Results

Custom designed parametric constructs were purposely written using the Very High-Speed
Integrated Circuits Hardware Description Language (VHDL) to describe the proposed DLPE
at the Register-Transfer-Level (RTL) abstraction. This approach allowed the novel hardware accelerator
to be easily customized to different operating conditions and high computational speeds to be achieved
by carefully using the available resources. The 2019.2 Vivado Design Suite has been used to perform
simulations, synthesis, and implementations. For purposes of comparison with existing competitors,
the DLPE described in the above Section has been exploited to accelerate the DCGAN neural network
presented in [21]. In particular, the heterogeneous ES depicted in Figure 9 has been designed.
Even though only implementations within Xilinx devices are detailed in the following, virtually any
other devices family can be used for purposes of prototyping. In fact, the whole system mainly consists
of the PS and the PL. As typically happens, the former is responsible for configuring the modules
within the PL, for controlling the whole computation at the system level, and for performing non-time
critical tasks. Conversely, the PL accommodates the novel DLPE and all the auxiliary circuitry required
to manage the data transfers from/to the external DDR memory, as ruled by the AXI4 communication
protocols. As detailed in the legend of Figure 9, different colors are used to distinguish connections
supporting memory-mapped transactions from data streams.

Figure 9. The referred embedded system architecture.

The supported parallelism level is dictated by TM, TN, PM, and PN, which are properly set in
accordance with the amount of resources available within the specific device chosen as the target
implementation platform. As an example, using the low-end XC7Z020 Zynq device, with TM and TN
being set to 2 and 3, respectively, PM = 4 and PN = 1 can be used. This means that

[NF
TM

]
pairs of

ofmaps are computed, each within
[NC

TN

]
+ 1 computational steps. Each module depicted in Figure 9 has

its role: (1) the DMA [29] is responsible for uploading the kernels coefficients; (2) the VDMAs [30]
are responsible for resuming and storing the ifmaps and the ofmaps; (3) the AXIS Combiner [31]
synchronizes the parallel input data within a single data stream, then fed to the DLPE; (4) finally,
the AXIS Broadcaster [31] separates the output pixels received in parallel from the DLPE depending on
the ofmap they belong to. It is worth noting that the adopted data transfer policy allows the ofmaps
to be directly arranged within the DDR memory in the raster order. Therefore, subsequent cascaded



J. Imaging 2020, 6, 85 12 of 17

deconvolutional layers can process them, without requiring either complex management of the memory
address space or expensive data reorganization.

To better explain how the proposed DLPE is exploited in the ES of Figure 9, let examine
the computational flow schematized in Figure 10. The latter details the main activities as performed
over the time within multiple computational steps each providing TM ofmaps. During the first step,
the processor configures the DMA to specify which off-chip memory area must be accessed to read
a block of K × K × TM kernel coefficients. These coefficients are then streamed towards the DLPE to be
stored within the Kernel Buffer. In the meantime, the processor instructs the VDMAs to transfer H ×W
× TN ifmap values from the off-chip memory to the DLPE. After the initial latency, the latter will produce
the intermediate TM ofmaps that are on-chip stored for further accumulations. The above operations
are repeated for all the subsequent steps, until the last one is executed. In this case, the VDMAs are
also configured to transfer the final quantized TM ofmaps from the DLPE to the external DDR memory.

Figure 10. The computational flow of the architecture in Figure 9.

For purposes of comparison with state-of-the-art competitors, also designed to accelerate
the DCGAN model presented in [21], several alternative implementations of the novel accelerator have
been carried out and characterized using both low- and high-end devices.

The obtained results are summarized in Table 1 in terms of: supported parallelism (TM, TN,
PM, and PN), kernel size (K) and stride (S); resources requirements; running frequency; number of
operations performed per second (GOPs); and, finally, dynamic power consumption.

Table 1. Comparison results.

Device/(Design, Precision)
TM, TN

LUTs FFs
BRAMs

[Mb] DSPs
Freq.

[MHz] GOPs
Dyn.

Power
[Watt]

PM, PN
K, S

New XC7Z020 (SU, 16b fix-p)
2, 3

2.9k
(5.5%)

4.3k
(4.1%)

0.84
(17.1%)

210
(95.5%) 200 72 0.424, 1

5, 2

New XC7Z045 (SU, 16b fix-p)
2, 4

6.4k
(2.9%)

9.6k
(2.2%)

0.84
(4.4%)

560
(62.2%) 250 240 1.148, 2

5, 2

New XC7Z100 (SU, 16b fix-p)
2, 4

15.5k
(5.6%)

22.9k
(4.1%)

0.84
(3.2%)

1120
(55.5%) 300 576 2.6216, 4

5, 2

New XC7VX690T (SU, 16b fix-p)
2, 3

23.2k
(5.4%)

34.4k
(4%)

0.84
(1.6%)

1680
(46.7%) 320 921.6 4.132, 8

5, 2

[16] XC7VX485T (SU, 32b float-p)
4, 128

142.7k
(47%)

151.4k
(24.9%)

9.14
(25.2%)

2560
(91.4%) 100 NA1 NA1, 1

5, 2



J. Imaging 2020, 6, 85 13 of 17

Table 1. Cont.

Device/(Design, Precision)
TM, TN

LUTs FFs
BRAMs

[Mb] DSPs
Freq.

[MHz] GOPs
Dyn.

Power
[Watt]

PM, PN
K, S

[15] XC7VX690T (SU, 16b fix-p)
2, 64

304.2k
(70.2%)

602.7k
(69.6%)

25.03
(48.4%)

2304
(64%) 200 1578 NA8, 1

3, 1

[17] XC7Z100 (SU, 16b fix-p)
64, 64

117.9k
(42.5%)

247.2k
(44.5%)

17.4
(65.5%)

1987
(98.4%) 200 NA 2.891, 1

3, 1

New XC7Z020 (ES, 16b fix-p)
2, 3

12.8k
(24.6%)

17.7k
(17.1%)

1.49
(30.4%)

210
(95.5%) 150 54 1.734, 1

5, 2

New XC7Z045 (ES, 16b fix-p)
2, 4

16.3k
(7.5%)

23k
(5.3%)

1.86
(9.7%)

560
(62.2%) 167 160.3 2.38, 2

5, 2

[9] XC7Z020 (ES, 12b fix-p)
NA, NA

25.5k
(48%)

30.9k
(29%)

2.35
(48%)

220
(100%) 100 2.6 NA1, 1

NA, NA

[11] XC7Z045 (ES, 16b fix-p)
NA, NA

161.8k
(74%)

148.6k
(34%)

15.3
(80%)

810
(90%) 150 NA NA1, 1

5, 2

[18] XC7Z045 (ES, 16b fix-p)
2, 2

196.7k
(90%) NA

10.9
(57%)

603
(67%) 167 133.8 5.84, 4

5, 2
1 NA = Not Available

It is worth highlighting that while the designs presented in [15–17] are SUs, those demonstrated
in [9,11,18] are embedded heterogeneous systems (ESs). For this reason, several SU and ES versions of
the design here presented have been characterized and they are referenced in Table 1. The latter clearly
shows that independently of the device used, the proposed implementations exhibit remarkable
throughputs with reasonable resources requirements. Obviously, in comparison with the SU
implementations, due to the auxiliary modules used to manage data transfers from/to the external
DDR memory, the ES implementations occupy more LUTs, FFs, and on-chip BRAMs. Moreover, the PS
obviously leads to an increased dynamic power consumption.

From Table 1 it can be seen that the SU architectures presented in [15,17] exploit very high
parallelism levels and operate with K = 3 and S = 1. Nevertheless, the design presented here,
though it exploits a lower parallelism and operates with K = 5 and S = 2, which are more complex
to manage than K = 3 and S = 1, at a parity of the device used, reduces the amount of occupied
LUTs, FFs, and DSPs by ~86%, ~90% and ~43% with respect to [17]. Furthermore, it occupies 20 ×
less BRAMs and reaches a 1.5 × higher running frequency. Tests purposely performed on the novel
accelerator have shown that when operating with TM = 2, TN = 4, PM = 16, PN = 4, K = 3 and S = 1,
the resources requirements are further reduced and the consumed dynamic power is more than 45%
lower than [17]. Analogously, when implemented within the XC7VX690T device, the proposed design
saves a significant amount of occupied resources with respect to [15] that reaches a very high number
of operations per second (GOPs) also thanks to the reduced kernel size and stride.

A further aspect to take into account is related to the high parallelism exploited in [15–17]
at the ifmaps level (i.e., TN). Indeed, ad-hoc memory managements are necessary to allow either 64 or
128 homologous pixels belonging to as many ifmaps to be accessed contemporaneously. To support
such irregular data access policies, the designs presented in [15,17] need a quite significant amount of
on-chip BRAMs. As a drawback, this approach limits the scalability and the possibility of implementing
these designs also within low-end devices, unless reducing the parallelism exploited, at the expense
of the computational speed. Conversely, to keep data transfer to/from the external memory regular,
as happens with the simple raster scan order, the novel accelerator mainly exploits pixel-level parallelism.
This is a key feature to make the proposed design easily scalable and suitable for the implementation
within low-end devices. Similar considerations arise for the accelerator demonstrated in [16]. However,



J. Imaging 2020, 6, 85 14 of 17

the latter has the merit of supporting the 32-bit floating-point representation, which certainly leads to
an overall quality higher than all the other solutions, but with a significant speed penalty.

Among the compared ES implementations, as expected, that the one based on the reverse looping
approach [9] is the slowest one. At the parity of the implementation device platform, in comparison
with [9], the ES presented here occupies ~49.8% less LUTs, ~42.7% less FFs, 1.6 × less BRAMs and ~5%
less DSPs. Moreover, it is ~20.7 × faster and achieves a density efficiency, evaluated as the ratio
GOPs/DSPs, ~21.7 × higher.

The proposed deconvolution architecture exhibits remarkable advantages also with respect
to [11,18]. The significant reduction of occupied resources, achieved also with respect to these
counterparts, is due to the more efficient architecture here exploited by the generic DU. In fact,
the separate analysis, purposely performed varying K and S, demonstrated that the proposed DU
always minimizes the amount of occupied LUTs and FFs. This happens because, in contrast with [11],
DSPs are exploited to perform both multiplications and accumulations.

Among the ES implementations referenced in Table 1 as the state-of-the-art competitors, the design
presented in [18] is certainly the most competitive in terms of speed performance. However, the novel
ES exhibits a computational capability ~19.5% higher, it occupies ~12 × less LUTs, ~5.8 × less BRAMs
and ~7% less DSPs, thus dissipating ~60% less power.

As above discussed, the computational capability actually supportable by the novel accelerator
depends on the specific realization platform. In fact, it is mainly dictated by the number of required
DSPs that, in turn, depends on the kernel size and the stride. However, the same number of DSPs
can be exploited differently to implement different configurations of the novel DLPE, depending on
the parameters TM, TN, S, PM, and PN. Establishing which configuration is the most appropriate for
a specific operating environment is crucial to use the available resources as more efficient as possible.
To this aim, different design spaces can be explored by varying the above parameters. As an example,
the design space exploration reported in Figure 11 was carried out by considering the XC7Z020 device
as the target, thus setting the maximum number of available DSPs to 220. The behavior of the proposed
accelerator has been examined for various kernel sizes K and parallelism levels TM and TN with S = 2,
PM = 4 and PN = 1. In this condition, two different scenarios were analyzed: in the first case (the Case1
in Figure 11), TM = 2 and TN = 3 are maintained unchanged to establish the maximum supportable
kernel size; conversely, in the second case (referred as the Case2) also TN varies between 24 and 6,
while TM is set to 1. In the case 2, for each K the maximum TN has been considered (e.g., with K = 2, TN
= 24). Figure 11 plots the numbers of DSPs used in the two referred cases by the DE and the AL versus
K. As expected, in the first case the wider the kernel size, the higher the number of DSP slices required
by the DE. On the contrary, the red line shows that the number of DSPs used to implement the fast
adder trees within the AL module is maintained constant to 24, since it only depends on the parallelism
and the stride. The above results show that in such a case, the maximum kernel size supportable with
220 DSPs is K = 5. This is the solution above referenced in Table 1 for both the SU and ES designs
implemented within the XC7Z020 device.

Results collected for the second analyzed scenario prove that to comply with the amount of DSPs
on-chip available, as the kernel size increases, the parallelism must decline. Obviously, as clearly
shown by the blue line in Figure 11, the lower the parallelism, the lower the number of DSPs used
for accumulations. The possibility of having different design spaces to explore helps the designer in
identifying the best configuration of the proposed DLPE for a certain specific operating condition.

Finally, referring to the XC7Z020 device, the execution time of the ES implementation here
proposed has been compared to a pure software design run by the 666 MHz ARM-Cortex Processor
on-chip available. When executing the most complex deconvolution layer involved in the selected
DCGAN model [21], the ES, which integrates the novel DLPE as the hardware accelerator, is more than
1000 times faster than the all-software implementation.



J. Imaging 2020, 6, 85 15 of 17

Figure 11. Design space exploration within the XC7Z020 device at the stride S = 2.

5. Conclusions

This paper presented a novel hardware architecture to accelerate 2D deconvolutions in
deep-learning applications. The proposed design introduced several architectural-level innovations
to exploit resources available within the chosen implementation platform more efficiently than prior
accelerators known in the literature. The architecture here presented has been purpose-designed to
comply with the AXI4 communication protocol. Therefore, it can be integrated within virtually any
heterogeneous FPGA-based SoC. The presented design is easily scalable and implementable within
both high- and low-end devices, thus becoming suitable also for the integration within resource- and
power-constrained embedded systems. Several implementations of both SUs and embedded systems
have been characterized using different devices and parallelism levels. As a case study, the proposed
architecture has been used to accelerate an existing DCGAN model. Comparisons with state-of-the-art
counterparts have clearly shown the efficiency of the implementations here presented in terms of
power consumption, resources requirements, and computational speed.

Author Contributions: Conceptualization, S.P., C.S., F.S. and P.C.; Formal analysis, S.P., C.S., F.S. and P.C.;
Investigation, S.P., C.S., F.S. and P.C.; Writing—review & editing, S.P., C.S., F.S. and P.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by “POR Calabria FSE/FESR 2014-2020—International Mobility of PhD
students and research grants/type A Researchers”—Actions 10.5.6 and 10.5.12 actuated by Regione Calabria, Italy.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information
Processing Systems—Volume 2, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

2. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia Rodriguez, J. A review on
deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 2018, 70, 41–65.
[CrossRef]

3. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 38, 295–307. [CrossRef] [PubMed]

4. Dumoulin, V.; Visin, F. A Guide to Convolution Arithmetic for Deep Learning. Available online: https:
//arxiv.org/abs/1603.07285 (accessed on 14 July 2019).

5. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey.
Proc. IEEE 2017, 105, 2295–2329. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2018.05.018
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
http://dx.doi.org/10.1109/JPROC.2017.2761740


J. Imaging 2020, 6, 85 16 of 17

6. Feng, X.; Jiang, Y.; Yang, X.; Du, M.; Li, X. Computer vision algorithms and hardware implementations:
A survey. Integration 2019, 69, 309–320. [CrossRef]

7. Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl.
2018, 32, 1–31. [CrossRef]

8. Yazdanbakhsh, A.; Brzozowski, M.; Khaleghi, B.; Ghodrati, S.; Samadi, K.; Kim, N.S.; Esmaeilzadeh, H.
FlexiGAN: An End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks.
In Proceedings of the 26th IEEE International Symposium on Field-Programmable Custom Computing
Machines, Boulder, CO, USA, 29 April–1 May 2018; pp. 1–8.

9. Zhang, X.; Das, S.; Neopane, O.; Kreutz-Delgado, K. A Design Methodology for Efficient Implementation
of Deconvolutional Neural Networks on an FPGA. Available online: https://arxiv.org/abs/1705.02583
(accessed on 14 July 2019).

10. Liu, S.; Fan, H.; Niu, X.; Ng, H.-C.; Chu, Y.; Luk, W. Optimizing CNN-based Segmentation with Deeply
Customized Convolutional and Deconvolutional Architectures on FPGA. ACM Trans. Rec. Technol. Syst.
2018, 11, 1–22. [CrossRef]

11. Liu, S.; Zeng, C.; Fan, H.; Ng, H.-C.; Meng, J.; Luk, W. Memory-Efficient Architecture for Accelerating
Generative Networks on FPGAs. In Proceedings of the IEEE International Conference on Field Programmable
Technology, Naha, Okinawa, Japan, 10–14 December 2018; pp. 33–40.

12. Liu, S.; Luk, W. Towards an Efficient Accelerator for DNN-Based Remote Sensing Image Segmentation on
FPGAs. In Proceedings of the 29th International Conference on Field Programmable Logic and Applications,
Barcelona, Spain, 9–13 September 2019; pp. 187–193.

13. Chang, J.-W.; Kang, S.-J. Optimizing FPGA-based convolutional neural networks accelerator for image
super-resolution. In Proceedings of the 23rd Asia and South Pacific Design Automation Conference,
Jeju, Korea, 22–25 January 2018; pp. 343–348.

14. Chang, J.-W.; Kang, K.-W.; Kang, S.-J. An Energy-Efficient FPGA-Based Deconvolutional Neural Networks
Accelerator for Single Image Super-Resolution. IEEE Trans. Circ. Syst. Video Technol. 2020, 30, 281–295.
[CrossRef]

15. Wang, D.; Shen, J.; Wen, M.; Zhang, C. Efficient Implementation of 2D and 3D Sparse Deconvolutional
Neural Networks with a Uniform Architecture on FPGAs. Electronics 2019, 8, 803. [CrossRef]

16. Chang, J.-W.; Ahn, S.; Kang, K.-W.; Kang, S.-J. Towards Design Methodology of Efficient Fast Algorithms for
Accelerating Generative Adversarial Networks on FPGAs. In Proceedings of the 25th Asia and South Pacific
Design Automation Conference, Beijing, China, 13–16 January 2020; pp. 283–288.

17. Yu, Y.; Zhao, T.; Wang, M.; Wang, K.; He, L. Uni-OPU: An FPGA-Based Uniform Accelerator for Convolutional
and Transposed Convolutional Networks. IEEE Trans. VLSI Syst. 2020, 28, 1545–1556. [CrossRef]

18. Di, X.; Yang, H.-G.; Jia, Y.; Huang, Z.; Mao, N. Exploring Efficient Acceleration Architecture for
Winograd-Transformed Transposed Convolution of GANs on FPGAs. Electronics 2020, 9, 286. [CrossRef]

19. Spagnolo, F.; Perri, S.; Frustaci, F.; Corsonello, P. Energy-Efficient Architecture for CNNs Inference on
Heterogeneous FPGA. J. Low Power Electron. Appl. 2020, 10, 1. [CrossRef]

20. AMBA 4 AXI4, AXI4-Lite, and AXI4-Stream Protocol Assertions User Guide. Available online: http:
//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html (accessed on 14 July 2020).

21. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative
adversarial networks. In Proceedings of the International Conference on Learning Representations,
Caribe Hilton, San Juan, Puerto Rico, 2–4 May 2016.

22. Gaide, B.; Gaitonde, D.; Ravishankar, C.; Bauer, T. Xilinx Adaptive Compute Acceleration Platform:
Versal™Architecture. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA’19), Seaside, CA, USA, 24–26 February 2019; pp. 84–93.

23. Zynq-7000 SoC Technical Reference Manual (UG585 v. 1.12.2), July 2018. Available online: https://www.
xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf (accessed on 14 July 2020).

24. 7 Series FPGAs Data Sheet: Overview (DS180 v. 2.6), February 2018. Available online: https://www.xilinx.
com/support/documentation/data_sheets/ds180_7Series_Overview.pdf (accessed on 14 July 2020).

25. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings
of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

http://dx.doi.org/10.1016/j.vlsi.2019.07.005
http://dx.doi.org/10.1007/s00521-018-3761-1
https://arxiv.org/abs/1705.02583
http://dx.doi.org/10.1145/3242900
http://dx.doi.org/10.1109/TCSVT.2018.2888898
http://dx.doi.org/10.3390/electronics8070803
http://dx.doi.org/10.1109/TVLSI.2020.2995741
http://dx.doi.org/10.3390/electronics9020286
http://dx.doi.org/10.3390/jlpea10010001
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf


J. Imaging 2020, 6, 85 17 of 17

26. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

27. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of
the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528.

28. Zeiler, M.D.; Krishnan, D.; Taylor, G.W.; Fergus, R. Deconvolutional networks. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
13–18 June 2010; pp. 2528–2535.

29. AXI DMA v7.1, LogiCORE IP Product Guide (PG021). Available online: https://www.xilinx.com/support/
documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf (accessed on 14 July 2020).

30. AXI Video Direct Memory Access v6.2, LogiCORE IP Product Guide (PG020). Available online: https://www.
xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_2/pg020_axi_vdma.pdf (accessed on
14 July 2020).

31. AXI4-Stream Infrastructure IP Suite v3.0 LogiCORE IP Product Guide (PG085). Available
online: https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/

v1_1/pg085-axi4stream-infrastructure.pdf (accessed on 14 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_2/pg020_axi_vdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_2/pg020_axi_vdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background, Related Works, and Motivations 
	The Proposed Hardware Accelerator 
	Implementation and Results 
	Conclusions 
	References

