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Since the emergence of the novel 2019 coronavirus pandemic in December 2019 (COVID-
19), numerous modellers have used diverse techniques to assess the dynamics of trans-
mission of the disease, predict its future course and determine the impact of different
control measures. In this study, we conducted a global systematic literature review to
summarize trends in the modelling techniques used for Covid-19 from January 1st, 2020 to
November 30th, 2020. We further examined the accuracy and precision of predictions by
comparing predicted and observed values for cumulative cases and deaths as well as
uncertainties of these predictions. From an initial 4311 peer-reviewed articles and pre-
prints found with our defined keywords, 242 were fully analysed. Most studies were done
on Asian (78.93%) and European (59.09%) countries. Most of them used compartmental
models (namely SIR and SEIR) (46.1%) and statistical models (growth models and time
series) (31.8%) while few used artificial intelligence (6.7%), Bayesian approach (4.7%),
Network models (2.3%) and Agent-based models (1.3%). For the number of cumulative
cases, the ratio of the predicted over the observed values and the ratio of the amplitude of
confidence interval (CI) or credibility interval (CrI) of predictions and the central value
were on average larger than 1 indicating cases of inaccurate and imprecise predictions, and
large variation across predictions. There was no clear difference among models used for
these two ratios. In 75% of predictions that provided CI or CrI, observed values fall within
the 95% CI or CrI of the cumulative cases predicted. Only 3.7% of the studies predicted the
cumulative number of deaths. For 70% of the predictions, the ratio of predicted over
observed cumulative deaths was less or close to 1. Also, the Bayesian model made pre-
dictions closer to reality than classical statistical models, although these differences are
only suggestive due to the small number of predictions within our dataset (9 in total). In
addition, we found a significant negative correlation (rho ¼ - 0.56, p ¼ 0.021) between this
ratio and the length (in days) of the period covered by the modelling, suggesting that the
longer the period covered by the model the likely more accurate the estimates tend to be.
Our findings suggest that while predictions made by the different models are useful to
understand the pandemic course and guide policy-making, some were relatively accurate
and precise while other not.
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1. Introduction

The current outbreak of the novel coronavirus SARS-CoV-2 which original epicenter was Wuhan city, has spread to many
other countries (Velavan andMeyer, 2020) causing devastating public health impacts across the world. The novel coronavirus
spilled over from the non-human primate population into humans on the Huanan seafood market in Wuhan, China. Since
March 2020, while new cases in China appears to have settled down, the number of cases is exponentially growing in the rest
of the world (Toda, 2020) with Africa the least affected continent.

As with the two other coronaviruses that caused major outbreaks in humans in recent years (namely, Severe Acute
Respiratory Syndrome and the Middle Eastern Respiratory Syndrome (WHO, 2020; Yin & Wunderink, 2018), Covid-19 is
transmitted from human-to-human through direct contact with contaminated objects or surfaces and through inhalation of
respiratory droplets from both symptomatic and a-symptomatic infectious humans (Bai, Yao, et al., 2020).

In the absence of a safe and effective vaccine or antivirals, strategies for controlling and mitigating the burden of the
pandemic are focused on Non-Pharmaceutical Interventions (NPI), such as social-distancing, contact-tracing, quarantine,
isolation, and the use of face-masks in public (Ngonghala et al., 2020). Though many countries rely on those mitigation
measures which help to slow the spread of the pandemic (Taboe et al., 2020), researchers, across various medical, public
health and modelling disciplines, are actively engaged in efforts to understand the epidemiology of the disease. Modelling
novel coronavirus disease has then become of extreme importance. Many researchers around the world have studied the
patterns of Covid-19 pandemic and several mathematical, computational, clinical and examination studies have been put
forward for modelling, prediction, treatment and control of the disease (Ngonghala et al., 2020; Taboe et al., 2020; Achoki
et al., 2020; Bartolomeo et al., 2020; Cao et al., 2020; Ceylan, 2020; Kim et al., 2020; Pasayat et al., 2020; Shaikh et al.,
2020; Tang, Bragazzi, et al., 2020; Xiao et al., 2020; Zhao, Gao, et al., 2020; Ziauddeen et al., 2020). This growing interest
of scientists has resulted in a deluge of studies predicting the dynamics of Covid-19, and summarizing trends in these studies
is necessary. Some studies (e.g. Achoki et al., 2020; Roda et al., 2020) reported the difficulty of current models to accurately
predict the Covid-19 pandemic. Roda et al. (2020) showed that non-identifiability in model calibration using data on
confirmed cases is a main source of large variation in model predictions. Other studies (Achoki et al., 2020; Bai, Gong, et al.,
2020; Jewell et al., 2020) have raised the issues of data quality that is necessary for accurate predictions. The type of models
used could also affect the accuracy of predictions (Ceylan, 2020; Wu, Darcet, Wang, & Sornette, 2020).

Herewe conducted a systematic and critical review of studies published between January 1st and November 30th 2020 on
Covid-19 to (1) summarize trends in the modelling techniques used to predict Covid-19 cases and deaths, and (2) assess the
reliability of predictions of Covid-19 cases and deaths. The overarching goal is to determine and discuss towhat extent studies
accurately predict Covid-19 cases and deaths and whether some differences exist among modelling techniques.

2. Methods

2.1. Article search and selection

Relevant scientific databases, such as Pubmed, medRxiv and Google Scholar were used to search for models for COVID-19
transmission. The following keywords were used: “Coronavirus”, “Covid-19”, “Corona”, “SARS viruses”, “Sars-CoV-2”, OR
“2019-nCoV” and in combination (i.e. AND) with “Model/modelling” “Prediction/Predicting”, “Dynamics”, “Estimates/Esti-
mations/Estimating” OR “Forecast/Forecasting”. The time period coveredwas from January 1st, 2020 to November 30th, 2020.
The bibliographies of retrieved studies as well as bibliographies of current reviews and texts were searched for additional
relevant studies. From an initial list of 4291 articles, 242 were finally included in the systematic review. Selection of articles
included in the systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines as illustrated on Fig. 1. The articles included were those related to Covid-19 dynamics and are model-
based. All studies on covid-19 dynamics that are not model-based were excluded as were non-English language studies.
Articles dealing with models for assessing risk factor to die from Covid-19 based on socio-economic factors, models for
effective patient diagnosis, models on individual human behavior with regards to control measures (e.g. lockdown), etc. were
excluded (see Fig. 1).

2.2. Literature synthesis and analysis

For each of the 242 papers selected (see supplementarymaterial 1 for the full list), the data extractedwere: the country for
which the modelling study was conducted, the published or unpublished status of the study, the time period covered by the
data (in number of days), the topics addressed in the study, the modelling techniques used, and whether the modelling was
data-driven or not. We also noted whether the study accounted for asymptomatics, pre-symptomatics, both asymptomatics
and pre-symptomatics, or none of these classes of individuals. This aspect was included because of the prominent role that
asymptomatics and pre-symptomatics play in the transmission of the disease (He, Guo, Mao,& Zhang, 2020). When the study
made predictions, we further recorded the predicted values of the cumulative number of cases, the predicted values of the
cumulative number of deaths, the date at which the predicted values of the number of cumulative cases will be observed, and
the uncertainty parameters around the predictions (95% Confidence Interval e CI or 95% Credibility Interval e CrI). The data
analyses considered three aspects. The first aspect was related to the geographical coverage (continents and number of
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Fig. 1. PRISMA flow diagram of the selection process of the 242 studies included in the systematic review.
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countries covered per continent) and topics addressed in the studies, whether the modelling was data-driven and include
symptomatics, pre-symptomatics, or not; we used count and relative frequencies to describe this trend. The second aspect
was related to the modelling techniques and was also addressed using count and relative frequencies after grouping
modelling techniques in relatively similar groups. The third aspect was the accuracy and precision of the predictions made by
studies. Accuracy refers to how close a prediction is to the true value but precision refers to how certain is the prediction
(Stallings & Gillmore, 1971). For this, we used three parameters; the first is the ratio between the value predicted and the
value actually observed on the day onwhich the prediction was made. This ratio is a measure of accuracy of the prediction. A
value close to 1 indicates that the prediction was accurate. Values less or larger than one indicates underestimation or
overestimation, respectively. The second parameter which is a measure of precision was the ratio between the amplitude of
the uncertainty parameter (95% CI or 95% CrI) and the central value. For studies that used statistical methods, the uncertainty
parameter is the 95% CI. For studies which used Bayesian methods, the 95% CrI is the uncertainty parameter. The uncertainty
parameters indicate that given the observed data, the prediction has 95% probability of falling within this range. This ratio is
an estimate of the accuracy of the predictions. A value of 1 for this ratio indicates that the amplitude is larger as the central
value. Smaller values indicate more accurate prediction (i.e. predictionwith low uncertainty). The values of these ratios were
plotted against studies, and type of models used. We additionally plotted these ratios against the number of days covered by
the studies. We expected that the longer the period of data considered, the smaller the values of these ratios. The third
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parameter was whether the value actually observed in a study was within or out of the 95% CI or CrI of the predictions; this
was used to compute the proportion of predictions for which the number of cumulative cases or deaths actually observed are
within the 95% CI or CrI of the predictions.
3. Results

3.1. Characteristics of the papers selected: publication status, geographical coverage and topics addressed

Of the 242 papers reviewed, 33.88% were preprints. The largest part of the studies focused on Asia (78.93%), especially on
China (51) and on India (24) (Fig. 2a). However, the coverage (percentage of countries in a continentwhere a studywas carried
out) was higher in Europe where we found studies conducted in 81.81% (36 countries out of the 44) of European countries
with Italy (39 studies), France (25 studies) and Spain (22 studies) being the countries where more studies were done. From
our sampled studies, 35 focused on African countries either at country level (9 in Nigeria, 7 in South Africa) or region level (i.e.
west, east, north, south, or central), or the whole continent level. Some studies did not focus on a specific country but on an
entire continent or part of continent (e.g. Taboe et al., 2020). The selected studies covered 18 out of 35 countries in the
America continent, with the Unites States (31 studies) and Brazil (18 studies) as the countries on which most of the studies
were carried out (Fig. 2b, see Supplementary material 2 for the list of countries per continent).

The studies addressed diverse topics which can be classified into four groups. The studies were primarily designed for
three main purposes: study the dynamics of the transmission of Covid-19 with (43.80%) or without (20.66%) attempting to
predict the course of the pandemic (cumulative cases, deaths, hospitalized cases etc.); estimate key epidemiological pa-
rameters of the transmission of Covid-19 (12.40% of studies), and evaluate the impact of control measures on the transmission
of Covid-19 (20.66% of studies). The burden of healthcare systems was also assessed by 1.24% of the studies (Fig. 3a). With
regards to the impact of control measures on the transmission of Covid-19, the following eight control measures were
considered in the studies: face mask, quarantine, case isolation, contact tracing, social distancing, school closure, workplace
distancing, restriction on international air travel and lockdown. Fig. 3b shows the distribution of studies that assessed the
impacts of the above control measures. The most assessed measures were quarantine (19.42%), social distancing (18.60%) and
lockdown (18.18%). Studies focused on six epidemiological parameters (Fig. 3c) and the most estimated parameter was the
reproduction number (38.43%).
3.2. Modelling techniques

Several modelling techniques were used which we classified into five main groups, including Agent-based models, Ma-
chine Learning and Artificial Intelligence (AI) based approach, Bayesian models, Compartmental models, Network models,
Statistical models, and Hybrid models (they refer to models that combine two or more approaches). Supplementary material
3 gives details of the models per group.

A compartmental model, also broadly known as population-based model, is a model that stratifies the population into
different compartments, such as different health states (e.g. Susceptible, Exposed, Infected, Quarantined, Recovered, Dead,
etc.) for the modelling. Compartments are assumed to represent homogeneous sub-populations within which the entities
being modelledesuch as individuals or patientsehave the same characteristics (Porgo et al., 2019). Compartmental models
Fig. 2. Distribution of studies across continents (a) and countries coverage across continents (b).
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Fig. 3. Distribution of studied articles according to (a) whether the models used were data-driven or not, (b) whether the models included asymptomatic and/or
pre-symptomatic individuals, (c) the topic addressed, (d) the control measures assessed, and (e) the key epidemiological parameters estimated.
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were themost used (46.15%) regardless the topic addressed (Fig. 4a). The classical SEIR model was considered inmany studies
(e.g. Nyabadza et al., 2020; Taboe et al., 2020; Wang et al., 2020) (22.30%). Some studies however adopted an improved SEIR
model. Considering the traditional SEIR model as not realistic, Zhao, Li, et al. (2020) considered an improved SEIR model by
introducing both quarantine status and intervention measures. Liu et al. (2020) incorporated three important elements of
Covid-19 to the classical SEIRmodel to estimate epidemiological parameters of the disease in South Korea, Italy, and Spain: (1)
the number of asymptomatic infectious individuals (with very mild or no symptoms), (2) the number of symptomatic re-
ported infectious individuals (with severe symptoms), and (3) the number of symptomatic unreported infectious individuals
(with less severe symptoms). The SEDQIR model based on SEIR model was established by Cao et al. (2020) with D, the
suspected cases of infection or potential victims and Q, the diagnosed and quarantined. Moreover, de Camino-Beck (2020)
introduced a compartment C and then developed the SEICRmodel. The compartment Cwas for confined individuals, that was,
Fig. 4. Diversity of modelling techniques used for Covid-19 (a), and topics addressed with the modelling techniques (b).
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individuals whose movement are restricted and effectively removed from the susceptible population by strong NPI, like lock
downs, closure of retail and entertainment, parks, and vehicular restrictions (de Camino-Beck, 2020).

Statistical modelling is an approach for developing and testing theories by way of causal explanation, prediction, and
description. In many disciplines there is near-exclusive use of statistical modelling for causal explanation and the assumption
that models with high explanatory power are inherently of high predictive power (Shmueli et al., 2010). Contrary to the
compartmental models, statistical models oftenmodel one state (i.e. one compartment at the time) and do not often consider
the flow of individuals among the different states. Statistical models were used by 31.77% of the studies. The most used
statistical models were growth models which aimed to model change over time. About eighteen percent (17.6%) of studies
used growth models (Exponential growth model, Generalized-growth model, Logistic growth model, Richard growth models
etc.) (Wu et al., 2020; Hermanowicz, 2020; Shim et al., 2020). About tenth of the studies used time seriesmodels (9.46%). Time
series models that were used included ARIMAmodels (Ceylan, 2020), VAR models (Silva et al., 2020), exponential smoothing
models (Elmousalami & Hassanien, 2020) etc. One of the most common statistical modelling techniques used were the
regression models. Statistical models, such as regression models, are typically phenomenological and describe the statistical
relationship or association between differentmodel variables (Porgo et al., 2019). Less than four percent (3.5%; 8 out of 230) of
the studies used a regression model (linear regression, polynomial regression etc.) (Chauhan et al., 2020; Yang et al., 2020).
Additional modelling techniques were used, including parametric distributions fitting models (Zhang, Litvinova, et al., 2020;
Zhao, Gao, et al., 2020), exponential decay model (Bartolomeo et al., 2020), least square error (LSE) model (Ahmadi et al.,
2020). AI-based models were used in approximately 7% of the studies whereas Bayesian approach was used in 5% of
studies (Fig. 4a).

Agent-based and networks models were the least represented among the categories of models used, 1.34% and 2.34%,
respectively (Fig. 4a). Contrary to population-based models, in agent-based and networks models, also known as individual-
based models, individuals are considered to typically interact on a network structure and exchange infection stochastically,
thus allowing to consider individual heterogeneity in the modelling process, which seems to be more realistic given the
widespread heterogeneity of human individuals (Willem et al., 2017).

The different models have addressed different topics. Statistical and Bayesian methods have been more frequently used to
estimate epidemiological parameters whereas compartmental models have been used more frequently to assess the dy-
namics of the disease (Fig. 4b). The dynamics of Covid-19 transmission have been analysed in numerous studies which have
tried to predict the spread of the disease using the above models. While the predictions made by some of the models used are
close to the observed reality, predictionsmade by othermodels have proven to be inaccurate. For example, on the basis of data
from February 25 toMarch 21 and using the “Alg-Covid-19”Model, Hamidouche (2020) estimated that the number of cases in
Algeria will exceed 1000 on the 35th day of the epidemic (March 31st, 2020), 5000 on the 42nd day (April 7th) and it will
double and reach 10,000 on 46th day of the epidemic (April 11th) whereas until April 11th, the number of cases in the country
was just 1825 (Worldometer, 2020), probably because of control measures.
3.3. Reliability of predictions on Covid-19 dynamics

3.3.1. Predictions of the number of cumulative cases
From the selected studies, 29 predicted the number of cumulative cases for the coming days and 92 predictions weremade

in total (Fig. 5a). The ratio between the predicted value and the observed valuewas calculated as a criterion for the accuracy of
the predictions. Results showed that the predicted values were higher than observed values for 38.04% of the estimations (35
of the 92) and lower than the observed values for 61.96% remaining estimations (57 of the 92). Thirty-three predicted values
actually departed from the values actually observed (ratio of the predicted value to the observed value less than 0.8 or greater
than 1.2). There was no evidence of strong difference in the value of this ratio among the categories of models used to predict
the future values of the cumulative cases (Fig. 6b). Relatively large variation of the ratio was also observed among predictions
within most of the categories of models (Fig. 5b). Models that accounted for pre-symptomatics seem to have lower ratio, but
data were not enough for a statistical significance test across (Fig. 5c). There was a large variation of the ratio among models
that were parameterized data (Fig. 5d). The regression line between the time periods (expressed as number of days) covered
by the data used in the selected studies and the ratio (b ¼ 0.004; p-value ¼ 0.100) was not significant, indicating no statistical
evidence of more accurate estimation with longer time periods (Fig. 5e).

Confidence interval (CI) or credibility interval (CrI) are essential measurements of precision in parameter estimations. As
an indicator of precision, the ratio of the amplitude of the 95% CI or 95% CrI and the predicted value was calculated to also
assess reliability of the predicted values. Overall, very few studies have reported CI or CrI. Only 5.79% of studies (14 out of 242)
have reported CI or CrI for the predicted number of cumulative cases. These 14 studies provided 20 predictions of which, one
was greater than 1 (5%) and 19 were less than 1 (95%) (Fig. 6a). This ratio seems relatively lower for statistical models
compared to compartmental models, indicating relatively more precise predictions for statistical models (Fig. 6b). However,
this difference cannot be confirmed statistically since the compartmental, and the statistical models were used for 4, and 13
predictions respectively, that we judged not enough for a robust statistical significance test. More data would be needed to
better make this comparison. Including either asymptomatics, or pre-symptomatics or none of these classes in the modelling
does not seem to affect the precision of the predictions (Fig. 6c). There was not enough information in our dataset to compare
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Fig. 5. Accuracy of the models’ predictions: ratio of the number of cumulative cases predicted over the actual number of cumulative cases observed in 33 studies
(a), across types of models (b), according to whether models included asymptomatic or pre-symptomatics (c), according to whether models were parameterized
based on real data (d), and in relationships to the number of days since the first case was reported in concerned countries (e). Others (see appendix C). Values in
parentheses in (b) and (d) represent the number of predictions found for each case.
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this ratio between models parameterized on real data and models that were not parameterized on real data (Fig. 6d). This
ratio decreases with the length of the period (in number of days) covered by the data used for the estimation, although it was
not significant (linear regression analysis: b ¼ �0.001; p-value ¼ 0.242, Fig. 6e).

The third parameter of reliability was based on the 95% CI or CrI provided for each prediction of the number of cumulative
cases. This parameter checked whether the true value (i.e. the value actually observed for the prediction) is within the 95% CI
or CrI provided for the prediction (Fig. 7). Fig. 7 shows a graphical representation of the cross-tabulation of the number of
predictions that presented a 95% CI or CrI (20 in total) and whether or not the value actually observed belongs to the 95% CI or
CrI. This figure shows that 75% (15 out 20) of the values actually observed were within the 95% CI or CrI provided for the
prediction. 65% of these (13 out 20) were predictions made based on statistical models (Fig. 7).

3.3.2. Predictions of the number of cumulative deaths
Only nine of the 242 selected studies (3.72%) made predictions of the number cumulative deaths due to covid-19

pandemic and 17 predictions were made (see Fig. 8a). For about half (52.94%) of the predictions, the ratio of predicted
over the actual number of cumulative deaths was lower or close to 1 (Fig. 8a). One prediction largely exceeded (more than 6
times) the actual number of deaths (Fig. 8a). This ratio seems to be relatively lower (and also lower than 1) for Bayesian
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Fig. 6. Precision of the models’ predictions: ratio of the amplitude of the 95%CI or 95%CrI of the predicted cumulative number of cases over the predicted
cumulative number of cases in 14 studies (a), across types of models (b), according to whether models included asymptomatic or pre-symptomatics (c), according
to whether models were parameterized based on real data (d), and in relationships to the number of days since the first case was reported in concerned countries
(e). Values in parentheses in (b) and (d) represent the number of predictions found for each case.
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models than for statistical models where this ratio was large than one, thus suggesting relatively more accurate predictions
with Bayesian models (Fig. 8b), although these differences are only suggestive due to the small size of the data. A greater
number of predictions thanwe found in this studywould be needed for robust significance test.Whether themodels included
asymptomatic or pre-symptomatics individuals does not seem to affect this ratio (Fig. 8c). Nevertheless, there was a sig-
nificant negative correlation between this ratio and the number of days of the first infection in the target country, suggesting
that the more data used to make the estimates cover a large period of time, the more accurate the estimates tend to be
(Fig. 8d).

Among the above nine studies, seven reported the 95% CI or CrI for their predications and theymade ten predictions of the
number cumulative deaths (Fig. 9a). For six of the ten predictions (60%), the ratio of the amplitude of the 95% CI or CrI over the
predicted number of cumulative deaths was lower than 1 (Fig. 9a). Two predictions had values between 4 and 7 for this ratio
(Fig. 9a). There was no evidence of difference for this ratio among categories of models, nor according to whether the models
considered asymptomatic or pre-symptomatic individuals (Fig. 9 b, c). There was also no correlation of this ratio with the
length of period of time, the more accurate the estimates tend to be (Fig. 9d).

Fig. 10 shows the graphical representation of the cross-tabulation of the number of predictions of the cumulative number
of deaths that presented a 95% CI or CrI (10 in total) and whether or not the value actually observed belongs to the 95% CI or
266



Fig. 7. Distributions of predictions (20) of the cumulative number of cases according to whether the values actually observed for the predictions fall within the
95%CI or 95%CrI of the prediction.
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CrI. This figure shows that 60% (6 out 10) of the values actually observed were within the 95% CI or CrI provided for the
predictions. Among this, four were from statistical models (out of five predictions with statistical models), one from
compartmental models (out one prediction with compartmental model), and one from Bayesian models (out of three pre-
dictions with Bayesian models). This might indicate a more reliable predictionwith statistical model, but a greater number of
predictions per group of models would also be needed for a more robust significance test.
4. Discussion

4.1. Modelling techniques applied to Covid-19 dynamics

The novel coronavirus pandemic (Covid-19) is causing devastating public health and socio-economic burden in affected
areas. Understanding current patterns of the pandemic spread and forecasting its long-term trajectory is essential in guiding
policies aimed at curtailing the pandemic (Taboe et al., 2020; Tang, Wang, et al., 2020). This situation induces a demand to the
mathematical epidemiologist community (Rhodes et al., 2020) for revealing models of outbreak dynamics, which have not
only explanatory but also a predictive potential while the outbreak is in an active phase. These models are aimed at the fast
estimations of the future Covid-19 impact on the population, measures required from the public health system and effec-
tiveness of different control measures (Postnikov, 2020). A wide-range of models were used; some were extremely simple
models while others are more sophisticated. Most studies focused on compartmental models, SIR and SEIR models, to es-
timate the transmission dynamics and make predictions about the future growth of the pandemic. We found that the SIR
model performs better than the SEIR model in representing the information contained in the confirmed-case data though
Jewell et al. (2020) suggested that simpler models may provide less valid forecasts because they cannot capture complex and
unobserved human mixing patterns and other time varying characteristics of infectious disease spread. Our finding is in line
with that of Roda et al. (2020) who reported that predictions usingmore complexmodels may not bemore reliable compared
to using a simpler model. The models used included also statistical models, Bayesian models, Artificial Intelligence based
267



Fig. 8. Accuracy of the models’ predictions: ratio of the number of cumulative deaths predicted over the actual number of cumulative deaths observed in nine
studies (a), across types of models (b), according to whether models included asymptomatic or pre-symptomatics (c), and in relationships to the number of days
since the first case was reported in concerned countries (d). Values in parentheses in (b) and (c) represent the number of predictions found for each case.
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model and Hybrid models (Taboe et al., 2020; Ziauddeen et al., 2020; Linka et al., 2020; Stübinger & Schneider, 2020; Tian
et al., 2020).
4.2. Reliability of predictions on Covid-19 dynamics

The studies included in this review focused more on the prediction of the cumulative number of cases than the deaths
caused by Covid-19. The models used for predicting the dynamics of the Covid-19 were mainly compartmental (SIR and SEIR
models) and statistical (Linear regression model, time series model, growth models). We did not find evidence for difference
across models while some predicted values that far exceeded true values. However, our findings should be considered with
caution as for the reviewed studies, the number of estimations were not fairly distributed across models. The simplest SIR
model is used to predict diseases in which individuals can obtain permanent immunity after infection and is only applicable
when there is a non-drug prevention intervention (Bai, Gong, et al., 2020). This model has shown better predictive perfor-
mance relatively to the SEIR model for number of cases forecasting. Our findings are contrary to that of Bai, Gong, et al. (2020)
which argued that the estimated numbers of infected people far exceed reported cases in the available literature which used
the SIR model and suggest more the use of complex models. Bayesian models were also used by Ziauddeen et al. (2020) and
Mizumoto et al. (2020). Though AI based models were used in few studies of our review, it is shown that the ongoing
development in AI has significantly improved prediction, and forecasting for the Covid-19 pandemic (Lalmuanawma et al.,
2020). However, some factors could explain the departure of predictions from actually observed data. Estimates that
emerge from modelling studies are only as good as the validity of the epidemiological or statistical models used, the extent
and accuracy of the assumptions made and, perhaps most importantly, the quality of the data to which models are calibrated.
Early in an epidemic, the quality of data on infections, deaths, tests, and other factors often are limited by under-detection or
inconsistent detection of cases, reporting delays, and poor documentation, all of which affect the quality of any model output
(Jewell et al., 2020). In the particular case of Covid-19, Achoki et al. (2020) argued that the fact that some people only
experience mild symptoms and that even the best health system can only detect and treat those presenting to facilities also
means that the available data on ‘confirmed’ cases represents only a fraction of the true picture of the pandemic. Additionally,
the key to establish a reliable model is to track the epidemic dynamics and release the clinical information and epidemio-
logical data in a timelymanner. However, official data are often uncertain becausemedical resources are limited. The available
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Fig. 9. Precision of the models’ predictions: ratio of the amplitude of the 95%CI or 95%CrI of the predicted cumulative number of deaths over the predicted
cumulative number of deaths in nine studies (a), across types of models (b), according to whether models included asymptomatic or pre-symptomatics (c), and in
relationships to the number of days since the first case was reported in concerned countries (d). Values in parentheses in (b) and (c) represent the number of
predictions found for each case.

J.E. Gnanvi, K.V. Salako, G.B. Kotanmi et al. Infectious Disease Modelling 6 (2021) 258e272
data only reports confirmed cases in hospitals and ignores infected people who do not have access to medical services. This
makes it difficult to accurately predict the course of the epidemic (Bai, Gong, et al., 2020; Roda et al., 2020). Moreover,
regarding the problem of data quality, especially in developing countries, though we assume that data are collected in real
time and adequately in developed countries, this is undoubtedly not the case in underdeveloped countries that do not have
themeans for doing so. Achoki et al. (2020), when forecasting cumulative cases, new infections, andmortality due to Covid-19
in Africa found their work further complicated because in Africa, data on key covariates are either lacking or when they exist,
they tend to be biased or derived from other global covariate-based modelling exercises. For example, for a growth models at
a growth phase of the epidemic, the fact that for 3e4 consecutive days no case was reported (often inweek-end and 1e2 days
after) is not consistent and will certainly introduce bias in predictions.

Another factor that might contribute to the estimations biases is that models are often built on strong assumptions (Bai,
Gong, et al., 2020; Tang, Bragazzi, et al., 2020) that may not hold. Models may capture aspects of epidemics effectively while
neglecting to account for other factors, such as the accuracy of diagnostic tests; whether immunity will wane quickly; if
reinfection could occur; or population characteristics, such as age distribution, percentage of older adults with co-morbidities,
and risk factors (e.g., smoking, exposure to air pollution) (Jewell et al., 2020). Additionally, predictions were made in some
studies considering scenarios about control measures that do not always match with the reality on the ground. Then the
predictions are prone to biases. In most of the studies, parameters estimated from data collected in the first affected countries
such as Chinawere used to derive estimates of parameters in other countries (Zareie, Roshani, Mansournia, Rasouli,&Moradi,
2020) even though it is unlikely that epidemics follow identical paths in all regions of the world (Jewell et al., 2020). An
additional point that might also explain the departure of predictions from values actually observed is linked to the fact that
predictions are among others intended to guide public health policies for controlling spread of epidemics. As such, based on
the predictions, different control measures might have been taken which might have allowed to considerably reduce the
number of cases, and hence the observed values, resulting in a “false” overestimation appreciation.

Deterministic models have a long history of application in the study of infectious disease epidemiology. Yet, many in-
fectious disease systems are fundamentally individual-based stochastic processes, and are more naturally described by
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Fig. 10. Distributions of predictions (10) of the cumulative number of deaths according to whether the values actually observed for the predictions fall within the
95%CI or 95%CrI of the prediction.
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stochastic models (Roberts et al., 2015). Therefore, using deterministic models for a stochastic process could also be a source
of bias in the estimations. Deterministic model typically describes the average behavior of a system (e.g., populations or sub-
populations) without taking into account stochastic processes or chance events in single entities (e.g., individuals). Hence,
such models are typically applied to situations with a large number of individuals where stochastic variation becomes less
important and het-erogeneity can be accounted for using various sub-populations (Porgo et al., 2019). Stochastic models are
models where the parameters, variables, and/or the change in variables can be described by probability distributions. This
type of model can account for process variability by taking into account the random nature of variable interactions, or can
accommodate parameter uncertainty, and so may predict a distribution of possible health outcomes. Considering process
variability can be particularly important when populations are small or certain events are very rare (Porgo et al., 2019).
Stochastic models make it possible to take into account several factors and lead to a more realistic research. Zhang, Zeb, et al.
(2020) studied the effects of the environment on the spread of Covid-19 using stochastic mathematical model. Modelling
studies have contributed vital insights into the Covid-19 pandemic, and will undoubtedly continue to do so (Jewell et al.,
2020) although modelling and predicting the epidemiology and trajectory of a disease such as Covid-19 is a challenging
exercise (Achoki et al., 2020). However, mathematicians and statisticians should be rigorous in their methodology in order to
provide robust and reliable results based on which appropriate and optimal management strategies to contain the disease
efficiently would be made.

5. Conclusion

Using modelling techniques to predict the course of Covid-19 is important to effectively guide public health policy-
making. Nevertheless, ensuring that predictions are accurate and precise is necessary to optimize the allocation of the
limited resources available, especially in resource-challenged communities. Based on the sample of 242 papers analysed, we
showed that compartmental and statistical growthmodels are so far the most used modelling techniques to predict Covid-19
dynamics. AI-basedmodels, Agent-based models, and Bayesian models, were also used, but to a lower extent. For about 1/3 of
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the predictions of the cumulative number of cases, predicted values were larger than observed values and 1/3 of the pre-
dictions departed from the values actually observed (ratio of the predicted value to the observed value less than 0.8 or greater
than 1.2). We also showed that predictions based on larger dataset (i.e. longer period) were more accurate than predictions
based on smaller dataset for the cumulative number of deaths and the Bayesian models seem to provide more accurate and
precise predictions. Ensuring identifiability in model calibrations, data quality, and larger period should provide better
confidence in predictions. We also remarked that most of studies did not report the CI or CrI of their predictions, thus limiting
ability for deeper comparative analyses.

Credit author statement

Janyce Gnanvi: Conceptualization, Methodology, Writing, review and editing; Kolawol�e Val�ere Salako: Conceptualization,
Methodology, Writing, review and editing; Ga€etan Brezesky KotanmiFormal analysis and Writing; Romain Gl�el�e Kakaï:
Conceptualization, Methodology, Supervision, Validation, Writing, review and editing.

Declaration of competing interest

The author declares no conflict of interest.

Acknowledgments

KVS acknowledges the support of the Wallonie-Bruxelles International Post-doctoral Fellowship for Excellence, Belgium
(Fellowship N�SUB/2019/443681). RGK acknowledges the support from the African German Network of Excellence in Science
(AGNES) and the Alexander von Humboldt Foundation (AvH). Authors acknowledge the assistance of Sacla Aide Edmond in
mobilising additional articles when revising previous version of this article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.idm.2020.12.008.

References

Achoki, T., Alam, U., Were, L., Gebremedhin, T., Senkubuge, F., Lesego, A., Liu, S., Wamai, R., & Kinfu, Y. (2020). Covid-19 pandemic in the African continent:
Forecasts of cumulative cases, new infections, and mortality. medRxiv. https://doi.org/10.1101/2020.04.09.20059154

Ahmadi, A., Fadai, Y., Shirani, M., & Rahmani, F. (2020). Modeling and forecasting trend of covid-19 epidemic in Iran until May 13, 2020. Medical Journal of
the Islamic Republic of Iran, 34(1), 183e195.

Bai, Z., Gong, Y., Tian, X., Cao, Y., Liu, W., & Li, J. (2020b). The rapid assessment and early warning models for covid-19. Virologica Sinica, 35(3), 272e279.
Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., & Wang, M. (2020a). Presumed asymptomatic carrier transmission of covid-19. Jama, 323(14), 1406e1407.
Bartolomeo, N., Trerotoli, P., & Serio, G. (2020). Estimating the size of the covid-19 outbreak in Italy: Application of an exponential decay model to the weighted

and cumulative average daily growth rate. medRxiv. https://doi.org/10.1101/2020.05.20.20108241
de Camino-Beck, T. (2020). A modified SEIR model with confinement and lockdown of covid-19 for Costa Rica. medRxiv. https://doi.org/10.1101/2020.05.19.

20106492
Cao, J., Jiang, X., Zhao, B., et al. (2020). Mathematical modeling and epidemic prediction of covid-19 and its significance to epidemic prevention and control

measures. Journal of Biomedical Research & Innovation, 1(1), 1e19.
Ceylan, Z. (2020). Estimation of covid-19 prevalence in Italy, Spain, and France. The Science of the Total Environment, 729, 138817.
Chauhan, P., Kumar, A., & Jamdagni, P. (2020). Regression analysis of covid-19 spread in India and its different states. medRxiv. https://doi.org/10.1101/2020.

05.29.20117069
Elmousalami, H. H., & Hassanien, A. E. (2020). Day level forecasting for coronavirus disease (covid-19) spread: Analysis, modeling and recommendations.

arXiv preprint. arXiv:2003.07778.
Hamidouche, M. (2020). Covid-19 outbreak in Algeria: A mathematical model to predict the incidence. medRxiv. https://doi.org/10.1101/2020.03.20.20039891
He, J., Guo, Y., Mao, R., & Zhang, J. (2020). Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. Journal of Medical

Virology, 93, 820e830. https://doi.org/10.1002/jmv.26326
Hermanowicz, S. W. (2020). Forecasting the Wuhan coronavirus (2019-ncov) epidemics using a simple (simplistic) model. MedRxiv. https://doi.org/10.1101/

2020.02.04.20020461
Jewell, N. P., Lewnard, J. A., & Jewell, B. L. (2020). Predictive mathematical models of the covid-19 pandemic: Underlying principles and value of projections.

Jama, 323(19), 1893e1894.
Kim, S., Kim, Y.-J., Peck, K. R., & Jung, E. (2020). School opening delay effect on transmission dynamics of coronavirus disease 2019 in Korea: Based on

mathematical modeling and simulation study. Journal of Korean Medical Science, 35(13), e143.
Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: A

review. Chaos, Solitons & Fractals, 139, 110059.
Linka, K., Peirlinck, M., Sahli Costabal, F., & Kuhl, E. (2020). Outbreak dynamics of covid-19 in europe and the e ect of travel restrictions. Computer Methods in

Biomechanics and Biomedical Engineering, 23(11), 710e717.
Liu, Z., Magal, P., Seydi, O., & Webb, G. (2020). A model to predict covid-19 epidemics with applications to South Korea, Italy, and Spain. SIAM News (to appear).
Mizumoto, K., Kagaya, K., Zarebski, A., & Chowell, G. (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (covid-19) cases on board

the diamond princess cruise ship, Yokohama, Japan, 2020. Euro Surveillance, 25(10), 2000180.
Ngonghala, C. N., Iboi, E., Eikenberry, S., Scotch, M., MacIntyre, C. R., Bonds, M. H., & Gumel, A. B. (2020). Mathematical assessment of the impact of non-

pharmaceutical interventions on curtailing the 2019 novel coronavirus. Mathematical Biosciences, 325, 108364.
Nyabadza, F., Chirove, F., Chukwu, W. C., & Visaya, M. V. (2020). Modelling the potential impact of social distancing on the covid-19 epidemic in South Africa.

medRxiv. https://doi.org/10.1101/2020.04.21.20074492
Pasayat, A. K., Pati, S. N., & Maharana, A. (2020). Predicting the covid-19 positive cases in India with concern to lockdown by using mathematical and machine

learning based models. medRxiv. https://doi.org/10.1101/2020.05.16.20104133
271

https://doi.org/10.1016/j.idm.2020.12.008
https://doi.org/10.1101/2020.04.09.20059154
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref2
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref2
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref2
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref3
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref3
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref4
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref4
https://doi.org/10.1101/2020.05.20.20108241
https://doi.org/10.1101/2020.05.19.20106492
https://doi.org/10.1101/2020.05.19.20106492
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref7
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref7
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref7
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref7
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref8
https://doi.org/10.1101/2020.05.29.20117069
https://doi.org/10.1101/2020.05.29.20117069
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref10
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref10
https://doi.org/10.1101/2020.03.20.20039891
https://doi.org/10.1002/jmv.26326
https://doi.org/10.1101/2020.02.04.20020461
https://doi.org/10.1101/2020.02.04.20020461
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref14
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref14
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref14
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref15
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref15
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref16
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref16
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref16
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref17
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref17
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref17
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref18
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref19
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref19
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref20
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref20
https://doi.org/10.1101/2020.04.21.20074492
https://doi.org/10.1101/2020.05.16.20104133


J.E. Gnanvi, K.V. Salako, G.B. Kotanmi et al. Infectious Disease Modelling 6 (2021) 258e272
Porgo, T. V., Norris, S. L., Salanti, G., Johnson, L. F., Simpson, J. A., Low, N., Egger, M., & Althaus, C. L. (2019). The use of mathematical modeling studies for
evidence synthesis and guideline development: A glossary. Research Synthesis Methods, 10(1), 125e133.

Postnikov, E. B. (2020). Estimation of covid-19 dynamics “on a back-of-envelope”: Does the simplest sir model provide quantitative parameters and
predictions? Chaos, Solitons & Fractals, 135, 109841.

Rhodes, T., Lancaster, K., & Rosengarten, M. (2020). A model society: Maths, models and expertise in viral outbreaks. URL https://doi.org/10.1080/09581596.
2020.1748310 .

Roberts, M., Andreasen, V., Lloyd, A., & Pellis, L. (2015). Nine challenges for deterministic epidemic models. Epidemics, 10, 49e53.
Roda, W. C., Varughese, M. B., Han, D., & Li, M. Y. (2020). Why is it difficult to accurately predict the covid-19 epidemic? Infectious Disease Modelling, 5,

271e281.
Shaikh, A. S., Shaikh, I. N., & Nisar, K. S. (2020). A mathematical model of covid-19 using fractional derivative: Outbreak in India with dynamics of

transmission and control. Advances in Difference Equations, 2020, 373. https://doi.org/10.1186/s13662-020-02834-3
Shim, E., Tariq, A., Choi, W., Lee, Y., & Chowell, G. (2020). Transmission potential and severity of covid-19 in South Korea. International Journal of Infectious

Diseases, 93. https://doi.org/10.1016/j.ijid.2020.03.031
Shmueli, G., et al. (2010). To explain or to predict? Statistical Science, 25(3), 289e310.
Silva, T. C., Anghinoni, L., & Zhao, L. (2020). Quantitative analysis of the effectiveness of public health measures on covid-19 transmission. medRxiv. https://doi.

org/10.1101/2020.05.15.20102988
Stallings, W. M., & Gillmore, G. M. (1971). A note on “accuracy” and “precision”. Journal of Educational Measurement, 8(2), 127e129.
Stübinger, J., & Schneider, L. (2020). Epidemiology of coronavirus covid-19: Forecasting the future incidence in different countries. Healthcare, 8, 99.
Taboe, B. H., Salako, V. K., Tison, J., Ngonghala, C. N., & Gl�el�e Kakaï, R. (2020). Predicting covid-19 spread in the face of control measures in West-Africa.

Mathematical Biosciences, 328, 108431.
Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y., & Wu, J. (2020a). An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov).

Infectious disease modelling, 5, 248e255.
Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020b). Estimation of the transmission risk of the 2019-nCoV and its implication for public

health interventions. Journal of Clinical Medicine, 9(2), 462.
Tian, T., Jiang, Y., Zhang, Y., Li, Z., Wang, X., & Zhang, H. (2020). Covid-net: A deep learning based and interpretable predication model for the county-wise

trajectories of covid-19 in the United States. medRxiv. https://doi.org/10.1101/2020.05.26.20113787
Toda, A. A. (2020). Susceptible-infected-recovered (sir) dynamics of covid-19 and economic impact. arXiv preprint. arXiv:2003.11221.
Velavan, T. P., & Meyer, C. G. (2020). The covid-19 epidemic. Tropical Medicine & International Health, 25(3), 278.
Wang, C., Liu, L., Hao, X., Guo, H., Wang, Q., Huang, J., He, N., Yu, H., Lin, X., Pan, A., et al. (2020). Evolving epidemiology and impact of non-pharmaceutical

interventions on the outbreak of coronavirus disease 2019 in Wuhan, China. MedRxiv. https://doi.org/10.1101/2020.03.03.20030593
WHO. (2020). Pneumonia of unknown causeeChina’, emergencies preparedness, response. Disease outbreak news, World Health Organization (WHO).
Willem, L., Verelst, F., Bilcke, J., Hens, N., & Beutels, P. (2017). Lessons from a decade of individual-based models for infectious disease transmission: A

systematic review (2006-2015). BMC Infectious Diseases, 17(1), 612.
Worldometer. (2020). Coronavirus update. Worldometer.
Wu, K., Darcet, D., Wang, Q., & Sornette, D. (2020). Generalized logistic growth modeling of the Covid-19 outbreak in 29 provinces in China and in the rest of

the world. arXiv preprint, 101, 1561e1581. https://doi.org/10.1101/2020.03.11.20034363. arXiv:2003.05681.
Xiao, Y., Tang, B., Wu, J., Cheke, R. A., & Tang, S. (2020). Linking key intervention timing to rapid decline of the COVID-19 effective reproductive number to

quantify lessons from mainland China. International Journal of Infectious Diseases, 97, 296e298.
Yang, S., Cao, P., Du, P., Wu, Z., Zhuang, Z., Yang, L., Yu, X., Zhou, Q., Feng, X., Wang, X., et al. (2020). Early estimation of the case fatality rate of covid-19 in

mainland China: A data-driven analysis. Annals of Translational Medicine, 8(4).
Yin, Y., & Wunderink, R. G. (2018). MERS, SARS and other coronaviruses as causes of pneumonia. Respirology, 23(2), 130e137.
Zareie, B., Roshani, A., Mansournia, M. A., Rasouli, M. A., & Moradi, G. (2020). A model for covid-19 prediction in Iran based on China parameters. medRxiv,

23(4), 244e248. https://doi.org/10.1101/2020.03.19.20038950
Zhang, J., Litvinova, M., Wang, W., Wang, Y., Deng, X., Chen, X., Li, M., Zheng, W., Yi, L., Chen, X., et al. (2020a). Evolving epidemiology and transmission

dynamics of coronavirus disease 2019 outside hubei province, China: A descriptive and modelling study. The Lancet Infectious Diseases, 20(7), 793e802.
Zhang, Z., Zeb, A., Hussain, S., & Alzahrani, E. (2020b). Dynamics of covid-19 mathematical model with stochastic perturbation. Advances in Difference

Equations, 2020(1), 1e12.
Zhao, S., Gao, D., Zhuang, Z., Chong, M. K., Cai, Y., Ran, J., , …Wang, W., et al. (2020a). Estimating the serial interval of the novel coronavirus disease (Covid-

19): A statistical analysis using the public data in Hong Kong from January 16 to February 15, 2020. Frontiers in Physics, 8, 347.
Zhao, Z., Li, X., Liu, F., Zhu, G., Ma, C., & Wang, L. (2020b). Prediction of the covid-19 spread in African countries and implications for prevention and controls:

A case study in South Africa, Egypt, Algeria, Nigeria, Senegal and Kenya. The Science of the Total Environment, 729, 138959.
Ziauddeen, H., Subramaniam, N., & Gurdasani, D. (2020). Modelling the impact of lockdown easing measures on cumulative covid-19 cases and deaths in

England. medRxiv. https://doi.org/10.1101/2020.06.21.20136853
272

http://refhub.elsevier.com/S2468-0427(20)30112-3/sref23
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref23
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref23
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref24
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref24
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref24
https://doi.org/10.1080/09581596.2020.1748310
https://doi.org/10.1080/09581596.2020.1748310
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref26
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref26
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref27
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref27
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref27
https://doi.org/10.1186/s13662-020-02834-3
https://doi.org/10.1016/j.ijid.2020.03.031
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref30
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref30
https://doi.org/10.1101/2020.05.15.20102988
https://doi.org/10.1101/2020.05.15.20102988
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref32
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref32
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref33
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref34
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref34
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref34
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref34
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref35
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref35
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref35
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref36
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref36
https://doi.org/10.1101/2020.05.26.20113787
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref38
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref39
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref39
https://doi.org/10.1101/2020.03.03.20030593
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref41
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref41
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref42
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref42
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref43
https://doi.org/10.1101/2020.03.11.20034363
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref45
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref45
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref45
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref46
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref46
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref47
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref47
https://doi.org/10.1101/2020.03.19.20038950
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref49
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref49
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref49
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref50
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref50
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref50
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref51
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref51
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref52
http://refhub.elsevier.com/S2468-0427(20)30112-3/sref52
https://doi.org/10.1101/2020.06.21.20136853

	On the reliability of predictions on Covid-19 dynamics: A systematic and critical review of modelling techniques
	1. Introduction
	2. Methods
	2.1. Article search and selection
	2.2. Literature synthesis and analysis

	3. Results
	3.1. Characteristics of the papers selected: publication status, geographical coverage and topics addressed
	3.2. Modelling techniques
	3.3. Reliability of predictions on Covid-19 dynamics
	3.3.1. Predictions of the number of cumulative cases
	3.3.2. Predictions of the number of cumulative deaths


	4. Discussion
	4.1. Modelling techniques applied to Covid-19 dynamics
	4.2. Reliability of predictions on Covid-19 dynamics

	5. Conclusion
	Credit author statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


