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Abstract

Development of automated analysis tools for “single ion channel” recording is hampered by

the lack of available training data. For machine learning based tools, very large training sets

are necessary with sample-by-sample point labelled data (e.g., 1 sample point every

100microsecond). In an experimental context, such data are labelled with human supervi-

sion, and whilst this is feasible for simple experimental analysis, it is infeasible to generate

the enormous datasets that would be necessary for a big data approach using hand crafting.

In this work we aimed to develop methods to generate simulated ion channel data that is

free from assumptions and prior knowledge of noise and underlying hidden Markov models.

We successfully leverage generative adversarial networks (GANs) to build an end-to-end

pipeline for generating an unlimited amount of labelled training data from a small, annotated

ion channel “seed” record, and this needs no prior knowledge of theoretical dynamical ion

channel properties. Our method utilises 2D CNNs to maintain the synchronised temporal

relationship between the raw and idealised record. We demonstrate the applicability of the

method with 5 different data sources and show authenticity with t-SNE and UMAP projection

comparisons between real and synthetic data. The model would be easily extendable to

other time series data requiring parallel labelling, such as labelled ECG signals or raw nano-

pore sequencing data.

1. Introduction

Ion channels are transmembrane proteins that control the flow of ions from one side of the

membrane to the other; they play a fundamental role in the function of key biological pro-

cesses, such as the generation and propagation of action potentials [1, 2]. Due to their funda-

mental role in biological processes, dysfunction of ion channels can lead to a number of

conditions (known as “channelopathies”), including cystic fibrosis [3, 4]. Beyond being

directly responsible for health conditions, ion channels are also targeted for other uses, such as

pesticides in agriculture [5] or therapeutic drugs for other conditions such as pain manage-

ment [6] and a number of neuropsychiatric disorders [7].
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The broad roles of ion channels motivates research into their function. The development of

the Nobel Prize winning patch-clamp electrophysiological technique [8, 9] allowed for “real

time” recording of the function of different ion channels to changes of conditions, such as the

application of drugs. In particular, single channel recording has the ability to capture a single

ion channel opening and closing in real-time, and provides researchers with the tools neces-

sary to investigate the mechanisms behind the function of these proteins.

Analysis of patch clamp single channel data is notoriously difficult, typically taking skilled

researchers significant time to manually supervise. Many different models have been devel-

oped to attempt to solve this problem [10–13]–however most of these methods are developed

using simulated data generated by simulating a continuous time hidden Markov model

(HMM), then applying a layer of filtered Gaussian noise on top [for example, 14–18]. Whilst

this method can generate a large amount of data for training, the data itself may have hidden

biases (including a user encoded HMM gating schema), since it is entirely dependent on a pri-

ori assumptions about underlying model and characteristic noise dynamics.

Generative Adversarial Networks (GANs) [19] have proven to be important for generative

tasks, such as image generation [20, 21] or audio synthesis [22]. GANs have been used in

electrophysiology to create new unsynchronised datasets [23, 24], with the former example

being used to generate data for model training, but continuous labelling of data (millisecond-

by-millisecond) has remained an unsolved challenge. GANs have great potential to allow a

data driven approach to synthesis, using a small amount of “real”, lab recorded data to generate

an unlimited amount of simulated data; the advantage of this method is that noise and artefacts

present in the real training dataset also appear in the generated data.

In this work we develop a GAN model to generate realistic, simulated ion channel data

from existing patch-clamp recordings from several channel phenotypes, each with a continu-

ous parallel state label. These outputs could then be used to build more accurate ion channel

analysis models. We use a further series of analysis tools to evaluate the model’s performance

—including T-SNE and UMAP projections to investigate if each channel’s high dimensional

characteristics are reflected in the simulated data.

2. Methods

2.1 Experimental workflow summary

(i) Experimental ion channel data (See “source data”, Table 1) was recorded using patch-clamp

electrophysiology and then passed to our GAN model network (using a Jupyter notebook) as

input data. After training, (ii) the GAN network is set to write simulated data to file. (iii) These

simulated data were then passed along with the original raw “seed” partner datasets to a Jupy-

ter notebook that ran dimensionality reduction algorithms to compare the raw and GAN sim-

ulated datasets (see “T-SNE and UMAP").

Table 1. Sources of raw data for development and testing of the GAN network.

Code Channel source Sample size (segments) Methods Reference Fig

Phenotype A Canine articular chondrocyte 179 [28] 5A, 6A

Phenotype B WinEDR simulated 244 None, see text below 5B, 6B

Phenotype C Tracheal chondrocyte 36 None, see text below 5C, 6C

Phenotype D Paraventricular nucleus of the Hypothalamus 499 Feetham, Nunn, Lewis, Dart, & Barrett-Jolley, 2015 5D, 6D

Phenotype E Equine articular chondrocytes 286 [29] 1–4

https://doi.org/10.1371/journal.pone.0267452.t001
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2.2 Model design

We propose a GAN based model to generate synthetic time-series data that includes realisti-

cally similar features to real ion channel molecule currents. Fig 1 describes the complete pipe-

line of the proposed DeepGANnel model in this work. The architecture of the GAN model

introduced in this work is following the regular DC-GAN, but applies the convolutional neural

networks that demonstrated efficiently to produce time series datasets in previous works [25,

26]. In the following sections, the utilized neural networks briefly are covered along with the

processed data information and evaluation metrics criteria.

2.3 Generative Adversarial Networks (GAN)

A GAN typically consists of two neural networks competing against each other; the generator

network tries to convert random noise into observations that seem as if they have been sam-

pled from the original data; while the discriminator network aims to classify whether the sam-

pled data comes from the original dataset or output of the generator network by predicting a

class probability. The training process is employed in an adversarial manner between the two

networks by updating the parameters of both models based on updates of the discriminator;

the generator is looking to maximise the discriminator’s uncertainty in classifying an output as

real or fake, and the discriminator is looking to minimise this. A more detailed, mathematical

formulation of these loss functions, along with the formulation of the constituent layers of

these models can be found in S1 Appendix, and the full model architecture of both generator

and discriminator including shapes are included in S2 and S3 Appendices respectively.

2.4 Design of the networks

The DeepGANnel networks are based on the successful DC-GAN model [27], with the input

and output shapes of the generator changed to images with dimensions n by m (one channel

for the raw signal, one for the idealisation, n and m were typically 2 and 1280, but this numbers

can easily be varied depending on context) along with changes to the subsequent hyperpara-

meters along with pre/post processing to facilitate this change.

The architecture of the generator G consists of strided deconvolutional layers that allow the

network to undergo spatial learning with its own up-sampling; batch normalisation layers

allow for stabilising learning parameters by normalising inputs and Leaky ReLU activation

functions for all layers, except for the Tanh function that is used in the output layer. The input

to this model is a matrix of latent noise that is transformed into the output signal, and the out-

put of the model is a two-dimensional sample generated from the noise that can be sent to the

input of the discriminator for training the model.

Fig 1. Pipelines for DeepGANnel development. Data are recorded using standard electrophysiological techniques. These raw data are then

labelled using existing software and expert supervision. Pre-processing makes copies of these data adding a small amount of gaussian noise to the

raw data and reshapes the two signals into 2D “images” (2x1280).

https://doi.org/10.1371/journal.pone.0267452.g001
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The discriminator D, is also a deep convolutional neural network. Similar to the generator,

this model combines strided convolution layers to downsample the input data to obtain a

binary classification of the input record (real or generated). In our discriminator architecture,

the batch normalisation layers are not used, but instead a dropout regularised technique was

used at each layer. The last convolution layer in our D network is flattened and passed into a

sigmoid function for classification, but otherwise similarly to the generator function; Leaky

ReLU activation functions are used for all other layers. Fig 2 shows the architecture of our

DeepGANnel model in this work including both G and D networks. The Adam optimiser was

used initially with 0.0001 learning rate for initial training process. Manual tuning of the learn-

ing rate parameters was needed during training to avoid overfitting from one of the models.

2.5 Data sources

For GAN simulation training, ion channel recordings were obtained from cell-attached patch

clamp electrophysiology on a number of different cell types; for detailed methods please see

the associated references.

In the case of tracheal chondrocytes (“Phenotype C”), methods similar to (Lewis et al.
2013), except that trachea was isolated, cut into small pieces, and thence treated as for articular

chondrocytes. In all cases, animals were previously euthanised for unassociated reasons; no

animals were killed or harmed for this study. Typically, patch pipettes were fabricated using

1.5 mm o.d. borosilicate glass capillary tubes (Sutter Instrument, USA, supplied by INTRA-

CEL, UK). They were pulled using a two-step electrode puller (Narishige, Tokyo, Japan) and

when filled with recording solutions, had a resistance of approximately 5–10 MO. In each case,

data was recorded using cell-attached patch clamp with an Axopatch 200/a amplifier (Axon

Fig 2. DeepGANnel network architecture. On the left is a generator network of DeepGANnel in which the input is a random noise and output is a

2D image by 2x1280 that is converted from 1-D time series. The generator model in this architecture uses three deconvolution layers (upsampling)

to produce an image from seed (random noise shape by 2x1280). Several Dense layers are used to take the noise input and transform into a desired

image by up-sampling (Deconv or transposed convolutional layer) steps size of 2x1280. At each layer, Leaky Rectified Linear Unit (LeakyReLU) is

used as activation function with batch normalisation, except output layer which uses tanh activation function. The discriminator model comprises

of several convolutional layers with the same activation function (LeakyReLU) at each layer to classify whether an image is real or fake by

comparing the sampled data to real data. Dropout layers were also appended to all convolutional layers except input layer with the value of 0.3 to

reduce overfitting. Finally, a Dense output layer is used after flattening the network structure with classified labels.

https://doi.org/10.1371/journal.pone.0267452.g002
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Instruments, USA). Low-pass filtering was set to 1 kHz (Axon’s built in 4-pole Butterworth fil-

ter) and data were digitized at 5 kHz with a Digidata 1200A interface or CED 1401 (CED,

Cambridge, UK). Recordings were made with WinEDR (John Dempster, University of Strath-

clyde, UK).

In addition, in order to achieve a diverse population of ion channel records to test our

GAN model, we simulated ion channel data using the simulation feature in WinEDR (John

Dempster, University of Strathclyde, UK) using default rate constants (“Phenotype B”). Ideali-

sation/annotation of raw data was performed with QuB [17]. Datasets had different record

lengths between 1024 to 4096 datapoints per channel. Sample sizes given in Table 1.

For manifold projection data input. The raw data is the same as above (Table 1), and the

simulated data are outputs from the GAN, these specific datasets are included in data in the

associated repository.

2.6 Evaluation metrics

GANs are considered successful when they implicitly learn the distribution of samples of the

real dataset. We assess the efficiency of the proposed DeepGANnel model to simulate single

molecule data by comparing real to GAN simulated data using a number of different

approaches. The standard metrics for GANs are the so-called generator loss and discriminator

loss. These are calculated as the logistic binary cross entropy loss—this is calculated as:

L ¼ � y log pð Þ þ 1 � yð Þ log 1 � pð Þð Þ ð1Þ

Where y is the true label and p the predicted label. For the generator this is calculated once, with

the true label being whether the output is fake or not, and the predicted label being whether the

discriminator predicted if the output is fake. For the discriminator, this is calculated twice then

totalled—once for the fake output as above, and again in the same manner for real outputs.

We also use other methods to measure model success. Although there is currently some

debate as to which metrics are most appropriate for measuring GAN performance, we will uti-

lize a two-sample test called maximum mean discrepancy [30], and a classical evaluation met-

ric for time series defined as dynamic time warping [31] to evaluate model performance.

We also use the t-SNE and UMAP dimensionality reduction algorithms as a means to com-

pare and contrast the different ion channels and sources in a more meaningful way.

Maximum mean discrepancy. The maximum mean discrepancy (MMD) measures the

dissimilarity between two probability distributions Pr and Pg—one from the real data distribu-

tion and one from the GAN respectively, by comparing statistics of the samples. In general,

given a kernel K: X x Y! R, and samples fxig
N
i¼1
; fyjg

M
j¼1

, an estimation of MMD is equated as

follows:

MMD ¼
1

n n � 1ð Þ

Xn

i¼1

Xn

j6¼i

K xi; xj

� �
�

2

mn

Xn

i¼1

Xm

j¼1

K xi; yj

� �
þ

1

m m � 1ð Þ

Xm

i¼1

Xm

j6¼i

K yi; yj

� �
ð2Þ

The smaller MMD measurement, the greater similarity between the distributions. A modi-

fied Python library’s (Tensorflow) two-sample test [30] was used to determine MMD using the

Gaussian kernel for the above calculation.

Dynamic time warping. Dynamic time warping (DTW) is a traditional calculation for

measuring the dissimilarity between two groups of time series data. DTW warps the series

temporally to minimise the Euclidean distance between points and then calculates the distance

between the two warped records. The warping of one signal occurs using the following

method. An N by M matrix D is constructed where N is the length of the first signal x and M
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the length of the second signal y. Starting at D0,0, the matrix is filled out iteratively using the

following formula:

Di;j ¼ f xi; yj

� �
þmin Di;j� 1; Di� 1;j; Di� 1;j� 1

n o
ð3Þ

While i = 1, . . .., N and j = 1, . . .., M. This matrix can then be used to find the most appropriate

warping for the data, for which then a Euclidian similarity measure can be used. In the present

work we used a dedicated library (FastDTW [32]) that approximates DTW.

T-SNE and UMAP. To comp the raw data (Table 1) and the matching GAN outputs; raw

data (Table 1) and matching GAN outputs were used as inputs for manifold projection analy-

sis. Dimensionality reduction algorithms allow us to visualise high dimensional data in a low

dimensional format, typically within a visualisation such as a scatter plot. Principle component

analysis (PCA), for example, reduces the dimension of data by choosing a new orthogonal

basis for the data based on the maximal variance of the data. For non-linear datasets, this

dimensionality reduction may not accurately convey the shape or pattern of the higher dimen-

sional data, as points that are close together in Euclidian space but far away in the context of

the data are brought together during the PCA transformation. The so-called “kernel trick” can

solve this problem by providing a non-linear transformation to the space before the PCA algo-

rithm is applied, however this requires that this non-linear transformation to be found algo-

rithmically, which can be time consuming and inaccurate. The t-SNE [33] algorithm focuses

on local similarity rather than global similarity by considering only a neighbourhood around

each point in high dimensional space. The algorithm first constructs a matrix of probability

distributions for each pair of points in the higher dimensional space such that close points

have a high probability and far away points have a low probability. The algorithm then con-

structs a second matrix of probability distributions for the lower dimensional space and mini-

mises the Kullback-Leibler divergence between the two via gradient descent. This method

preserves local similarities, but global similarities are lost between far away points. Uniform

Manifold Approximation and Projection (UMAP) [34] was developed to attempt to maintain

the global similarities by using the same general method as t-distributed stochastic neighbour

embedding (T-SNE) (the construction of two matrices and optimisation to fit the lower

dimensional one to the higher dimensional one), but uses a topological transformation of the

data and a different divergence metric to achieve stronger global similarity. Note that in both

cases we trained these projections on the super dataset together (i.e., all raw and GAN records

concatenated together). We used the standard Python packages t-SNE from Scikit Learn and

UMAP from the umap-learn conda-forge. Full code is in our repository as a Jupyter notebook,

but essentially raw and GAN generated datasets were broken into 512 datapoint length “win-

dows” and input to the manifold function with complexity values of 2 (which allows projection

onto an x-y plane). To give an objective indication of whether there was a significant difference

between manifold clusters between original and GAN simulated data, we tested for statistical

difference between each pair with the R package ClusterSignificance [35].

2.7 Computing platform

A Nvidia Titan X GPU with 12 GB of RAM was used for the experiments to train and generate

realistic ion channel molecule current records alongside the event classifications of generated

records using the DeepGANnel model. The GAN models were built in Tensorflow [36] version

2.x, including Keras, using Jupyter notebooks as a user-friendly interface exploiting the GPU.

With this computing platform and software, trained models Once trained, the included code

on this equipment generates 0.4 seconds of data (e.g., one 4096x2-datapoint “record” in under

4ms).
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3. Results

Single (ion channel) molecule datasets were recorded using the patch-clamp technique and

our standard protocols, and approximately 30 seconds was recorded under constant condi-

tions (room temperature etc.). The resulting datasets were annotated (idealised) in QuB to

produce a two-dimensional signal (dimension 1 = raw signal, dimension 2 = continuous anno-

tation). Following robust scaling (Scikit learn) and reshaping these data were passed to the

DeepGANnel model for approximately 10,000 epochs. Processing within each training epoch

included augmentation with an invisibly small amount of Gaussian noise (approximately 0.1%

of signal amplitude) applied to each data window. Fig 3A shows the characteristic evolution of

discriminator and generator losses. Typical generator losses were 10x or more the discrimina-

tor loss. The first 250 epochs of the more sophisticated MMD and DTW losses are shown in

Fig 3B. Fig 3C and 3D show examples of raw (real) input data and a representative strip of post

train DeepGANnel generated data. The two first analyses that are typically conducted in

patch-clamp research are amplitude histograms and kinetic analysis. In addition to the objec-

tive metrics, amplitude histograms are shown in Fig 3E (real events) and Fig 3F (GAN simu-

lated events), are also clearly similar in terms of size and shape.

For an in-depth analysis we conducted full kinetic analysis of both raw (real molecular

data) and GAN simulated data. These are shown in Fig 4, and there are similarities and differ-

ences between the real and GAN events. In terms of closed times, it is apparent that whilst the

over-all distribution is similar between real (Fig 4A) and GAN (Fig 4C) there are differences.

The real data included some long closed-events that are absent from the GAN simulated equiv-

alent. In terms of open times again the over-all distribution is similar between real (Fig 4B)

Fig 3. Realistic labelled single molecule data are synthesised by DeepGANnel. (A) Discriminator and Generator losses plotted per epoch during

training. (B) The maximum mean discrepancy (MMD) and dynamic time warping (DTW) evolution over the first 250 epochs as they approach

equilibrium. (C and D) Examples of real (C) and GAN synthesised (D) labelled data records. (E and F) All points amplitude histograms calculated from

the real (E) and GAN synthesised (F) data.

https://doi.org/10.1371/journal.pone.0267452.g003
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and GAN simulated (Fig 4D), but there is attenuation of the very long open sojourns in the

GAN simulated data.

To further test the ability of the GAN method to simulate a wide range of ion channel-like

data we then trained DeepGANnel on 4 further ion channel phenotypes (see Table 1). Each of

these is shown in Fig 5, where raw data, including the timeseries label, is shown a above the

GAN simulated data. It is clear that each phenotype of channel is well represented by the

matching GAN. To investigate more objectively how similar each GAN generated dataset is

from its parent raw data (Table 1) we performed t-SNE and UMAP dimension reduction com-

parisons between each of the 5-phenotypes of data (Fig 6). It is clear that there is a tendency

for each GAN manifold cluster (t-SNE or UMAP) to align closely with its parent real data pro-

jection. Following this, we systematically analysed the cluster separation between real and

GAN clusters, but first, we investigated whether this method could distinguish between each

real vs real combination, and each GAN vs GAN combination. We focussed on UMAP projec-

tions. Table 2 shows the comparisons between UMAPs of the real data. Each real dataset is sig-

nificantly different to each other, demonstrating the power of UMAP cluster analysis to

objectively classify real world data. Secondly, the equivalent analysis focusses on UMAP com-

parisons of the 5 different GAN generated datasets is show in Table 3. In this case, all GAN

simulated datasets are different from each other, except for the A and C datasets (different

types of cartilage ion channels), which are not significantly different from each other. Finally,

Table 4 shows that cluster-analysis of UMAP projections is unable to see a statistically signifi-

cant difference between the canine articular ion channel data (Phenotype A) and its respective

GAN, the tracheal ion channel data (Phenotype C) and its respective GAN or the equine

Fig 4. Comparative kinetic analyses of real and DeepGANnel simulated data. (A and B) Kinetic analysis from the real (input)

single molecule data with closed times (A) fit with 4 exponentials and open times (B) fit with 3 exponentials. The respective time

constants and weights are displayed in the inset tables. (C and D) Kinetic analysis from the GAN simulated (output) single

molecule data with closed times (C) fit with 3 exponentials and open times (D) fit with 2 exponentials. The respective time

constants and weights are again displayed in the inset tables.

https://doi.org/10.1371/journal.pone.0267452.g004
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cartilage data (Phenotype E) and its derived GAN data. However, the GANs produced from

channel phenotypes B and D were significantly distinguishable from their parent datasets

(Phenotypes B and D).

4. Discussion

In this work, we have generated synthetic raw single-molecule timeseries data along with con-

tinuous synchronised annotation/idealisation using a generative adversarial network (GAN)

based on both real ion channel single molecule data from cultured chondrocytes. We demon-

strate that the GAN generated raw ion channel data was similar to those obtained by real ion

channel data. We assessed success of the GAN by three methods and in each they proved suc-

cessful, but retain some limitations.

A central problem in single molecule, including “ion channel” research is that analyses of

data is laborious and frequently requires a degree of expert hand crafting to complete. The first

step in such analysis is idealisation of the record, or in machine learning terms, annotating or

labelling. Each time point (of which there will be many million) needs to be annotated as to

how many molecule pores are open at that instant. This then becomes, effectively, a two-

dimensional representation of the data. Currently, we are working with simple datasets with

one type of molecule in the dataset, but in the future such analysis will extend this to more

complex datasets. Clearly new analysis methods will also be necessary to get the maximum

amount of information from complex single molecule data. A number of tools have been

developed to address these issues [10, 17, 37, 38], including our own Deep-Channel deep

learning model [13]. For further development of similar or enhanced tools there is a lack of

Fig 5. Sample data from both real dataset and DeepGANnel model output from numerous ion channels. In each

subpanel, real raw and labelled data is displayed on top with simulated data below. (A): “Channel phenotype A” canine

articular chondrocyte sample data and model output. (B): “Channel phenotype B”, WinEDR simulated sample data

and model output. (C): “Channel phenotype C” tracheal chondrocyte sample data and model output. (D): “Channel

phenotype D” PVN sample data and model output.

https://doi.org/10.1371/journal.pone.0267452.g005
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available training data. There are two clear choices for such data; (i) real biological data that

has been annotated in some way or (ii) synthetic datasets. Both approaches have biases and

severe limitations. Real data cannot be perfectly labelled; the real ground truth is unknowable

and so will only be an approximation. In practical terms, the longer the length of the real data,

the greater the “ground truth” errors will be. As a result, new machine learning methods will

learn the errors of the existing technology. Furthermore, only simple datasets can be annotated

and so this sets an upper limit on the complexity of the datasets that could be analysed by

Fig 6. T-SNE and UMAP dimensional reduced visualisations for DeepGANnel and real data. For each of the

channel phenotypes shown earlier (A to E), (i) T-SNE and (ii) UMAP projections are shown with “GAN” data on the

left and “real” source data on the right. Sets of projections A to D correspond to those channel phenotypes shown in

Fig 5, (A): “Channel phenotype A” canine articular chondrocyte. (B): “Channel phenotype C” WinEDR simulated. (C):

“Channel phenotype B”, tracheal chondrocyte. (D): “Channel phenotype D” PVN data and (E) shows the same

arrangement with the equine chondrocyte data shown in Figs 1 to 4.

https://doi.org/10.1371/journal.pone.0267452.g006

Table 2. Statistical separation of UMAP clusters between real datasets.

Phenotype A Phenotype B Phenotype C Phenotype D Phenotype E

Phenotype A 1 0.02 0.001 0.001 0.001

Phenotype B - 1 0.02 0.001 0.001

Phenotype C - - 1 0.001 0.001

Phenotype D - - - 1 0.001

Phenotype E - - - - 1

Maximum p-values calculated by the ClusterSignificance permutation package in R [35]. p-values are given after at least 1000 permutations. Phenotype codes described

in the methods, Table 1.

https://doi.org/10.1371/journal.pone.0267452.t002
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potential new tools. However, synthetic datasets also contain many biases and limitations,

some of which may be entirely unanticipated or recognised. Therefore, the starting problem

that our work addressed here was to create very large datasets of ion channel single molecule

activity that could be used to develop single molecule analysis tools. We chose to investigate if

GAN technology could provide a useful alternative source of data. In principle this would have

the advantages of synthetic data in that one could produce unlimited amounts, but still retain

nuance and subtle authenticity missed by mere simulation. We are also hopeful that such syn-

thetic data could be used in development of ion channel modelling software and may allow for

a novel type of data inference, extracting critical features in datasets that may be overlooked by

traditional analysis. Visual inspection, and analysis of our similarity metrics demonstrates that

DeepGANnel can reconstruct faithfully simulate a number of different ion channel pheno-

types. Clearly the datasets are not identical (that would be simply a copy), but raises the ques-

tion of whether the simulation is good enough to be useful. To examine this, we show in Fig 7

an example experiment. We train our Deep-Channel model to analyse/idealise the data from

phenotype C (Table 4, Fig 5C). Half of the small length of original raw data (75k datapoints

equivalent to approx. 8 seconds of recording) is clearly insufficient to allow Deep-Channel to

learn the appropriate features and idealise the remaining half of this dataset (Fig 7A–7C).

However, DeepGANnel, once trained can produce any amount of data similar to this original

dataset (See Fig 5C). We then trained Deep-Channel on this GAN dataset, 5x the size of the

original, and performance is now acceptable (Fig 7D–7F).

Comparisons of GAN methods to traditional synthesis methods

The new GAN synthesis method will have strengths and weaknesses compared to stochastic

Markovian model-based processes. (1) Speed: Training a GAN takes a considerable time

(hours), but simulation itself takes ms per record. The usual stochastic methods produce

Table 3. Statistical separation of UMAP clusters between GAN generated datasets.

Phenotype A Phenotype B Phenotype C Phenotype D Phenotype E

Phenotype A 1 0.001 0.590 0.001 0.001

Phenotype B - 1 0.001 0.001 0.001

Phenotype C - - 1 0.001 0.001

Phenotype D - - - 1 0.001

Phenotype E - - - - 1

Maximum p-values calculated by the ClusterSignificance permutation package in R [35]. p-values are given after at least 1000 permutations. Phenotype codes described

in the methods, Table 1.

https://doi.org/10.1371/journal.pone.0267452.t003

Table 4. Statistical separation of UMAP clusters between each real dataset and its GAN simulated equivalent.

Phenotype Source p-val

A Canine articular chondrocyte 0.739

B WinEDR simulated 0.001

C Tracheal chondrocyte 0.371

D Paraventricular nucleus of the Hypothalamus 0.001

E Equine articular chondrocytes 0.993

Maximum p-values calculated by the ClusterSignificance permutation package in R [35]. p-values are given after at

least 1000 permutations.

https://doi.org/10.1371/journal.pone.0267452.t004
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Fig 7. Potential of DeepGANnel to facilitate deep learning training on physiological time series data. This

demonstration uses data from ion channel Phenotype C. The original raw data is 150k sample points. This was split

into two 75k data sets, for training and for validation by our previously published labelling network Deep-Channel

[13]. (A) Shows the training and validation accuracy; the accuracy on the training set itself is near perfect, but it fails to

an accuracy of 0.5 (to predict open or closed) with the unseen validation dataset. (B) Shows similar to (A), but with

losses. Complete failure with the unseen validation set. Ergo, model training fails as is illustrated in (C) where the raw

signal (top) is shown above the synchronised ground truth black and prediction red. In the second part of this

demonstration (D, E and F), we replace the training data with the GAN generated dataset of Phenotype C, which could

be any length, but in this example is 5x larger than the original. Now Deep-Channel does much better. After about 5

epochs, performance against the validation dataset improves in terms of both accuracy (D) and loss (E) and the final

product is well trained model (F). There is close agreement between the ground truth (black) and the prediction (red).

https://doi.org/10.1371/journal.pone.0267452.g007
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records at the ms per record timescale, but do not need training. They still need laborious

hand customising to simulate a particular phenotype of channel. Our software only Markovian

based simulations, written in Python, take about 8ms to generate one “record” whereas Deep-

GANnel, on our GPU workstations takes about 4ms (once trained). It should be noted that

Stochastic models will take n times longer to simulate data records with n channels within,

whereas the GAN method would need retraining to a multi-channel dataset; but still take the

same 4ms per record once trained. The method we used to create the training set in our Deep-

Channel project [13] used stochastic simulation followed by passing these data through a real

patch clamp amplifier. This method was the slowest of all, producing data at less than real time

(so approximately 1000x slower than other methods). (2) Authenticity: Speed is not the objec-

tive of this work however, it is “authenticity”. In the present paper, we provide metrics for

authenticity in terms of UMAP/t-SNE cluster similarity for DeepGANnel, however there is no

absolute way to do the same with stochastic methods. The more effort the user puts into it,

analysing noise and reproducing these, measuring single channel properties and encoding

this, the closer it would become, but this entire laborious process would need to be repeated

for every type of ion channel and condition to be simulated. With DeepGANnel, the user sim-

ply points the script at a new set of seed data. Fundamentally, stochastic data may include

unrecognised biases since every feature must be hand crafted, and DeepGANnel would include

artefacts found in native data that would likely be omitted using a stochastic approach. The

inclusion of these in training data would be important for development of robust analysis soft-

ware. (3) A priori assumptions: DeepGANnel needs none, but stochastic simulation requires

every detail to be estimated. However, stochastically generated data has the advantage that the

experimenter could potentially develop software similar to HJCFit [38, 39] and QuB [40], to

recover the HMM, and validate accuracy. With a DeepGANnel simulated dataset the underly-

ing HMM would be unknown, and need to be estimated with further software such as HJCFit,

in the same way as one would do with real patch clamp data.

Previous use of GAN for time-series data

The literature includes previous examples where timeseries data can be simulated with a GAN

[For example, 26], but these lack the synchronous labelling critical in single molecule analysis

or many other physiological studies. Generating single-molecule timeseries with a basic GAN

(Vanilla-GAN) model should be very effective at producing authentic ion molecule signal

patch-clamp signal [41], but this would lack the output of the critical timepoint-by timepoint

labelling necessary to meet our goals of creating valid alternative datasets. However, we have

shown that using a 2DCNN based model in a shape of (samples x 2 x 1280 x 1) is very effective;

with a small amount of carefully annotated seed data generating unlimited synthetic copies. In

Figs 3 and 4 we show a direct comparison for a typical electrophysiological work up of both

the original and DeepGANnel synthesised data. On the supplementary information and public

repository, we include a movie of the training process. The match between synthetic kinetic

analysis and the real data is not perfect, but rather close. The notable exception is that the lon-

ger states (both open and closed) are missing or have a diminished representation. We attri-

bute this to the necessity to use a finite window (“image” width or “record length”) size. Also,

as stated in the methods this was cropped to remove leading and trailing artefacts. Perhaps

models using far greater window lengths would be possible, but this does not appear to be a

major problem for our purpose (since most single molecule events durations are within this

window) and it would increase the model complexity many-fold. This model took 24–48

hours to train on our system and note that performance peaked but would deteriorate if it was

left indefinitely. Our code allowed manual adjustment of learning rate as epochs progressed,
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but we still chose to stop the modelling manually. The ever-increasing GPU power make ever

larger window sizes less of an issue in the future. We summarise these strengths and weak-

nesses in Table 5.

Future applications of GAN in electrophysiology

The potential for further exploitation, of GAN technology in electrophysiology beyond the

current use for creation of datasets is immense. One future goal will be to simulate far more

complex data signals, but we still have the limitation on how to acquire the fully annotated

seed data in the first place. Potentially painstaking manual annotation of very short sections of

data with known numbers of ion channel molecules by several human experts would be possi-

ble. Furthermore, it is possible that single-molecule GAN could be used more directly in

electrophysiological modelling. Currently, single molecule behaviour within such models is

derived by a set of differential equations based on a set of measured or even estimated parame-

ters [42], but it may be possible in the future to use GAN to generate more realistic stochastic

behaviour directly. Additionally, future studies will investigate whether interpretability meth-

ods can be used to identify important, defining features within each different dataset that are

missed either by eye or by standard single molecule analysis techniques. The DeepGANnel

approach will prove especially useful for generation of “raw” data, along with ground truth

annotations as analysis methods move to using a big data approach; creating large datasets

where underlying models are unknown or too complex to simulate stochastically. Potentially

also, our methods could be used to augment data in an analysis pipeline, for example to facili-

tate secondary analysis where only small samples of data are available.

The architecture we present here, using deep learning to generate physiological timeseries

data with continuous annotations, could also be adapted easily for additional usability for

equivalent systems in physiology. For example, action potential or electrocardiogram simula-

tion. As proof-of-principle we show here that indeed DeepGANnel can easily synthesise tele-

metered ECG signal, again fully annotated (Fig 8). In this example the annotation dimension

Table 5. Likely strengths and weaknesses of DeepGANnel versus traditional synthesis methods.

Traditional

Method

Traditional Method DeepGANnel

A priori

assumptions

Stochastic

simulation

Everything must be estimated or assumed; channel size, rate constants, open

channel noise, thermal noise levels, artefact frequency etc.

None required.

Authenticity Stochastic

simulation

Depends entirely on the accuracy of a priori-assumptions. Authenticity

difficult.

Highly authentic.

Speed Stochastic

simulation

Moderate speed. Slow to train, fast to simulate thereafter.

GPU needed Stochastic

simulation

Typically, these are not used. Future stochastic models may use them. Realistically these are needed for training,

although not for simulation itself.

Vanilla GAN yes -

Markov Model Stochastic

simulation

Could include Markovian model structure. May include Markovian structure, but this is

not guaranteed.

Need for seed

data

Stochastic

simulation

No. The data can be completely imaginary. Yes

Fully Labelled

data

Stochastic

simulation

Yes -

Vanilla GAN Cannot provide labels in parallel to raw data. Yes

This table summarises the pros and cons of DeepGANnel discussed and justified in the text. By definition such comparisons can only be subjective because Traditional

Methods vary (entirely dependent on a priori assumptions, that could be simple or complex), as do computing platforms.

https://doi.org/10.1371/journal.pone.0267452.t005
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is merely beat (binary state 1) or no beat binary (0), but this could easily be extended to include

P-wave (categorical state 2), T-wave (categorical state 3), or abnormal event (categorical state

4) etc with trivial code adaptation. Another example would potentially be Nanopore data

which has similar data output to patch-clamp data.

In summary, GANs are increasingly proving a viable method to generate synthetic datasets

for biological research, and here we show an implementation that allows simulation of time

dependent single molecule (patch clamp ion channel protein) activity along with a continuous

state annotation that is extendable for an array of physiological uses.
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