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Although the role of thyroid hormone during embryonic development has long been recognized, its role later in adult life remains
largely unknown. However, several lines of evidence show that thyroid hormone is crucial to the response to stress and to poststress
recovery and repair. Along this line, TH administration in almost every tissue resulted in tissue repair after various injuries including
ischemia, chemical insults, induction of inflammation, or exposure to radiation. This novel action may be of therapeutic relevance,
and thyroid hormone may constitute a paradigm for pharmacologic-induced tissue repair/regeneration.

1. Introduction

Although the role of thyroid hormone (TH) during devel-
opment has long been recognized, its role later in adult life
remains largely unknown [1]. A growing body of evidence
reveals that thyroid hormone may be a major player for
the response to stress and its presence crucial to poststress
adaptation and recovery. Thus, thyroid hormone is now
thought to have a reparative action later in adult life, and this
has been recently documented in several studies; see Table 1.

2. Adaptation to Environmental Stress and
Species Evolution: The Critical Role of
Thyroid Hormone

The most important challenge that living organisms faced
during species evolution was the ability to adapt to the
transition from the aquatic environment, a condition of low
oxygen, to the ground, an oxygen-rich state. This required a
gene programming that would enable organ protection and
remodeling during this transition. Interestingly, studies on
amphibians revealed that thyroid-hormone-regulated gene
programming is critical for the metamorphosis of tadpoles
into juvenile frogs [2]. Several studies have shown that the
morphological and functional changes of metamorphosis are
the result of alterations in the transcription of specific sets

of genes induced by TH and TH alterations can lead to
developmental failures [3-6].

3. Thyroid Hormone and Stress Response:
An Evolutionary Conserved Mechanism

The potential role of thyroid hormone in stress response
has been, until now, underestimated. However, thyroid hor-
mone signaling is altered during various stressful stimuli
and thyroid hormone is crucial to poststress recovery and
injury repair [7-9]. Interestingly, the importance of thyroid
hormone for stress response has been documented in several
species ranging from fish to humans [10]. Thus, exposure of
air-breathing perch to water-born kerosene resulted in low T3
and unfavorable metabolic changes, while the administration
of TH reversed this response [11]. Along this line, cold
stunning Kemp’s ridley sea turtles had undetectable levels of
thyroid hormone, and recovery was observed only in those
who recovered thyroid hormone levels in blood [12]. Interest-
ingly, a similar response is also observed in humans. In fact,
after an index event, such as myocardial infarction, T3 levels
significantly drop and lower levels of T3 are associated with
high mortality [13, 14]. Furthermore, T3 levels are strongly
correlated to early and late recovery of cardiac function,
with T3 levels at 6 months to be an independent predictor
of the recovery of the myocardium [15]. In fact, patients
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FI1GURE 1: Langendorft recordings of left ventricular pressure (LVP) from isolated rat hearts subjected to zero-flow global ischemia followed
by reperfusion (a) and hearts subjected only to stabilization (b). Triiodothyronine (T3) administration at reperfusion improves postischemic
recovery of function, whereas T3 during stabilization does not affect contractile function.

who spontaneously recover T3 levels in plasma after myocar-
dial infarction are those with markedly improved cardiac
functional recovery [15]. These observations provide clear
evidence that thyroid-hormone-regulated mechanisms may
be evolutionary conserved and are crucial to the response to
stress and poststress recovery and tissue repair [11]. Along
this line, several studies have demonstrated the reparative
action of thyroid hormone. We have recently shown that T3
at a dose which had no effect on noninjured myocardium
significantly limited apoptosis in the ischemic myocardium
and improved postischemic function in an isolated rat heart
model of ischemia-reperfusion. This effect was due to the
suppression of the ischemia-reperfusion-induced activation
of the proapoptotic p38 MAPK [16, 17] as shown in, Figure 1.

4. Thyroid Hormone:
The “Black Box of Repair?”

Accumulating experimental evidence shows that thyroid
hormone may play a critical role in the repair after injury
in almost every tissue and organ as shown in Tablel.
This probably implies that organisms may have a common
mechanism of repair which may be regulated by thyroid
hormone and has been established during evolution. Thus,
thyroid hormone was shown to control DNA repair after
irradiation-induced damage in mouse intestine [38]. A single
dose of T3 in rats significantly diminished hepatocellular
injury induced by ischemia-reperfusion (I/R) when given
48h before the I/R protocol. This effect was mediated by
a T3 transient oxidative stress, and thus, it was abrogated
by the administration of antioxidant N-acetyl-cysteine [23].
Thyroxine was cytoprotective in toxic and ischemic injury in
kidney [24, 26]. Thus, T3 administration 24 h prior to renal
ischemia could precondition against ischemia-reperfusion
(I/R) injury. This was evident by a marked decrease in I/R-
induced proteinuria. T3 treatment also improved lipid perox-
idation biomarkers and increased antioxidant enzymes [24].
In another study, T4 administration immediately or 24 h after
ischemia resulted in higher Inulin clearance and preserved
cellular integrity [26]. In accordance with these observations

in animal models, T4 was shown to be cytoprotective, in a
cellular model of reoxygenation injury in isolated proximal
tubule cells [25]. Such evidence may provide an explanation
to the clinical observation that low T3 has been associated
with increased mortality in hemodialyzed patients [39]. T3
treatment prevented streptozocin-induced toxic injury in
pancreatic cells. This effect was associated with an increased
activation of the prosurvival Akt signaling [27]. Similarly, T3
was shown to improve function and survival of rat pancreatic
islets in in vitro cell cultures [40]. Moreover, T3 was found to
preserve ovarian granulose cells exposed to paclitaxel. In fact,
T3 significantly reduced the paclitaxel-induced cell injury
via downregulation of caspase3 and Bax and upregulation of
Bcl2 [28]. T3 pretreatment in rats instilled with an isosmolar
5% albumin solution resulted in the upregulation of alveolar
epithelial fluid clearance [41]. T3 was also shown not only
to stimulate alveolar fluid clearance in normal but also in
hypoxia-injured lungs [29]. The administration of T3 atten-
uated neointimal formation after balloon injury of carotid
artery [35]. Thyroid hormone enhanced transected axonal
regeneration and muscle reinnervation following rat sciatic
nerve injury [22] and improved recovery of sensory function
[21]. Similarly, thyroid hormone was shown to be essential for
muscle regeneration after injury [33, 34]. Thyroid hormone
promoted the survival of injured neurons [18] and enhanced
remyelination in demyelinating inflammatory disease [20].
Thyroid hormone has also been shown to accelerate wound
healing in mice and guinea pigs [36, 37].

5. Conclusions

Thyroid hormone appears to be a common player for the
organ development and response to stress. Thyroid hormone
was crucial for species evolution, and thyroid-hormone-
regulated mechanisms have been evolutionary conserved and
play an important role early during development. However,
recent research has revealed that thyroid hormone has a
reparative role later in adult life. This novel action may
be of therapeutic relevance, and thyroid hormone may
constitute a paradigm for pharmacologic induced tissue
repair/regeneration.
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