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Abstract: MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses
during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and
contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV)
GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2
superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates,
and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way
hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly,
epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the
biomedical practice for vaccination, and haplotype clusters represented the similarities among
individuals during T-cell response establishment. Cross-validation proved the patterns observed
through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types
of major amino acid residue replacements involving four in nine hotspots, which minimally influenced
the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively
evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light
of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing
HTNV vaccine pursuit.

Keywords: pan-MHC-I; Hantaan virus (HTNV); glycoprotein (GP); immunoreactivity; comparative
immunology

1. Introduction

Hemorrhagic fever with renal syndrome (HFRS) is a viral zoonosis. It is caused by
Old World hantaviruses, including Hantaan virus (HTNV), Dobra–Belgrade virus (DOBV),
Puumala virus (PUUV), and Seoul virus (SEOV). In China, HTNV is a common pathogenic
species causing severe HFRS disease. Currently, this disease occurs globally in more than
70 countries, and an approximate 70~90% notification was reported in China, where HFRS
is still considered a serious public health problem because it is highly endemic, with about
20,000–50,000 incident cases per year, leading to a fatality rate of around 3~10% [1]. The
goal is to eliminate the HFRS epidemic in the next 10 years, considering the forecasts of
around 90,120 cases [2].

The HTNV genome consists of S, M, and L segments, which encode nucleocapsid pro-
tein (NP), Gn and Gc glycoprotein (GP), and RNA-dependent RNA polymerase (RdRp) [3],
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respectively. The structural proteins NP and GP play important roles in evoking the hu-
moral and cellular immune responses against HTNV [4] and are responsible for strong
immune responses. Hence, gene therapy against the two structural proteins is considered
to be an effective treatment for HFRS caused by hantaviral infection. Meanwhile, protec-
tive immunity elicited through infection with recombinant HTNV glycoprotein in mouse
models has also been demonstrated [5]. The HTNV glycoprotein could also be a potent
immunogen to induce T-cell responses [6].

In recent years, HTNV GP-derived MHC class I (MHC-I)-restricted epitopes have
been recorded. Ma et al. identified the restricted CTL epitope GP6 aa456–aa463 (ITSLFSLL)
in C57BL/6 mice with a mouse MHC-I genotype H2-Kb that could be used in the design
of a vaccine against HTNV infection [7]. Tang et al., on the other hand, demonstrated
that seven HLA-A0201-restricted HTNV GP-specific epitopes induced protective CTL re-
sponses after HTNV infection in patients with milder HFRS disease. Meanwhile, transgenic
mice pre-inoculated with three of these epitopes (VV9 (aa8–aa16, VMASLVWPV), SL9
(aa 996–aa 1004, SLTECPTFL), and LL9 (aa 358–aa 366, LIWTGMIDL)) revealed that LL9
functioned as an immunodominant protective epitope [8]. Nevertheless, the MHC-I-restricted
HTNV GP epitopes were proven to be immunogenic and protective in a limited immuno-
genetic background, but there remains a lack of a comprehensive understanding.

In this study, the HTNV GP-derived MHC-I dominant epitopes of mouse H2 and HLA-I
superfamilies covering 99.3% of the population [9] were predicted by combining five authentic
methods. Highly conserved, well-immunogenic selective candidates were obtained and
cross-validated by molecular docking simulations. Hierarchical clustering illustrated pan-
MHC immunoreactive hotspots on HTNV GP and epitope-recognizing MHC-I similarity
across allogeneic and species. We investigated HTNV CTL epitopes for immune affinity,
immunogenicity, conservation, and molecular docking. The cross-reactivity of HTNV CTL
epitopes was investigated by hierarchical clustering. The multidimensional exploration laid a
theoretical and technical foundation for the development of protective CTL epitope vaccines
that can activate HTNV-specific population immunity in the context of pan-MHC immunology.

2. Materials and Methods
2.1. HTNV GP Protein Sequences Retrieval

The glycoprotein (GP, accession no: KT885048.1) of HTNV 76-118 was obtained from
NCBI GenBank as the input for sequential in silico analyses. To analyze the variant amino
acid sites and their influences on the affinity differences of GP-dominant epitopes among
HTNV strains, the protein sequences of the reported isolates (148 envelope glycoproteins
shown in Supplementary Table S1) were obtained from NCBI GenBank.

2.2. HTNV GP Pan-MHC-I Epitopes Prediction and Screening

To obtain high-affinity epitope candidate peptides as comprehensively and unbiasedly
as possible, we utilized a variety of prediction algorithms to perform sequential oligopeptide
segmentation of the target GP sequence and affinity calculation among MHC-I molecules. The
MHC-I molecules included 6 mouse H2 genotypes of H2-Db, H2-Dd, H2-Kb,
H2-Kd, H2-Kk, and H2-Ld, and 9 human HLA-I superfamilies, including HLA-A1 (A0101,
A2601, A3001, and A3002), HLA-A2 (A0201, A0203, A0206, and A6802), HLA-A3 (A0301,
A1101, A3001, A3101, A3301, and A6801), HLA-A24 (A2301, A2402), HLA-A3201,
HLA-B7 (B0702, B3501, B5101, and B5301), HLA-B8 (B0801), HLA-B15 (B1501), HLA-B44
(B4001, B4402, and B4403), and HLA-B58 (B5701 and B5801). For each MHC-I molecule, the
affinities of 9-mer GP peptides were predicted using algorithms, such as IEDB-recommended
(http://tools.iedb.org/mhcii/, accessed on 6 August 2021) [10], SMMPMBEC (http://
tools.immuneepitope.org/mhci/, accessed on 6 August 2021) [11], NetMHCpan4.1 (http:
//www.cbs.dtu.dk/services/NetMHCpan/, accessed on 6 August 2021) [12], SYFPEITHI
(http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm, accessed on 6 Au-
gust 2021) [13], and Rankpep (http://imed.med.ucm.es/Tools/rankpep.html, accessed
on 6 August 2021) [14,15], and the predicted epitopes with accounting scores in the top
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2% of each algorithm’s result were the candidate dominant epitopes. We then chose the
epitopes that appeared in at least three prediction algorithm results and regarded them as
the dominant epitopes.

2.3. Conservation Analysis

To determine the degree of evolutionary conservation of the dominant antigenic epitope
among the viral species sequences, we used the BLASTP (https://blast.ncbi.nlm.nih.gov/
Blast.cgi, accessed on 21 November 2021) tool for conservation analysis of the predicted high-
affinity 9-mer peptides. Among them, the evaluation criterion for interspecies conservation
was Orthohantavirus (taxid: 1980442), excepting Hantaan hantavirus (taxid: 1980471). The
intraspecific conservative evaluation criterion was Hantaan hantavirus (taxid: 1980471), other
than Hantaan virus (strain 76-118) (taxid: 11602). In the analysis results, the conservative
E-value was <10−5 and the conservative peptide sequences between HTNV and human
(taxid: 9606) or mouse (taxid: 10088) were excluded simultaneously. The dominant epitopes
could therefore be classified into four categories based on conservation status: interspecies-
intraspecific- interspecies- intraspecific+, interspecies+ intraspecific-, and interspecies+ in-
traspecific+. “+” means that the epitopes were conservative and “-” means that the epitopes
were not conservative.

2.4. Immunogenicity Analysis

Peptides with high affinity may not sufficiently induce immune responses [16]. In ad-
dition to immunoreactivity, the antigen should also be immunogenic. The immunogenicity
is determined by the amino acid sequence [17]. VaxiJen 2.0 (http://www.ddg-pharmfac.
net/vaxijen/VaxiJen/VaxiJen.html, accessed on 12 August 2021) [18] was used to calculate
the immunogenicity of the 9-peptide epitope. Peptides were considered immunogenic by
a probability score of >0.5 as the positive criterion; otherwise, they were not considered
immunogenic.

2.5. Docking of pMHC-I Molecules

After the above serial analysis, we obtained high-affinity, evolutionarily conserved, and
immunogenic dominant epitopes called selective epitopes. Next, we used the peptide se-
quences to perform docking simulations with the molecular conformations of each MHC-I
isoform to obtain a series of molecular docking thresholds for the pan-MHC-I dominant epi-
topes. The structural data of each MHC-I allele (HLA-A1 (HLA-A0206 (3OXR), HLA-A0101
(4NQV)), HLA-B7 (HLA-B0702 (5EO1), HLA-B3501 (1A9E), HLA-B5101 (1E28), HLA-B5301
(1A1N)), HLA-B8 (HLA-B0801 (4QRP)), HLA-B15 (HLA-B1501 (1XR9)), HLA-B44 (HLA-B4402
(3KPL)), H2-Ld (6L9M), H2-Kb (6JQ3), and H2-Db (1JUF)) were deposited in the RCSB PDB
database (https://www.rcsb.org/, accessed on 18 August 2021).

Docking of pMHC-I was performed using HPEPDOCK (http://huanglab.phys.hust.
edu.cn/hpepdock/, accessed on 12 December 2021) [19]. The docking model was obtained
by inputting the 9-mer dominant epitope sequence with the MHC-I molecule PDB format
file. Each docking assay yielded 100 simulated structures, and the top 10 were selected as
high-confidence docking results.

2.6. HTNV GP Peptides and Pan-MHC-I Clustering

Polymorphisms in the MHC-I molecules and the diversity of the amino acid sequences
of the epitope peptides formed the interaction between their two groups. In order to
visualize the relationship between them, the affinity index of the MHC-I superfamily
and the HTNV GP-related peptide was subjected to two-way hierarchical clustering using
TBtools [20]. After the affinity ranking data were processed by base 2 logarithm and Z-Score
minus, we used the Complete Method to perform the two-way hierarchical clustering by
Euclidean distance. The analysis showed that the higher the score, the stronger the affinity
of the peptide to MHC-I molecules. The analysis contained 33 pan-MHC-I molecules
interacting with 1126 HTNV GP epitopes and the heatmap was plotted for representation.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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2.7. Sequence Alignment of HTNV Variants

On the basis of HTNV strain 76-118, we performed multiple sequence alignments of
the hotspots with those of 148 variants with ClustalX2.1 (Conway Institute UCD Dublin,
Ireland). The alignment results were also analyzed on WebLogo (http://weblogo.berkeley.
edu/logo.cgi, accessed on 3 December 2021) [21]. The height of the trait represented the
occurrence frequency of the amino acid mutants among the different variants. Based
on the alignment results, all 9 relevant peptides (referred to as mutation residues) were
further analyzed with HLA-I molecules for affinity changes. TBtools was used to draw the
heatmap of the binding affinity delta value between strain 76-118 and the variants of the
corresponding HLA-I and 9-mer epitopes, where the binding affinity took the logarithm of
base 2. The delta value of %Rank as minus represented the epitope of strain 76-118 with
better affinity. On the other hand, plus values indicated those of variants acquiring better
binding performance with the corresponding MHC-I molecule.

Afterward, a scatter plot by Origin 2021 (OriginLab, Northampton, MA, USA) visual-
ized the affinity of the strain 76-118 peptide as the abscissa and the variant as the ordinate.
Finally, the dominant epitopes of all mutated 9-mer peptides were predicted and analyzed
to determine whether amino acid mutations altered the epitope dominance.

2.8. Pan-MHC-I-Restricted HTNV GP Epitopes Application by Literature Review

Through previously reported data, applications of HTNV GP-restricted epitopes were
summarized. Epitopes that elicited immune responses and protection against HTNV in
local patients and animal models were enrolled and then compared with the dominant
ones from our study in order to verify the subjectivity of all of the results.

2.9. Vaccine, Animals, and Immunization

The bivalent HFRS inactivated vaccine (HANPUWEI®), which was produced by the
Changchun Institute of Biological Products Co., Ltd., Changchun, China, was used in this
study. The vaccine was composed of inactivated and purified HTNV and SEOV in hamster
kidney cells (there is no monovalent HFRS vaccine available in China).

Eight-week-old specific-pathogen-free female mice of two kinds were purchased
from the Laboratory Animal Centre of the Fourth Military Medical University. The two
types of inbred mice included c57 and BALB/c within the MHC-I haplotypes of H2b and
H2d, respectively. Six mice of each kind were randomly divided into two groups. The
experimental groups were inoculated with a single 50 µL dose of bivalent inactivated
vaccine. The mice in the control groups were injected with a single 50 µL dose of sterile
PBS (phosphate-buffered solution). The immunized mice were sacrificed 6 days later. An
ELISpot assay was used for cellular evaluation. Animals were taken good care of, and all
of the experiments were carried out according to the animal experiment guidance.

2.10. Peptides and ELISpot Assay

Three of the validated HTNV GP-derived HLA-A2 dominant 9-mer epitopes were
acquired from a neighboring research crew [7,22], Single peptides were diluted with
10 µg/mL PBS for the IFN-γ ELISpot assay. Briefly, the IFN-γ-specific capture antibody was
diluted with 5 µg/mL (1:250) sterile PBS and placed on coated ELISpot plates overnight
at 4 ◦C. The mice were sacrificed and their spleens were dissected, after which the mono-
cyte suspension was ground. After erythrocyte lysis, the splenocytes were rinsed and
re-suspended. Two hours after the ELISpot plates were blocked with RPMI-1640 containing
10% fetal bovine serum at room temperature, 1 × 106 splenocytes were added to each
pore and stimulated with a final concentration of 5 µg/mL synthetic GP peptides. The
plates were cultured in a 5% CO2 incubator at 37 ◦C for 24 h. Completed medium was
used as the negative control. Con A (10 µg/mL) was used as the positive control. After
incubation, the culture plates were washed with H2O and PBST, and then incubated with
2 mg/mL of relevant biotinylated rat anti-mouse IFN-γ antibody at room temperature
for 2 h. After washing with PBST (PBS with 0.05% Tween-20), the plates were incubated

http://weblogo.berkeley.edu/logo.cgi
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with streptavidin-HRP 1:100 for 1 h, and then 3-amino-9-ethylcarbazole (AEC; DAKEWEI,
Shenzheng, China) was added to the HRP substrate, and the reaction was stopped by
washing with water. After air-drying, we used the CTL ELISpot Reader (CTL, Kennesaw
(Atlanta), GA, USA) to count IFN spots generated by the AEC substrate. Each experi-
ment was performed in triplicate, and all of the results are shown as the average value of
spot-forming cells (SFCs) per 106 splenocytes.

3. Results
3.1. HTNV GP Epitopes for Mouse MHC-I and Major HLA-I Supertypes

We performed bioinformatics analysis using the multiple computational tools that
were mentioned in the Methods. Table 1 lists the numbers of predicted dominant epitopes
in HLA-I, and Table 2 lists the numbers of mouse MHC-I that were generated by each of
the prediction tools. We obtained 229 epitopes in HLA-I and 83 epitopes in H2 (specific
epitopes are shown in Supplementary Table S2). The most comprehensive coverage for
HLA-I alleles was NetMHCpan-4.1, and the H2 subtype was best covered by IEDB and
NetMHCpan-4.1. Altogether, NetMHCpan-4.1 had the most complete subtype among
the MHC-I prediction tools. According to the results of the HLA-I alleles, the number
of HLA-A3-restricted dominant epitopes was the highest (57 peptides of full-length GP,
Table 1), and the number of H2-Db was the highest in the H2 subtype (18 peptides of
full-length GP, Table 2).

Table 1. Numbers of HLA-1-dominant epitopes of HTNV GP.

MHC-I Haplotypes Prediction Tools GP Epitopes GP (Short-Listed)

HLA-A1

IEDB 32

32
NetMHCpan 32

Rankpep 0
SMMPMBEC 32
SYFPEITHI 10

HLA-A2

IEDB 38

41
NetMHCpan 40

Rankpep 25
SMMPMBEC 28
SYFPEITHI 20

HLA-A3

IEDB 52

57
NetMHCpan 53

Rankpep 35
SMMPMBEC 51
SYFPEITHI 37

HLA-A24

IEDB 30

32
NetMHCpan 30

Rankpep 16
SMMPMBEC 24
SYFPEITHI 16

HLA-B7

IEDB 40

41
NetMHCpan 41

Rankpep 27
SMMPMBEC 35
SYFPEITHI 25

HLA-B8

IEDB 11

11
NetMHCpan 11

Rankpep 0
SMMPMBEC 9
SYFPEITHI 5
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Table 1. Cont.

MHC-I Haplotypes Prediction Tools GP Epitopes GP (Short-Listed)

HLA-B15

IEDB 31

33
NetMHCpan 32

Rankpep 3
SMMPMBEC 26
SYFPEITHI 21

HLA-B44

IEDB 26

26
NetMHCpan 26

Rankpep 4
SMMPMBEC 23
SYFPEITHI 17

HLA-B58

IEDB 24

25
NetMHCpan 24

Rankpep 19
SMMPMBEC 18
SYFPEITHI 17

(GP epitopes are those ranking in the top 2% of each algorithm result; GP (Short-listed) are those that appeared in
at least three prediction algorithm results).

Table 2. Numbers of murine MHC-I-dominant epitopes of HTNV GP.

MHC-I Haplotypes Prediction Tools GP Epitopes GP (Short-Listed)

H2-Db

IEDB 17

18
NetMHCpan 17

Rankpep 7
SMMPMBEC 12
SYFPEITHI 14

H2-Dd

IEDB 10

12
NetMHCpan 10

Rankpep 8
SMMPMBEC 7
SYFPEITHI NA

H2-Kb

IEDB 15

15
NetMHCpan 15

Rankpep 8
SMMPMBEC 11
SYFPEITHI NA

H2-Kd

IEDB 16

17
NetMHCpan 16

Rankpep 10
SMMPMBEC 9
SYFPEITHI 13

H2-Kk

IEDB 12

15
NetMHCpan 12

Rankpep 5
SMMPMBEC 8
SYFPEITHI 8

H2-Ld

IEDB 12

15
NetMHCpan 13

Rankpep 7
SMMPMBEC 7
SYFPEITHI 6

(GP epitopes are those ranking in the top 2% of each algorithm result; GP (Short-listed) are those that appeared in
at least three prediction algorithm results).
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Within the ranks of the affinity between HTNV 9-mer peptides and different
MHC-I molecules, a heatmap was drawn to show the regional affinity (as shown in
Supplementary Figure S1). The GP of HTNV 76-118-derived 1127 single-residue-advancing
9-mer peptides at the distribution of 1135 amino acids, and the data were taken from
NetMHCPan-4.1. The heatmap columns are labeled with MHC-I subtypes and the rows
are labeled with epitopes. The graph shows a single gradient. The smaller the %Rank, the
darker the red. Generally, the binding strength of epitopes was regionally distributed, rang-
ing from No. 134–162, No. 184–205, No. 212–214, No. 438–456, No. 495–499, No. 791–793,
No. 922–926, No. 995–996, and No. 1057–1104 with good affinity. However, No. 759–780,
No. 800–815, No. 953–982, No. 988–1010, and No. 1040–1047 across different subtypes
showed poor binding ability. The dominant epitope region of HLA-A was the most concen-
trated, and that of H2 had better coverage than that of the HLA-B subtypes. The overall
coverage of good affinity for HTNV GP-derived 9-mer peptides to different MHC-I subtypes
was, therefore, HLA-A2 > HLA-A1 > HLA-A3 > HLA-A24 > H2 > HLA-B7 > HLA-B58 >
HLA-B15 and HLA-B44. Most of the pan-MHC-I dominant epitopes fell in the nine hotspots
of high affinity and underwent the following explorations.

3.2. Conservation Status of HTNV GP 9-Mer Dominant Epitopes

To determine the degree of evolutionary conservation of the dominant antigenic
epitope among viral species sequences, we used the criteria described in the Methods
to perform conservation analysis of the predicted screened high-affinity 9-mer peptides
using the BLASTP tool. The statistical results of the conservation analyses for all dominant
epitopes are listed in Table 3. The various MHC-I epitopes were classified into four classes
(Interspecies- Intraspecies-, Interspecies- Intraspecies+, Interspecies+ Intraspecies-, and
Interspecies+ Intraspecies+). The number of conserved HLA-I-restricted dominant epitopes
was higher than that of the H2-restricted dominant epitopes. This was the result of HLA-I
summarizing the superfamilies, while the identification of H2-restricted epitopes required
the approval of three out of five algorithms for six subtypes. At the same time, it was
evident that the dominant epitope showed strong intraspecific conservation, but weak
interspecific conservation.

Table 3. Conservation of MHC-I-restricted dominant epitopes of HTNV GPs.

MHC-I
Haplotypes

Interspecies-
Intraspecies-

Interspecies-
Intraspecies+

Interspecies+
Intraspecies-

Interspecies+
Intraspecies+

H2-Db 16 2 0 0
H2-Dd 10 2 0 0
H2-Kb 12 2 0 1
H2-Kd 11 5 0 1
H2-Kk 13 2 0 0
H2-Ld 10 3 0 2

HLA-A1 22 9 0 1
HLA-A2 34 6 0 1
HLA-A3 40 14 0 3
HLA-A24 17 9 0 6
HLA-B7 27 10 1 3
HLA-B8 5 4 0 2

HLA-B15 21 9 0 1
HLA-B44 19 5 0 2
HLA-B58 15 9 1 0

3.3. Immunogenicity of HTNV GP 9-Mer Peptides

Peptides that adequately induce immune responses require not only high affinity but
also immunogenicity. Therefore, we performed immunogenicity analysis of all the 9-mer
GP epitopes. The results revealed that 551 of the 1126 HTNV GP 9-mer peptides were
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immunogenic. Specifically, the dominant epitopes of 124 of the 229 HLA-I and 39 of the
83 H2 subtypes were regarded as immunogenic peptides (Supplementary Table S3).

3.4. Hierarchical Clustering Showed Interaction between pan-MHC-I Molecules and
HTNV 9-Mer Peptides

Through the above analysis, the dominant epitopes with high affinity, evolutionary
conservation, and immunogenicity were named “selective” epitopes. However, these
promising targets could not reflect the entire picture of HTNV GP peptides being pro-
cessed by pan-MHC-I supertypes. At the same time, it was previously determined that
the MHC-II haplotypes clustered by HTNV GP immunoreactivity represent the similarity
between individuals even across species [23]. In order to investigate whether the same
phenomenon would occur in the pan-MHC-I-restricted HTNV GP presentation, we subse-
quently performed hierarchical cluster analysis of 1127 HTNV 9-mer peptides (Figure 1).
Thirty-three MHC-I subtypes were assigned to three clusters, including HLA-I-exclusive
and two cross-reactive clusters (HLA major and H2 major). In the HLA-I-exclusive cluster,
the HLA-A3001 scores were similar to those of HLA-A3 (-A0301, -A1101, -A3101, -A3301,
and -A6801), more so than those of other HLA-A1 superfamilies, suggesting an HLA-A3-
like characteristic in HTNV GP processing [24]. HLA-A2 (-A0201, -A0203, -A0206, and
-A6802) scored similarly. In the HLA-I-exclusive clusters, HLA-B7 (-B3501 and -B5301) and
HLA-A1 (-A2601 and -A0101) had similar antigen presentation results; HLA-A1 (-A3002),
HLA-B15 (-B1501), HLA-A3201, and HLA-B58 (-B5701 and -B5801) also had similar antigen
presentation results. As for the H2 major cross-reactive clusters, the H2-Ld scores were
similar to those of HLA-B7 (-B0702 and -B2101); the H2-Kd scores were similar to those
of HLA-A24 (-A2301 and -A2402); H2-Db, H2-Dd, and H2-Kb were grouped in an H2-
exclusive manner. However, in the HLA major cross-reactive clusters, the H2-Kk scores
were similar to those of HLA-B44 (-B4001, -B4402, and -B4403).

3.5. Docking of pMHC Molecules with the Dominant Epitopes

The dominant epitopes with strong affinity, high immunogenicity, and conservation
were denoted as “selective” ones, some of which also exhibited pan-MHC-I reactivity. We
observed ubiquitous immune reactiveness for HTNV GP-derived 9-mer epitopes among the
MHC-I genotypes, superfamilies, clusters, and even across species. In silico validation was
simulated by the docking of 11 selective epitopes with human and mouse MHC-I molecules.
The binding conformation, docking models, and respective binding scores were obtained
through the 10 most important simulations for each of the 9-mer peptides (Figure 2). Lower
scores indicated better peptide-MHC docking performance. The results showed that the
docking scores of nine epitopes, such as APQCGIKCW and CWFVKSGEW, were lower—in
other words, with better docking performance in the HLA-I subtypes than in the mouse
H-2 alleles. In contrast, the other two epitopes, RYKSRCYIF and YTYPWHTAK, were more
likely to bind to the mouse H-2 allele.

3.6. Comparison between the HTNV Strain 76-118 and the Other 147 Variants Based on Nine
High-Affinity Segments

We obtained the incidence of variation between HTNV strain 76-118 and the other
147 variants based on nine high-affinity segments (Supplementary Figure S2). The seven
mutations (I222L, I502L, I502V, V996L, I1073M, S1076N, and I1088V) are shown in Figure 3A.
The respective frequencies were 39.189% for the mutation I222L, 27.702% for I502L, 9.459%
for I502V, 35.135% for V996L, 39.864% for I1073M, 25.676% for S1076N, and 27.027% for
I1088V (Figure 3B).
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HLA-I-favored binding while the lower images refer to H2 preference.

3.7. Affinity Differences of HTNV GP Hotspots between 76-118 and Variants

The mutations between HTNV strain 76-118 and the other 147 variants led to the differ-
ence in the binding affinity of the corresponding HLA-I and 9-mer epitopes
(Supplementary Figures S3 and S4.). Based on a comparison of the differences in binding
affinity, we selected the most significant mutation I222L for further analysis (heatmap in
Figure 3C and the plane Cartesian coordinate system in Figure 3D). In this aa214-aa230 pep-
tide, the affinity of epitopes AVKGNTYKI and VKGNTYKIF in other variants was generally
higher in each subtype of MHC-I, the binding affinity of epitope KIFEQVKKS in other
variants was higher in HLA-A2, and the affinity of epitopes NTYKIFEQV, YKIFEQVKK,
and IFEQVKSF in HTNV strain 76-118 was generally higher in MHC-I.

Most of the 9-mer epitopes in this peptide showed little difference in their effect on
each genotype. However, there was a single mutation in three epitopes leading to eight
pHLA-I affinity changes, in which seven pHLA-I bindings were strengthened in variants,
but the remaining one was the opposite (Table 4).
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variation. (Each point in the scatter plot represents a nonapeptide epitope, and the point in the gray
area indicates that the affinity ranking of this epitope is in the top 2%. The closer the point is to the
straight line y = x, the closer the affinity between HTNV strain 76-118 and the variants).

Table 4. Epitopes that generated changes and their HLA molecules.

Amino Acid
Number KT885048.1 Variants Dominant in

KT885048.1
Dominant in

Variants
HLA-I

Genotype

214–222 AVKGNTYKI AVKGNTYKL

No Yes HLA-B07:02
No Yes HLA-B08:01
No Yes HLA-B15:01
No Yes HLA-A30:02

218–226 NTYKIFEQV NTYKLFEQV Yes No HLA-A32:01

221–229 KIFEQVKKS KLFEQVKKS
No Yes HLA-A02:01
No Yes HLA-A02:03
No Yes HLA-A02:06

3.8. Applications HTNV GP-Derived CTL Epitopes by Literature Review

After consulting the previously reported data on HTNV GP-derived CD8+

epitopes [7,22,25,26], we summarized those that were proven to activate CTL responses or
be presented by MHC-I (Supplementary Table S5). Then, cross-alignment was performed
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with our dominant epitopes in order to assess the HTNV GP CD8+ epitopes’ ability to
stimulate T-cell immune responses and their application prospect as vaccine candidates.
VFV9, VV9, SV9, SL9, FL9, and GP161-169 were among the dominant epitopes we reported
corresponding to each MHC-I allele. Subsequently, immunogenicity analyses favored
VFV9, SV9, LL9, and GP161-169 as promising targets, while VV9, SL9, FL9, and VI9 were
not. In the conservation analysis, only VV9, LL9, VI9, and GP173-181 were conserved as
intraspecies, and none of the epitopes were interspecies conservative. The above results
confirmed the validity of our study, thus deepening our understanding of further epitope
screening for vaccination.

3.9. H2d Showed Cross-Immunoreactivity to HLA-A2-Restricted Epitopes in ELISpot Assays

Splenocytes from immunized mice were stimulated with inactivated vaccine and the
secretion of IFN-γ was observed. The results (Figure 4) are shown as the average of the
spot-forming units (SFUs) per 106 splenocytes, and the ordinate represents the difference
between the experimental and the control groups. The assay showed that all three HTNV
GP 9-mer peptide epitopes stimulated strong immune responses in Balb/c mice, but only a
minor immune response in C57 mice. Epitope VMASLVWPV exhibited the highest IFN-γ
secretion, followed by epitope VIGQCIYTI and epitope FLLVLESIL. The p value for the
data average between the Balb/c group and C57 group was 0.0005 by the Paired t-test.
Additionally, by using the unpaired t-test method, the p value for epitope FLLVLESIL
was 0.0089, for epitope VMASLVWPV was 0.0045, for epitope VIGQCIYTI was <0.0001,
and for the peptides pool was 0.0088. The results indicated that the HLA-A2-restricted
epitopes above could also elicit immune responses in Balb/c mice with H2d alleles, but not
in C57 mice with H2b alleles, which verified the cross-reactivity in different species and the
difference in the HLA reactions of HTNV GP epitopes.
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4. Discussion

In this study, we identified 11 HTNV GP 9-mer peptides with high affinity to major
HLA-I and H-2 superfamilies, evolutionarily conserved and immunogenic, thus named
pan-MHC-I selective epitopes. Then, MD simulations with corresponding pMHC-I interac-
tions validated not only the fine postures in antigen presentation, but also the tendencies
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of cross-species immunoreactivities. Based on the interactions between GP peptides and
MHC-I haplotypes, two-way hierarchical cluster analyses revealed similarities among
alleles, superfamilies, clusters, and even species. Moreover, 148 HTNV variants yielded
six types of major amino acid residue substitutions involving four in nine hotspots, which
displayed minimal influences on the general potential of MHC-I superfamily presentation.
Studies have shown that HTNV infection can trigger a strong specific CD8+ T-cell response
in a murine model [27], while the clearance of HTNV infection depends on interferon-γ
(IFN-γ) and TNF-α production by functional specific CD8+ T cells, suggesting that CD8+

T cells play an important role in the clearance of HTNV [28]. CD8+ T cells were also neces-
sary to completely remove the virus from infected host cells [29]. Our multidimensional
exploration lays a theoretical and technical foundation for the construction of protective
CTL epitope vaccines that can activate HTNV-specific population immunity.

Peptides with high binding affinity to MHC-I are considered to be immunogenic. How-
ever, these peptides do not always result in high T-cell reactivity [16,30]. In contrast, peptides
with low binding affinity do not mean low immunogenicity [31]. Only antigens that are
both immunoreactive and immunogenic can elicit immune responses. Thus, immunogenicity
analysis has become an integral part of the epitope research process and is widely used in
epitope vaccine research for various viruses [32–34]. We performed immunogenicity analysis
on all nine-peptide epitopes with VaxiJen so that high-affinity, non-immunogenic epitopes
could be eliminated.

Studies have shown that, since the discovery of HTNV, it has diverged in rodent
populations and undergone geographic isolation and independent evolution [35–37]. It has
been speculated that the co-evolution of this virus and its host could eventually lead to the
emergence of virulent HTNV [38]. Broadly reactive antibodies were proven to elicit exten-
sive recognition and cross-neutralization of Old and New World HTNV [39,40], implying
that conserved epitopes of the immune response of interspecies viruses can increase the
scope of protective immunity. Therefore, inter- and intra-specific conservation studies have
inspected not only the reactiveness in HTNV, but also the cross-reaction to the Old and
New World hantavirus. In this study, dominant epitopes were analyzed and then divided
into four categories. Epitopes conserved both inter- and intra-species were considered more
suitable for epitope vaccine development and immunization studies than other epitopes.
This phenomenon can also be seen for SARS-CoV-2, the pathogen of the globe-sweeping
pandemic COVID-19 (https://covid19.who.int/, 27 December 2021). It has been shown
that HLA-B15:03 possesses the greatest ability to present highly conserved novel coron-
avirus peptides, which are shared with common human coronaviruses, suggesting that it
can achieve cross-protective T-cell-based immunity [41].

Determining the structure of epitope peptide–receptor complexes is necessary for
understanding the molecular mechanisms of related biological processes and for vaccine
design [19]. The docking scores of pMHC-I simulations associated with 11 selective epitopes
and HLA-I and mouse MHC-I demonstrated that, for various alleles across species, the
epitopes can be well docked in both humans and mice. Moreover, for different mouse
haplotypes, the performance of H2-Ld was better than that of H2-Kb. This once again
indicated that BALB/c is more appropriate than C57BL/6 for simulating the responses
in humans [23,42]. Intriguingly, nine in eleven selective epitopes showed better docking
status with HLA-I than H2, indicating the significance in vaccine development and the
immunopathophysiology of HFRS.

Human genetic factors can also influence the susceptibility to transmission and sever-
ity of hantavirus-induced diseases [43]. HLA-B46 and HLA-A02 are more frequent in Han
Chinese HFRS patients [44–46], and HLA-B35 has a significant prevalence in Slovenian
HFRS patients [47]. Notably, the pan-MHC-I supertypes in our research contained 27 mem-
bers of HLA-I superfamilies and six alleles of mouse H2 that extensively cover geography
and communities. Meanwhile, our integrated approaches with five forecasting algorithms
focused the scope and improved the accuracy of the dominant epitopes. Since epitopes
with cross-reactivity between humans and mice included a wide range of MHC molecules

https://covid19.who.int/
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of different genera, this seemed to extend beyond MHC-restricted and suggested a genuine
advantage during immune responses. For example, the distribution of dominant epitopes
in H2d resembled that in the HLA-II superfamily [48]. By hierarchical cluster analysis, we
became conscious of the similarity among different HLA-I genotypes in presenting identical
epitopes, as well as the similarities between them and mice H2 alleles. It can be speculated
from the similar binding scores between H2d/H2k and the wide range of HLA-Is to HTNV
GP peptides that, in the absence of humanized HLA-I transgenic mice, hybrids of the
BALB/c and C3H strains might be useful surrogates for experimental models.

A variety of hantavirus variants have been found in mainland Asia alone [49,50],
and molecular epidemiological surveys of multiple sites have found low homology of
hantaviruses [51–53]. It was therefore necessary to investigate the variation of antigens.
The alignment results showed little intra-species difference in binding affinity between the
HTNV 76-118 strain and 147 variants. This provides a basis for the development of epitope
vaccines in terms of intra-species conservation. So far, there are multiple vaccine candidates
with the potential for conferring long protective immunity against hantaviruses, such as
the virus-like particle vaccine, recombinant proteins, the recombinant vector vaccine, and
the nucleic acid-based molecular vaccine [54]. Epitope-based vaccines represent a powerful
way to induce specific immune responses against selected epitopes, avoiding the side effects
in intact antigens. In addition to other considerable advantages, including increasing safety
and improving the potency and breadth of vaccines, epitope-based vaccine methods were
shown to be successful against various infectious diseases, such as Neisseria meningitidis
infection, HIV [55], respiratory syncytial virus, and tuberculosis [56]. Therefore, effective
T-cell-activating peptide vaccines based on HTNV structural proteins may be a promising
approach to disease control [57].

Although HLA-A2 was not assigned to the same cluster as H2d and H2b by the
HTNV GP 9-mer peptide bonding affinity profile in the hierarchical clustering, the H2d
scores were more similar to those of HLA-A2 than those of H2b when presenting HTNV GP
peptides. The amount of IFN-γ secreted by splenocytes from BALB/c mice was significantly
greater than that secreted by splenocytes from C57 mice, and it was suggested that HLA-
A2-restricted HTNV GP epitopes with pan-MHC-I properties showed a better immune
response in H2d than H2b. This was consistent with the result of hierarchical clustering.
Additionally, the result of molecule docking confirmed that H2d had a docking score closer
to HLA-A2 than H2b, which was verified in the assays. The experimental validation of
11 selective epitopes in a short period of time requires much labor and cost, but after the
validation of three HLA-A2-restricted epitopes, the epitopes with multi-MHC-I restriction
and cross-reactivity can still be validated in different genotypes, superfamilies, clusters,
and species.

Bioinformatics methods used to predict epitopes can be used to assist subsequent
immunological experiments and epitope-based vaccine design [23,58,59]. However, the
inherent limitations are also not negligible, where hierarchical clustering ignores the inter-
connectivity and approximation of data. The role of selective epitopes in different genetic
backgrounds and in different modes of presentation for antigen processing [60,61] also
requires further research and application. Previous studies have reported that the inhibition
of molecules LMP7 and BNLF2a attenuated immunoproteasome formation and protein
degradation; thus, the MHC-I antigen presentation activity was repressed [62,63], which
also reduced the effect of epitopes. Nevertheless, our study presents a state-of-the-art
approach to screening dominant epitopes with selective advantages and enhances our
understanding of cross-immunity among viruses in different species, providing guidance
for the development of epitope vaccines. At the same time, research and discussion of
antigen-presenting alteration by variant substitution should also be applied to SARS-CoV-2
variant studies and the ongoing COVID-19 vaccine pursuit.
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