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Abstract: CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate
or regulate the responses of various immune cells. The activation and functional status of CD4+
T cells is important for adequate responses to pathogen infections but has also been associated
with auto-immune disorders and survival in several cancers. In the current study, we carried out a
label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated
(72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1
cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were
observed between resting and activated CD4+ T cells. In addition to identifying several known T-cell
activation-related processes altered expression of several stimulatory/inhibitory immune checkpoint
markers between resting and activated CD4+ T cells were observed. Network analysis further
revealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1,
FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human
lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell data
suggested interspecies proteomic differences. The current dataset will serve as a valuable resource to
the scientific community to compare and analyze the CD4+ proteome.

Keywords: adaptive immunity; T-lymphocytes; CD4+ T helper cells; mass spectrometry; proteomics;
label-free quantitation; systems biology

1. Introduction

CD4+ T cells, also known as CD4+ T helper cells, are a subtype of T-lymphocytes that
perform important immunoregulatory roles in adaptive immunity, including activation of B
cells, cytotoxic T-cells, and nonimmune cells [1]. Bone marrow-derived hematopoietic pro-
genitors committed of the T-cell lineage, unlike other cells of the hematopoietic cell lineage,
enter circulation and migrate to the thymus where they undergo maturation and selection
processes to produce a pool of mature resting CD4+ and CD8+ T cell lineages [2]. During
maturation, each T cell re-arranges a unique T cell receptor (TCR) that recognizes specific
antigenic peptides in complex with major histocompatibility complex (MHC) molecules
on APCs. Mature naïve T cells exit the thymus and patrol the blood and lymph system
where they screen MHC molecules on antigen-presenting cells (APCs) and are activated if
their TCRs detect their cognate antigen on MHC molecules [3]. In addition, subsequent
signals, including costimulatory receptor signaling (e.g., CD28) and environmental impacts
such as cytokines, are essential for T cell activation [4]. The interactions between APCs
and T cells are mediated by regulatory molecules known as immune checkpoints [5]. After
activation, CD4+ T cells undergo clonal expansion and differentiation into CD4+ effector
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T cells. During this phase, cytokine signals from the environment impact the transcrip-
tional programs in the activated CD4+ T cells and guide differentiation towards CD4+
T cell lineages which produce specific sets of effector cytokines. In 1986, Mosmann and
colleagues identified two distinct types of CD4+ T helper cells: Type1 T helper cells (Th1)
that produced IL-2, IL-3, IFNγ, and GM-CSF, and Type2 T helper cells (Th2) that produced
IL-3, BSF1 (IL-4), a mast cell growth factor (IL-10) and a T cell growth factor [6]. However,
over the years, multiple/a variety of subsets or lineages of CD4+ T helper cells have been
identified depending upon their signature cytokine secretion, which includes—Th1, Th2,
Th17, Th9, Th22, regulatory T cells (Tregs), and follicular helper T cells (TFH) [7,8]. Distinct
transcriptional profiles and master transcriptional regulators have been identified for the
different subsets/regulating lineage differentiation [9,10]. It is now understood that not
all activated CD4+ T helper cells terminally differentiate, but that a substantial portion
remains plastic and may be capable of acquiring other properties and functions as part of
secondary immune responses [7].

CD4+ T cells play critical roles in the pathogenesis of several diseases, including
infectious, auto-immune, inflammatory diseases, and malignancies. CD4+ T cells have
a crucial role in the development of HIV infection, where virus entry into cells requires
CD4 receptor involvement [11,12]. Progressive depletion of CD4+ T cell populations is
one of the hallmarks of acquired immunodeficiency syndrome (AIDS) pathogenesis [13]
resulting in increased susceptibility to opportunistic infections and virus-associated malig-
nancies [14]. Interestingly, an increase in various CD4+ T cell subsets serves as a hallmark
of inflammatory diseases such as multiple sclerosis, arthritis, allergies, and chronic airway
inflammation in asthma [15]. Infiltration and accumulation of CD4+ T cells in the peripheral
joints is an important feature of rheumatoid arthritis [16]. Additionally, CD4+ T cells play
an important role in mediating crosstalk between immune cells and adipose tissues with
an increase in adipose tissues known to be associated with obesity and obesity-associated
diseases, including type 2 diabetes, insulin resistance, atherosclerosis, and stroke [17]. In-
creasing evidence now suggests a vital role of CD4+ T cells in tumor protection [18], driving
several anti-tumor mechanisms [19–22]. Furthermore, CD4+ T cells have been shown to
mediate direct cytotoxicity against tumor cells through increased production of interferon
gamma (IFNγ) and tumor necrosis factor (TNFα in both preclinical models [23–25] and
patient-derived CD4+ T cells [26]. CD4+ T cells can also induce humoral responses against
tumor antigens primarily through increased expression of CD40 ligand that promotes
differentiation and maturation of B-cells into affinity-matured, class-switched plasma
cells [27,28].

T cell activation is accompanied with changes in transcriptional and proteomic ma-
chinery, including massive shifts in metabolism and biosynthesis which drives increase
in size, rapid proliferation and differentiation of T cells [29]. To date, there have been
several OMICs-based studies, specifically proteomics approaches to characterize changes
in protein expression upon T cell activation [30–35]. Despite CD4+ T cells studied exten-
sively, several aspects pertaining to T cell biology, such as comprehensive knowledge of
the proteomic repertoire, signaling mechanisms, patterns of heterogeneity in the popu-
lation, interspecies differences, and fundamental differences between primary cells and
cell line models, are not well characterized. The aim of this study was to add knowledge
to the proteomic differences between resting and in vitro activated primary human CD4+
T cells as well as common laboratory-used model T cell lines. We carried out label-free
comparative proteomic analysis of resting (unactivated) and TCR-activated (72 h) primary
human CD4+ T cells purified from two healthy donors. Furthermore, we also profiled the
proteome expression repertoire of the human T cell lymphoblastic cell line SUP-T1 and
accessed a previously published proteome profile of Jurkat T lymphoblast cells [36]. Using
an integrative bioinformatics approach, we compared the proteomic profiles of resting and
activated primary CD4+ T cells with those of human SUP-T1 and Jurkat T lymphoblast
cell lines. We also provide a comprehensive overview of signaling pathways and networks
affected by the activation of CD4+ T cells. The data generated from the current study will
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enable us to gain a better understanding of the molecular machinery operating within
primary CD4+ T cells during T cell activation, the proteomic differences between primary
CD4+ T cells and model T cell lines as well as interspecies differences between human
and mice.

2. Results
2.1. Comparative Proteomic Analysis of Resting and Activated Primary CD4+ T Cells and
SUP-T1 T Lymphoblastic Cell Line

We performed an unbiased global proteomic profiling to elucidate the protein ex-
pression profiles of resting (un-activated) and TCR- activated primary human CD4+ T
cells (Figure 1A) as well as the T cell lymphoblastic cell line SUP-T1. Peripheral Blood
Mononuclear Cells (PBMCs) were isolated from two healthy donors, and CD4+ T cells were
further purified using magnetic bead-based isolation (negative-isolation of “untouched”
cells). Flow-cytometric analysis indicated a purity of >94% for both donors and in total
less than 0.5% contaminating of myeloid origin (CD14+ or CD11c+ cells) or CD8+ T cells
(Figure 1B,C). Resting CD4+ T cells were frozen directly after isolation. For activated
CD4+ T cell samples, TCR (plate-bound anti-CD3 antibody) and co-stimulatory (anti-CD28
antibody) signaling was induced for 72 h before the samples were frozen.

LC-MS/MS analysis of resting and activated CD4+ T cell proteomes resulted in the
identification of 5237 proteins (Table S1). The proteomic profiles of resting and activated
CD4+ T cells from two donors were compared to see expression patterns using Principal
Component Analysis (PCA). While resting cells from the donors clustered together in
the PCA plot, activated cells revealed heterogeneous expression profiles between the two
donors (Figure 1D), indicating that there were significant proteomic differences between
them. A total of 1119 were significantly altered between resting and activated states in both
donors (log2 fold change ±2, p-value < 0.05) (Figure S1A,B; Table S1). The top 10 differen-
tially regulated proteins in activated CD4+ T cells include enzymes such as thymidylate
synthetase (TYMS) and methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2
(MTHFD2) that were found to upregulated while ATP synthase membrane subunit 6.8PL
(ATP5MPL), azurocidin 1 (AZU1), granzyme K (GZMK) were found to be downregulated
in activated CD4+ T cells from both the donors (Figure 1E,F).

2.2. Known and Novel Molecular Markers of Resting and Activated CD4+ T Cells

We analyzed proteins characteristic of resting and activated CD4+ T cells. As expected,
CD4 was uniformly expressed in both resting and activated CD4+ T cells (Figure 2A). CD8
protein was not identified in the current dataset, confirming the purity of the CD4+ T cell
preparations. The expression profiles of the hallmark markers of T cell activation including
transcriptional regulator FOXP3, interleukin (IL)-2 receptor α-chain IL2RA (CD25), major
histocompatibility complex class II, DR alpha (HLA-DRA), CD40 ligand (CD40LG) and
CD69 were assessed. As expected, a marked increase in the protein expression was
observed after 72 h of activation in comparison to resting CD4+ T cells. HLA-DRA however,
showed a minor increase in protein expression (Figure 2B–F).

Next, we carried out gene ontology-based enrichment analysis of differentially ex-
pressed proteins in activated CD4+ T cells with respect to their resting/untreated counter-
parts. The two donors showed significant differences in the type of biological processes
for which proteins were upregulated in CD4+ T cells after activation (Figure 2G,H). How-
ever, “housekeeping” processes pertaining to cell cycle, mitosis and DNA replication were
commonly enhanced in both donors. The biological processes enriched for downregulated
proteins were mostly similar for both donors and consisted mainly of proteins involved in
neutrophil activation (Figure S2A,B).
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Figure 1. (A) A workflow for the comparative proteomics analysis of resting and activated primary human CD4+ T cells
as well as SUP-T1 lymphoma T cells. Primary human CD4+ T cells were purified using magnetic beads (MACS cell
separation) from PMBCs of healthy donors. Resting (unstimulated) CD4+ T cell samples were harvested (washed and
shock-frozen) for protein extraction immediately after isolation. A fraction (1 × 107) CD4+ T cells were activated for 72 h
by anti-CD3/anti-CD28 stimulation before cells were harvested/shock-frozen for protein isolation. SUP-T1 cells were
harvested from a cell line tissue culture. Resting CD4+ T cells, activated CD4+ T cells and SUP-T1 cell samples were
subjected to protein extraction. Proteins were subjected to tryptic digestion. Peptide samples obtained were subjected to
strong cation exchange chromatography followed by MS/MS analysis. (B,C) Flow cytometric purity analysis of CD4+ T cell
preparations for Donor 1 (B) and Donor 2 (C). Purified CD4+ T cells were stained with fluorescent antibodies for CD11c,
CD14, CD3, CD8 and CD4. Both preparations contained >94% CD3+CD4+ T cells and (in total) less than 0.5% contaminating
CD11c+, CD14+ or CD8+ cells. (D) Principal Component Analysis (PCA) plot depicting common proteomic patterns in
resting/resting CD4+ T cells and activated CD4+ T cells. (E,F) S-curve graphs showing the distribution of fold-changes in
Donors 1 and 2 and the top differentially expressed proteins.
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Figure 2. Protein expression levels of (A) CD4 (B) FOXP3 (C) IL2RA (CD25), (D) HLA-DRA, (E) CD40LG, (F) CD69 in
resting (R) and activated (A) primary CD4+ T cells from Donor1 (D1) and Donor2 (D2). Enriched Biological Processes
from proteins upregulated in (G) Donor 1 and (H) Donor 2 in response to activation. Heatmaps depicting (I) CD4+ T cell
activation markers, (J) Regulators of T cell activation in CD4+ T cells and (K) Markers of T cell lineages. Genesets for
comparison of significantly changing proteins were obtained from MSigDB.
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Furthermore, a detailed comparison of proteins differentially expressed in activated
CD4+ T cells compared to resting CD4+ T cells was carried out. Gene sets derived from
the Molecular Signatures Database (MSigDB) were used to obtain insights into signaling
in the course of T cell activation and modulating effector lineage differentiation. Proteins
involved in T cell activation, mainly including transcription factors (basic leucine zipper
ATF-like transcription factor (BATF), forkhead box P3 protein (FOXP3), T-box transcription
factor 21 (TBX21/T-Bet), interferon regulatory factor 4 (IRF4), among others were found to
be overexpressed in activated cells of both donors. On the contrary, proteins, including
BCL3 transcription coactivator (BCL3), zinc finger, and BTB domain containing 7B (ZBTB7B)
revealed mixed patterns of expression between the two donors. Notably, the expression
of SLAMF6 was decreased after activation (Figure 2I). Among the regulators of T-cell
activation, we observed proteins belonging to the CD family (CD47, CD74, CD81, CD70,
and CD40LG), members of TNF receptor superfamily (TNFRSF1B, TNFRSF18), interferon
regulatory factor 4 (IRF4) and inducible T cell costimulator (ICOS) to be overexpressed in
activated CD4+ T cells from both donors (Figure 2J).On the contrary, interleukin 7 receptor
(IL7R), CD300A, spleen associated tyrosine kinase (SYK), and NFKB activating protein
(NKAP) were decreased in activated CD4+ T cells compared to their resting counterparts.
Furthermore, we assessed the expression of Th cell lineage markers which suggested
similar expression patterns across the donors with a mixed lineage phenotype observed
in both donors (Figure 2K). Notably, three proteins constituting Th1 cell hallmark cy-
tokine Interferon-γ (IFNG), signal transducer, and activator of transcription 4 (STAT4) and
(T-bet/TBX21) and Treg markers -transcription factors STAT5A, STAT5B, and FOXP3 and
TGFB1 effector cytokine were increased after activation were increased consistently in both
donors after activation.

2.3. Activation of CD4+ T Cells Influences Processes and Signaling Pathways

Kinases and phosphatases constitute important classes of proteins mediating cell
signaling and could provide mechanistic insights into T cell activation. Towards this
end, we explore the expression profile of protein kinases and phosphatases in resting and
activated CD4+ T cells (Figure 3A,B). Protein kinases including Aurora kinase B (AURKB),
cyclin dependent kinases (CDK1 and CDK2), RIO kinases (RIOK1 and RIOK2), checkpoint
kinase 1 (CHEK1), Janus kinase 3 (JAK3), serine/threonine kinase 17b (STK17B) and
SRSF protein kinase 1 (SRPK1) were significantly upregulated (p-value < 0.05) 72 h post-
activation in CD4+ T cells from both donors. On the contrary, cyclin dependent kinase 13
(CDK13), TBC1 domain containing kinase (TBCK), members of the MAP kinase family
(MAPKAPK3, MAP3K2, and MAPK9), microtubule affinity regulating kinase 3 (MARK3),
SNF related kinase (SNRK), ribonuclease L (RNASEL) and spleen associated tyrosine
kinase (SYK) were significantly downregulated in activated CD4+ T cells from both donors.
In general, more protein kinases were upregulated in activated CD4+ T cells from donor 1
compared to donor 2. Protein kinases such as mitogen-activated protein kinase 8 (MAPK8),
calcium/calmodulin-dependent protein kinase ID (CAMK1D), mitogen-activated protein
kinase 6 (MAPK6), PEAK1 related, kinase-activating pseudokinase 1 (PRAG1), TRAF2
and NCK interacting kinase (TNIK), misshapen like kinase 1 (MINK1) and ribosomal
protein S6 kinase A4 (RPS6KA4) were only found to be upregulated in activated CD4+ T
cells from donor 1 suggesting better activation of these cells. Among the phosphatases,
the non-protein phosphatase- myotubularin related protein 9 (MTMR9) was found to be
upregulated in activated CD4+ T cells, whereas the protein tyrosine phosphatase receptor
type A (PTPRA) was found to be downregulated in activated CD4+ T cells from both
donors. A significant decrease in the expression of protein tyrosine phosphatase receptor
type J (PTPRJ), myotubularin related protein 12 (MTMR12), and synaptojanin 2 (SYNJ2)
was observed in activated CD4+ T cells from donor 2. These suggest that phosphatases
were less impacted after activation in both donors.
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Figure 3. Heatmaps depicting changes in (A) protein kinases and (B) protein in CD4+ T cells in response to activation.
Genesets for comparison of significantly changing proteins were obtained from MSigDB. (C) Significantly changing signaling
pathways in resting and activated CD4+ T cells after pathway enrichment using Reactome Pathways.
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Pathway enrichment analysis of proteins differentially expressed in activated CD4+
T cells from both the donors revealed several pathways, such as Interferon signaling, cell
cycle pathways, and nucleotide metabolism, to be enriched in activated CD4+ T cells
(Figure 3C). This is in line with reports suggesting increased cytokine-mediated differ-
entiation and increased proliferation of activated CD4+ T cells. We further assessed the
expression of proteins involved in adaptive immune response, including cytokines, cy-
tokine receptors, hypoxia and ROS markers (Figure S3). We observed an overall increase
in the extent of expression of cytokines and receptors in activated CD4+ T cells with the
exception of interleukin 7 receptor (IL7R) which was downregulated. Protein markers of
hypoxia, including perilipin 2 (PLIN2), high density lipoprotein binding protein (HDLBP),
jumonji domain containing 6, arginine demethylase and lysine hydroxylase (JMJD6), hex-
okinase 2 (HK2), ilvB acetolactate synthase like (ILVBL), solute carrier family 2 member 1
(SLC2A1), and prolyl 4-hydroxylase subunit alpha 1 (P4HA1), were found to be upregu-
lated in activated CD4+ T cells of both donors. Further, ROS markers apolipoprotein E
(APOE) was found to be increased in expression in activated T cells while neutrophil
cytosolic factor 2 (NCF2), ring finger protein 7 (RNF7), myeloperoxidase (MPO), and
thioredoxin reductase 2 (TXNRD2) were found to be decreased. In summary, activated
CD4+ T cells showed classical markers of adaptive immune responses, while the increased
hypoxia markers in response to activation may be a result of increased nutritional needs
of activated CD4+ T cells. In terms of cellular metabolism, proteins/enzymes involved in
amino acid and lipid metabolism were in general upregulated after activation, whereas a
mixed expression pattern between resting and activated CD4+ T cells were observed for
oxidative phosphorylation and glycolysis/gluconeogenesis (Figure S4). Notably, acyl-CoA
oxidase 1 (ACOX1), holocytochrome c synthase (HCCS), 3-hydroxy-3-methylglutaryl-CoA
synthase 1 (HMGCS1), ELOVL fatty acid elongase 5 (ELOVL5), retinol saturase (RETSAT),
isopentenyl-diphosphate delta isomerase (IDI1), fatty acid synthase (FASN) corresponding
to lipid metabolism and folylpolyglutamate synthase (FPGS), methionyl-tRNA synthetase 2,
mitochondrial (MARS2), fumarylacetoacetate hydrolase (FAH), and tryptophanyl-tRNA
synthetase 1 (WARS), corresponding to amino acid metabolism were found to be upregu-
lated in activated CD4+ T cells. Several proteins belonging to cellular processes such as
cell cycle, apoptosis, autophagy, and phagocytosis were upregulated in activated CD4+ T
cells indicating changes in cellular activity and cell proliferation in response to activation
(Figure S5).

2.4. Activation of CD4+ T Cells Influences Protein Signaling Networks

Interactome analysis of proteins upregulated during activation of primary human
CD4+ T cells was carried out on our datasets to identify critical regulatory hubs. The
protein-protein interaction network was generated from the set of proteins upregulated in
activated CD4+ T cells from both donors compared to non-activated CD4+ T cells using
Cytoscape, and network topology parameters were calculated (Figure 4, Table S2). The be-
tweenness centrality and degree measures were used to visualize the network and identify
the highly connected nodes. Proteins with high betweenness centrality measures included
proteins with known roles in T cell activation such as transcription factors- interferon regu-
latory factor 1 (IRF1), forkhead box P3 (FOXP3), Interferon-γ (IFNG), as well as marker of
proliferation Ki-67 (MKI67), cell cycle proteins including cyclin dependent kinase 1 (CDK1),
cyclin dependent kinase 2 (CDK2), cell cycle associated protein 1 (CAPRIN1) and aurora
kinase B (AURKB). Interestingly several proteins not previously known in the context of
T cell activation including RIO kinase 2 (RIOK2), cell division cycle 20 (CDC20), tRNA
methyltransferase 1 (TRMT1), ubiquitin conjugating enzyme E2 L6 (UBE2L6), clusterin
(CLU) and mini-chromosome maintenance proteins (MCM) including MCM2, MCM3,
MCM4, MCM5, MCM5, and MCM7 also showed a significant and high betweenness cen-
trality measures probably representing novel regulatory hubs of CD4+ T cell activation
and need to be investigated further.
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Figure 4. Network analysis of proteins upregulated in primary activated CD4+ T cells in both donors. The Network
analysis was carried out using Cytoscape, and network topology properties were calculated using NetworkAnalyzer. The
betweenness centrality and degree measures were used to visualize the relationship between nodes. Larger sizes of nodes
from high betweenness centrality suggest potential regulatory hubs.
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2.5. Changes in Expression Levels of Immune Checkpoint Proteins in Activated/Resting CD4+
T Cells

The complete activation of CD4+ T cells depends on signals from the TCR (signal 1)
and antigen-independent co-stimulatory signals (signal 2). In our set-up, we provided
both signal 1 (anti-CD3 stimulation) and signal 2 (anti-CD28 stimulation) to primary CD4+
T cells for 72 h. However, CD4+ T cell activation is tightly regulated by a range of co-
stimulatory and co-inhibitory signaling receptors known as immune checkpoints. Immune
checkpoints act as regulators of the immune system mediating interactions between T cells
and other cells, such as APCs or tumor cells [5]. These inhibitory or stimulatory checkpoint
pathways attenuate T cell activation and are essential for self-tolerance mechanisms and
regulate the adaptive immune response [37,38]. Immune checkpoints are considered as
important immunotherapy targets, and checkpoint inhibitors against CTLA4, PD-1/PD-L1
have been approved for clinical use [39]. Of the 16 known immune checkpoints [38,40], ten
were identified in the current dataset (Figure 5). These included stimulatory checkpoint
molecules such as CD27 (TNFRSF7), CD28, CD40LG (CD40L), CD96 (Part of TIGIT/CD96),
inducible T cell costimulator (ICOS), TNF receptor superfamily members-TNFRSF4/OX40
and TNFRSF18/GITR. Among the inhibitory checkpoint molecules, cytotoxic T-lymphocyte
associated protein 4 (CTLA4), lymphocyte activating 3 (LAG3), and V-set immunoregula-
tory receptor (VSIR/VISTA/PD-1H) were identified.

Amongst these, CD27 (TNFRSF7), CD28, and VSIR (VISTA/PD-1H) proteins were
found to be expressed at similar levels in both resting and activated CD4+ T cells, CD96
was expressed at higher levels in resting compared to activated CD4+ T cells. Interestingly,
PD-1 (PDCD1) was neither detected in resting nor activated CD4+ T cells in the current
study. This may be because PD-1 is generally strongly expressed in late-stage exhausted
T cells, such as those in the tumor environment and was not detected in our setup with
strongly activated T cells at an early stage (72 h). However, expression of the stimulatory
checkpoint molecules CD40LG, ICOS, TNFRSF18 and TNFRSF4 (OX40) as well as the
inhibitory immune checkpoint regulators CTLA4 and LAG3 was significantly upregulated
72 h post-activation in CD4+ T cells. These results indicate that CD4+ T cells are highly
responsive for distinct positive co-stimulatory signals 72 h post-activation, but that at the
same time, expression of certain inhibitory checkpoint molecules is induced and counter-
acts the activation process.

2.6. Comparison of Primary T Cell Data with Proteomes of Human Lymphoblastic T Cell Lines and
Published Primary Human and Mouse CD4+ T Cell Datasets

In vitro cell models such as SUP-T1 and Jurkat cells are widely employed to study
T-cell mediated signaling mechanisms and are in general amenable to gene manipulation
techniques. However, there is a paucity of information on the extent of correlation of
protein expression in SUP-T1 cells with protein expression in primary CD4+ T cells. To
achieve this, we generated the proteome profile of SUP-T1 cells. As these cells do not
express a functional TCR on their surface, they were analyzed in a resting state (no TCR acti-
vation prior to analysis). LC-MS/MS analysis resulted in the generation of 167,863 peptide
spectrum matches (PSMs), which mapped 26,111 peptides corresponding to 4815 proteins
(Table S3). Comparison of the proteomic profiles of SUP-T1 cells and Jurkat A 3 cells
obtained from a published dataset [36] with the data from resting primary CD4+ T cells
revealed 2925 common proteins (~59%) (Figure 6A, Table S4). Gene ontology-based enrich-
ment of this subset revealed housekeeping processes such as RNA processing, translation
initiation, and nuclear transport. We further assessed gene ontology-based enrichment for
the proteins that were exclusive to each of the cell types. The top enriched processes unique
to resting primary CD4+ T cells included proteins involved in interferon gamma-mediated
signaling pathway and T cell activation processes, suggesting that these processes were
less represented in SUP-T1 and Jurkat cells. CD4 protein was found to be expressed in
all cell types. Further examination into CD3 (a T cell co-receptor) expression revealed
that CD3D and CD3E subunits were found to be expressed in all three cell types, while
CD3G was found to be expressed in primary resting T cells and Jurkat but not SUP-T1 cells.
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However, CD28 expression was identified in resting and SUP-T1 cells, but not Jurkat cells
(Table S3). In addition to CD4, SUP-T1 cells also expressed CD8 (CD8B) albeit at lower
levels. These findings suggest that there is a difference between T cell lines which may
affect the phenotype under study.

Figure 5. An illustration representing expression profiles of immune checkpoint regulators in resting and activated primary
CD4+ T cells. The inset graphs for each protein provide log2(intensity) value-based abundances for resting (R) and
CD3/CD28-activated (A) CD4+ T cells from Donor1 (D1) and Donor2 (D2). Legends indicate Significant (*, FDR ≤ 0.05),
Not significant (NS), Not detected (ND).
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Figure 6. (A) Comparison between proteomic profiles of primary resting CD4+ T cells, SUP-T1 cells and Jurkat cells
(Wu et al., 2007) and Gene ontology-based classification of biological processes of common proteins and proteins distinct to
each cell type (B) Comparison of identified proteins and (C). Correlation matrix between previously published dataset on
mouse (Howden et al.) and human CD4+ T cells (current study). Comparison of lists of identified proteins with previous
studies on (D) Resting and (E) Activated human CD4+ T cells. (F) Correlation matrix for proteomic profiles of resting and
activated CD4+ T cells from the current study, and previously published studies including Rieckmann et al., Gerner et al.,
and Mitchell et al.
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To assess the extent of similarities/dissimilarities across published studies on human
and mouse CD4 T cell datases, we performed a series of comparisons across datasets.
Although a substantial overlap was observed between proteomic profiles of human resting
and activated CD4+ T cells with a previous study on proteomic analysis of mouse resting
CD4+ T cells and Th1 cells [41] (Figure 6B, Table S5), a closer inspection of the pattern of
expression demonstrated a poor correlation. This strongly indicates considerable species-
level differences in the protein expression profiles of both resting and activated CD4+ T
cells (Figure 6C).

Similar findings were also observed upon comparison of our dataset with previ-
ously published proteomic datasets on human CD4+ T cells [30,42,43] (Tables S6 and S7).
A large overlap of identified proteins was observed across both resting and activated
CD4+ T cells irrespective of the generation of mass spectrometers used (Figure 6D,E).
However, correlation matrices indicated a considerable heterogeneity in protein expres-
sion profiles between the different datasets. Overall, the proteomic profile provided by
Rieckmann et al. [43] showed more similarity to the current study, while the proteome
profiles from Gerner et al. [30] and Mitchell et al. [42] showed lower levels of correlation
(Figure 6F). Taken together, our analysis demonstrates heterogeneity across individuals
and the technology employed strongly affect the proteome dynamics of T-cells.

3. Discussion

Primary human CD4+ T cells have been studied extensively pertaining to their role in
adaptive immunity. Several omics-based studies have characterized the proteome of CD4+
T cells. Despite these cells being studied in detail, the protein expression dynamics as well
as signaling mechanisms operating in these cells during steady-state and upon induction
of activation is not entirely understood. To identify changes in the protein expression
profiles of resting and TCR-activated CD4+ T cells, we performed a label-free quantitative
proteomic analysis on primary human CD4+ T cells derived from two donors. We also
carried out the proteomic analysis of SUP-T1 cells, an in vitro T cell model cell line widely
used in the field to compare and contrast proteome profiles of primary CD4+ T cells. Our
study indicated that during the course of CD4+ T cell activation, significant changes in the
protein expression profile occur. We identified several proteins that were previously found
to be differentially expressed in response to stimulation. Importantly, markers of CD4+ T
cell activation along with their regulators and Th1-, Th2-, Th17-, and Treg-specific markers
were found to be upregulated, suggesting the presence of potential transient hybrid cell
types. This has been previously suggested by logical modeling-based simulations on T
cell differentiation [44]. These findings suggest heterogeneity in CD4+ T helper cell types
during activation and differentiation into terminally differentiated CD4+ T effector cells.
This heterogeneity may arise due to varying stimuli that the donors were exposed to
throughout life, the in vitro condition of cells, the single timepoint used in the study-72 h,
which probably represents an intermediate phase where the T cells may not be terminally
differentiated into effector lineages. Further, the in vitro conditions used may not mimic
the in vivo state where polarizing cytokine signals would usually arise from APCs.

Further, several protein kinases, cytokines, MAP kinases, and markers of adaptive
immune response, ROS, and hypoxia were found to be upregulated. Interestingly, proteins
belonging to lipid metabolism and amino acid metabolism were found to be upregulated
in activated CD4+ T cells. This can be possibly be explained by the increasing cellular
metabolic needs due to CD4+ T cell activation and proliferation. In addition, several
proteins involved in amino acid synthesis and transport were upregulated in activated
CD4+ T cells, indicating that uptake and utilization of nutrients are associated with T
cell differentiation and function. Our findings are in concordance with previous studies
suggesting amino acid transporters are essential for the normal differentiation and func-
tioning of T cells [45–49]. Previous reports have shown that CD4+ T cell activation results
in substantial remodeling of the mitochondrial proteome that, in turn, generates special-
ized mitochondria with significant induction of the one-carbon metabolism pathway [50].
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Defective one-carbon metabolism has been shown to result in defective resting T cell acti-
vation in aged mice [51]. In the current study, we identified several proteins belonging to
the One carbon pool by folate pathway induced in CD4+ T cells after activation, includ-
ing dihydrofolate reductase (DHFR), methylenetetrahydrofolate dehydrogenase (NADP+
dependent) 1 like (MTHFD1L), methylenetetrahydrofolate dehydrogenase (NADP+ depen-
dent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2), and thymidylate synthetase
(TYMS). This confirms the previous findings of mitochondrial remodeling after CD4+ T
cell activation.

An additional objective of this study was to compare proteomes between primary
CD4+ T cells and commonly used T cell lines including Jurkat and SUP-T1 to see if the
biological mechanisms in these cell models mimic the primary CD4+ T cells. Comparison
of the lists of identified proteins across the three cell types showed the majority of the
proteome expressed in these cells was common, driving essential processes of transcription,
translation, and transport. However, each of the cells also expressed proteomes exclusive to
each cell type, which might be caused due to varying proteomic coverage and depth in the
different experiments. Differences were observed in terms of expression of T cell activators
-CD3 and CD28 across these cell types, with CD3G not being identified in SUP-T1. This is
in accordance with previous reports showing SUP-T1 cells to be CD3-negative [52,53]. It is
widely known that Jurkat cell lines are CD28+, and it not being detected in the previous
proteomics data suggests low proteome coverage as a possible cause. Both SUP-T1 and
Jurkat cell lines exhibited enrichment of processes such as double-strand break repair,
histone modification, cell junction organizations, which could be due to the malignant
nature of these lymphoblastic cell lines. In comparison, primary CD4+ T cells showed
lower enrichment of repair processes. It can be concluded that these cell lines are essentially
similar in terms of shared proteomes and can serve as useful models of resting primary
CD4+ T cells. However, prior knowledge of the proteomes of these cell lines is desirable to
study specific biological processes. Comparison of our data on CD4+ T cells with proteomic
data from mouse CD4+ T cells showed lower levels of correlation, suggesting interspecies
differences in CD4+ T cell activation, which may lead to poor translatability of findings
of mouse-based experiments to the physiological state of T cell activation in humans.
However, this needs to be validated and explored further.

We also identified heterogeneity in the levels of CD4+ T cell activation markers
present in the cells from two donors. In our study, cells from donor 1 were observed
to show more markers of activation, suggesting better activation. Further, resting cells
from Donor 1 showed higher levels of protein kinases and phosphatases. This could be
attributed to a higher degree of variability among primary donors with respect to their age,
immune status, and recent exposure to infection. Comparison of CD4+ T cell proteomic
profiles with other previously published studies also indicated considerable heterogeneity
in proteomic expression profiles of both resting and activated T cells. The heterogeneity
also extended to important regulatory molecules of the adaptive immune response, such
as immune checkpoints.

We identified several potential regulatory hubs of CD4+ T cell activation using network
analysis. These included proteins involved in inflammatory response, including VTN;
CD40LG; IFNG; IL2RA; FN1; IL2RG; TNFRSF1B. Interestingly, several proteins associated
with the cell cycle, including CDK1, CDK2, CAPRIN1, CCNB1, and CDC20, are likely to
be potentially regulatory hubs of CD4+ T cell activation. Previous studies have suggested
that cell cycle progression and cytokine signaling are closely linked during CD4+ effector
T cell differentiation [54–59]. The upregulation of proteins involved in DNA replication
such as MCM2-7 POLD3, POLA1, PCNA, and PRIM1; pyrimidine metabolism proteins
such as RRM1; UCK2; RRM2; TK1; TYMS; TYMP; and the marker KI67 (MKI67) during
activation is explained the increased rate of cell proliferation. Protein kinases such as
RIOK2, AURKB, and PRKAB1 were found to be significantly upregulated in our datasets
after activation of CD4+ T cells. Among these, RIOK2 and AURKB were found to have
potential roles as regulatory hubs from the network analysis. Both RIOK2 and AURKB are
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associated with cell cycle activities. Aurora kinase B (AURKB) has been shown to regulate
CD28-dependent T cell activation and proliferation [60]. RIO kinase 2 (RIOK2) is one of the
members of the atypical protein kinase families [61]. RIOK2 is poorly studied compared to
the other kinases; therefore, the biological mechanisms mediated by it are not well known.
Over the years, a few papers have explored the role of RIOK2 in the context of the cell
cycle. A study by Read and colleagues investigated a Drosophila glioblastoma model
and discovered the Akt-dependent overexpression of RIOK1 and RIOK2 in glioblastoma
cells [62]. Further, the study also found that the decreased expression of these kinases
caused aberrant Akt signaling and resulted in cell cycle and apoptosis [62]. A recent
study identified RIOK2 silencing in glioma cells inhibited cell migration and invasion [63].
RIOK2 has also been found to be essential for ribosome biogenesis [64,65], which in turn is
regulated in a cell cycle-dependent fashion [66]. However, there are no previous reports of
RIOK2 being associated with T cell activation. In a previous paper, it was shown that PLK1
phosphorylates and activates RIOK2 and this in turn leads to mitotic progression [67]. Polo-
like kinase 1 (PLK1) has well-known roles in T cell function [68,69]. We thus hypothesize
that RIOK2 might be involved in the division and function of T cells function. While the
modulatory role of several of these potential regulatory hubs in T cell activation is well
known, others such as RIOK2 need to be studied further.

4. Materials and Methods
4.1. Cells

Buffy coats from healthy blood donors were received from the Blood Bank (St Olav’s
Hospital, Trondheim) with approval by the Regional Committee for Medical and Health
Research Ethics (REC Central, Norway, NO. 2009/2245). Peripheral Blood Mononuclear
Cells (PBMCs) were isolated from Buffy coats by density gradient centrifugation (Lympho-
prep, Axis-shield PoC AS, Oslo, Norway). CD4+ T cells were isolated from PBMCs by a
magnetic bead “negative” isolation procedure using the CD4+ T Cell Isolation Kit (Miltenyi
Biotec, Bergisch Gladbach, Germany) and LS columns (Miltenyi Biotec, Bergisch Gladbach,
Germany). CD4+ T cell purity was assessed by flow cytometry using anti-CD4 Alexa 700
(eBioscience, San Diego, CA, USA) and anti-CD3 Brilliant Violet (BV) 785 (BioLegend,
San Diego, CA, USA) antibody staining. Data were acquired on a BD LSRII flow cytometer
and analyzed using FlowJo software (FlowJo, LLC, Ashland, OR, USA). For both donors,
CD4+ T cell purity was >94% and cell preparations contained less than 0.1% CD8+ cells and
less than 0.5% cells CD11c+ or CD14+ cells of myeloid origin (Figure 1B,C). SUP-T1 human
T lymphoblast cells (ATCC) were cultured in RPMI 1640 (Gibco, Dublin, Ireland) supple-
mented with 10% FBS and penicillin/streptomycin (Thermo Fisher Scientific, Rockford,
IL, USA).

4.2. CD4+ T Cell Activation

For the unactivated (resting) CD4+ T cell samples, 1 × 107 CD4+ T cells from both
donors were washed three times with PBS before the pellet was shock-frozen in liquid
nitrogen and stored at −80 ◦C. For the activated CD4+ T cell samples, 1 × 107 CD4+ T
cells from both donors were activated in anti-CD3 coated plates (clone OKT3, eBioscience,
5 µg/mL, 1 h) in the presence of 1 µg/mL anti-CD28 (clone CD28.2, eBioscience). CD4+ T
cells were cultured for 72 h in RPMI 1640 (Sigma-Aldrich, Darmstadt, Germany), supple-
mented with 10% pooled human serum (The Blood Bank, St Olav’s Hospital, Trondheim,
Norway) at 37 ◦C and 5% CO2. CD4+ T cells were washed three times with PBS before the
pellet was shock-frozen in liquid nitrogen and stored at −80 ◦C.

4.3. Sample Preparation of CD4+ T Cell for Proteomics

The cell lysates were reconstituted in 300 µL lysis buffer containing 4% sodium dodecyl
sulfate (SDS) and 50 mM triethyl ammonium bicarbonate (TEABC) (Sigma-Aldrich). They
were sonicated three times for 10 s on ice, followed by heating at 90 ◦C for 5 min. The
lysate was further centrifuged at 12,000 rpm for 10 min. The concentration of protein
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was determined using bicinchoninic acid assay (BCA) (Thermo Fisher Scientific). The
samples were subjected to in-solution trypsin digestion and subjected to strong cation
exchange-based fractionation

Briefly, 200 µg of protein lysate of resting and activated CD4 were considered for
trypsin digestion, where it was reduced by incubating in 10 mM dithiothreitol (DTT)
(Sigma-Aldrich) at 60 ◦C for 20 min and alkylated using 20 mM iodoacetamide (IAA)
Edited at room temperature for 10 min. This was followed by acetone precipitation for
6 h, where the pellet was dissolved in 50 mM TEABC. The lysate was then subjected for
digestion using L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK) treated trypsin
(Worthington Biochemical Corporation, Lakewood, NJ, USA) at a final concentration of
1:20 (w/w) at 37 ◦C overnight (~16 h). SCX fractionation was carried out as described
previously [70].

4.4. Tandem Mass Spectrometry (MS/MS) Analysis

The digested peptides were analyzed on Orbitrap Fusion Tribrid mass spectrometer
(Thermo Scientific, Bremen, Germany) interfaced with Easy-nLC-1200 (Thermo Scientific,
Bremen, Germany). Each fraction was reconstituted in 0.1% formic acid and loaded onto
the trap column (75 µm × 2 cm, nanoViper, 3 µm, 100 A◦) filled with C18 at a flow
rate of 4 µL/min with Solvent A. The peptides were then resolved onto the analytical
column (15 cm × 50 µm, nanoViper, 2 µm) for 120 min. Data were acquired by using data-
dependent acquisition mode at a scan range of 400–1600, in positive mode with a maximum
injection time of 55 ms using an Orbitrap mass analyzer at a mass resolution of 120,000.
MS/MS analysis was carried out at a scan range of 400–1600. Top ten intense precursor
ions were selected for each duty cycle and subjected to higher collision energy dissociation
(HCD) with 35% normalized collision energy. The fragmented ions were detected using
Orbitrap mass analyzer at a resolution of 120,000 with maximum injection time of 200 ms.
Internal calibration was carried out using a lock mass option (m/z 445.1200025) from
ambient air.

4.5. Bioinformatics Analysis of Mass Spectrometry Data

The raw data obtained from mass spectrometry analysis were searched against the
human UniProt protein database (20,972 sequences, downloaded from ftp://ftp.uniprot.
org/ on 3 July 2019) using MaxQuant (v1.6.10.43,) search algorithm. Trypsin was specified
as the protease, and a maximum of two missed cleavages was specified. N-terminal
protein acetylation and oxidation of methionine were set as variable modifications, while
carbamidomethylation of cysteine was set as a fixed modification. The peptide length was
set between 8–25 and precursor, and fragment mass tolerances were specified as 20 ppm
each. Decoy database search was used to calculate False Discovery Rate (FDR), which was
set to 1% at PSM, protein, and peptide levels. The search results from MaxQuant were
processed and label-free protein quantitation using Perseus (v. 1.6.2.2, https://maxquant.
net/perseus/) [71]. Briefly, intensity values were filtered, log-transformed, and fold-change
calculations were performed. Perseus was also used to generate volcano and PCA plots.

Hypergeometric enrichment-based gene ontology and pathway analysis were car-
ried out with R (R studio v. 1.2.1335, Bioconductor v 3.9.0) scripts using clusterProfiler
(v. 3.12.0) [72] and Reactome pathways [73] with ReactomePA package (v. 1.28.0) [74]. The
pathway enrichment parameters included 0.05 as p-value cut-off, Benjamini-Hochberg
correction based p-value adjustment, minimum gene set size of 10, and q-value cut-off of
0.2. Pathways were plotted in R using ggplot2 package (v. 3.3.0, https://cran.r-project.org/
web/packages/ggplot2/).

The Gene Ontology (GO) enrichment for Biological processes was carried out us-
ing R with clusterProfiler. The GO enrichment parameters included 0.05 as p-value
cut-off, Benjamini-Hochberg correction based p-value adjustment, minimum gene set
size of 10. Gene lists for functions such as Cell cycle, phagocytosis, autophagy, apopto-
sis, hypoxia, adaptive immune response, and T cell activation were obtained from the

ftp://ftp.uniprot.org/
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Molecular Signatures Database (MSigDB, v. 7.0, https://www.gsea-msigdb.org/gsea/
msigdb) [75]. Gene lists for metabolism was obtained from KEGG (https://www.genome.
jp/kegg/), while genes list for reactive oxygen species was compiled from the litera-
ture [76]. Protein kinase and phosphatase lists were obtained, as described previously [77].
Immune checkpoints receptors and their ligands were compiled from the literature [38,40]
and compared with the data from this study. Heatmaps were drawn using Morpheus
(https://software.broadinstitute.org/morpheus/) with Euclidean complete linkage-based
hierarchical clustering. Networks were generated using StringApp [78] in Cytoscape (ver-
sion 3.7.1) [79] as previously described [80]. Briefly, proteins that were upregulated in
both donors and significant were filtered and used to generate networks. The network
properties were calculated using NetworkAnalyzer in Cytoscape [81], and the network
was visualized based on betweenness centrality and degree values.

4.6. Isolation of SUP-T1 Cell Proteome and MS/MS Analysis

The cell lysates of SUP-T1 was reconstituted in 300 µL lysis buffer containing 4%
sodium dodecyl sulfate (SDS) and 50 mM triethyl ammonium bicarbonate (TEABC). It was
sonicated three times for 10 s on ice, followed by heating at 90 ◦C for 5 min. The lysate was
further centrifuged at 12,000 rpm for 10 min. The concentration of protein was determined
using bicinchoninic acid assay (BCA), giving a yield of 11.3 µg/µL. Protein lysate of
200 µg was considered for trypsin digestion where it was reduced by incubating in 10 mM
dithiothreitol (DTT) at 60 ◦C for 20 min and alkylated using 20 mM iodoacetamide (IAA) at
room temperature for 10 min. This was followed by acetone precipitation for 6 h where the
pellet was dissolved in 50 mM TEABC. The lysate was then subjected for digestion using
L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK) treated trypsin (Worthington
Biochemical Corporation, Lakewood, NJ, USA) at a final concentration of 1:20 (w/w) at
37 ◦C overnight (~16 h). SCX fractionation was carried out as described previously [70]. The
digested peptides were analyzed on Orbitrap Fusion Tribrid mass spectrometer (Thermo
Scientific, Bremen, Germany) interfaced with Easy-nLC-1200 (Thermo Scientific, Bremen,
Germany). Each fraction was reconstituted in 0.1% formic acid and loaded onto the trap
column (75 µm × 2 cm, nanoViper, 3 um, 100A◦) filled with C18. The peptides were then
resolved onto the analytical column (15 cm × 50 µm, nanoViper, 2 µm) for 120 min at a
flow rate of 250 nL/min. Data were acquired by using data-dependent acquisition mode at
a scan range of 400–1600, in positive ion mode with a maximum injection time of 10 ms
using an Orbitrap mass analyzer at a mass resolution of 120,000. MS/MS analysis was
carried out at a scan range of 110–1800. MS/MS analysis was carried out in Top Speed
mode, and the precursor ions were subjected to higher collision energy dissociation (HCD)
with 33% normalized collision energy. The fragmented ions were detected using Orbitrap
mass analyzer at a resolution of 30,000 with maximum injection time of 200 ms. Internal
calibration was carried out using a lock mass option (m/z 445.1200025) from ambient air.
Mass spectrometry derived data was searched against Human RefSeq 81 protein database
in Proteome Discoverer 2.1 (Thermo Scientific, Bremen, Germany) using SEQUEST and
Mascot (version 2.5.1, Matrix Science, London, UK) search algorithms. The parameters
included trypsin as a proteolytic enzyme with maximum two missed cleavage where
cysteine carbamidomethylation was specified as static modification and acetylation of
protein N-terminus and oxidation of methionine was set as dynamic modifications. The
length of 7 amino acids was set as the minimum peptide length. The search was carried out
with a precursor mass tolerance of 10 ppm and fragment mass tolerance of 0.05 Da. The
data were searched against the decoy database with a 1% FDR cut-off at the peptide level.

4.7. Comparison with Published Datasets

We carried out comparisons of the data from this study with previously published
datasets to gain a better understanding of the proteomic landscapes of T cells. We down-
loaded protein expression datasets of published studies and mapped them to gene sym-
bols using a combination of g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) [82], bioDB-
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net (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) [83] and UniProt ID mapping
(https://www.uniprot.org/uploadlists/). Orthology conversion of mouse-to-human pro-
tein accessions was carried out using g:Orth function of g:Profiler and Homologene
(https://www.ncbi.nlm.nih.gov/homologene) [84]. We compared proteomes of resting
primary CD4+ T cells and SUP-T1 cells from the current dataset with a previously published
proteome profile of Jurkat cells [36]. Hypergeometric enrichment-based gene ontology
and pathway analysis were carried out with R (R studio v. 1.2.1335, Bioconductor v. 3.9.0)
scripts using clusterProfiler (v. 3.12.0).

The datasets were subjected to z-score-based normalization using the scale function of
base R (v. 3.6.0) and merged to create matrices. The datasets were then subjected to quantile
normalization using normalizeBetweenArrays feature of limma (v. 3.40.6) to account for
data distribution skewness between multiple datasets.

4.8. Data Availability

Mass spectrometry-derived raw data were deposited to the ProteomeXchange Con-
sortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner reposi-
tory [85,86]. The data can be accessed using the dataset identifiers PXD015872 for CD4+ T
cell data and PXD021272 for SUP-T1 cell data.

5. Conclusions

The current study provides a new high-resolution proteomic snapshot of resting
CD4+ T cells and after 72 h of activation by TCR, together with a comparison to the pro-
teome of T cell lines and resting/activated human/mouse CD4+ T cells. We confirmed
several known T-cell activation-related processes such as IL-2 response, metabolic and
signaling changes, cell cycle induction, differentiation into effector cells, among others.
The current dataset also provides a resource on checkpoint molecule expression (stimula-
tory/inhibitory) at this differentiation stage and implicates some proteins such as RIOK2
that previously have not been associated with CD4+ T cell activation. Thus, the data
generated from our study may contribute to a better understanding of the proteome trans-
formations in primary CD4+ T cells during T cell activation and the comparability of the
proteomes of primary human CD4+ T cells with T cell lines or mouse T cells. The data
from our study here, together with other studies, may provide a foundation for developing
therapeutic approaches to modulate CD4+ T cell functions.
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