
1Scientific Reports | 6:39294 | DOI: 10.1038/srep39294

www.nature.com/scientificreports

Identification of cancer risk 
lncRNAs and cancer risk pathways 
regulated by cancer risk lncRNAs 
based on genome sequencing data 
in human cancers
Yiran Li1,*, Wan Li1,*, Binhua Liang2, Liansheng Li1, Li Wang1, Hao Huang1, Shanshan Guo1, 
Yahui Wang1, Yuehan He1, Lina Chen1 & Weiming He3

Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread 
to other parts of the body. The complexity of cancer can be reduced to a small number of underlying 
principles like cancer hallmarks which could govern the transformation of normal cells to cancer. 
Besides, the growth and metastasis of cancer often relate to combined effects of long non-coding RNAs 
(lncRNAs). Here, we performed comprehensive analysis for lncRNA expression profiles and clinical data 
of six types of human cancer patients from The Cancer Genome Atlas (TCGA), and identified six risk 
pathways and twenty three lncRNAs. In addition, twenty three cancer risk lncRNAs which were closely 
related to the occurrence or development of cancer had a good classification performance for samples 
of testing datasets of six cancer datasets. More important, these lncRNAs were able to separate 
samples in the entire cancer dataset into high-risk group and low-risk group with significantly different 
overall survival (OS), which was further validated in ten validation datasets. In our study, the robust 
and effective cancer biomarkers were obtained from cancer datasets which had information of normal-
tumor samples. Overall, our research can provide a new perspective for the further study of clinical 
diagnosis and treatment of cancer.

Cancers are the consequence of a process of somatic mutation and break the balance controlled by gene expres-
sion programs and cellular networks that typically maintain intracellular homeostasis and prevent unnecessary 
expansion. Cancer hallmarks and important biological processes, such as cell growth, and cellular differentiation, 
were able to reveal neoplasia, growth and metastasis dissemination1. The identification of cancer related pathways 
was conducive to the comprehension of the potential mechanisms of tumorigenesis. Recent studies have linked 
multiple important biological pathways to the oncogenesis and progression of cancer, such as nuclear factor 
kB (NFkB) signaling pathway and Wnt/β​-catenin signaling pathway2. Accurate regulation of NFkB activity is 
essential for physiological homeostasis, and was found that NFkB was over activated in a variety of cancers3. 
Wnt/β​-catenin signaling pathway was suppressed by Frizzled-8, thus playing a crucial role in regulating numer-
ous aspects of tumor development, including lung cancer4. The study on the regulation mechanism of pathways 
provides a framework for better understanding the diversity of cancers.

In the past, the majority of studies for the mechanisms of carcinogenesis mainly focused on protein-coding 
genes. Recently, abnormal expressions of long noncoding RNAs (lncRNAs) identified by the next-generation 
sequencing technologies are related to different types of cancer. The integration of lncRNAs expression profiles 
offers an impactful approach to study the lncRNA regulation mechanism of cancer-related pathways5. LncRNAs 
are non-protein-coding RNA molecules which could regulate gene expression at diverse levels, containing histone 
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modification, transcription, and/or posttranscriptional regulation. They act as activators, guides, or scaffolds for 
proteins, DNA and RNA, and would be possible drivers of carcinogenesis biology and work as clinical biomarkers.

Emerging investigations have found that lncRNAs could regulate pathways to act as a main contributor to 
carcinogenesis. In previous studies, the individual lncRNA contributions to a single pathway in a specific cancer 
were taken into account from the experimental perspective. For example, lncRNA CCHE1 indicated poor prog-
nosis in hepatocellular carcinoma (HCC) by activating the ERK/MAPK pathway to promote tumorigenesis6.  
Lnc_bc060912 whose expression increased in human lung and other tumors and affected cell apoptosis via 
PARP1 and NPM1 which were two DNA damage repair protein7.

However, the joint effect of common lncRNAs contributing to a complex cancer was not assured by previous 
studies. In fact, one pathway could be regulated by multiple lncRNAs in various cancers, and one lncRNA could 
regulate different pathways associated with different cancers. For example, lncRNAs AK126698, CASC11 and 
UCA1 regulated the Wnt/β​-catenin pathway in non-small cell lung cancer4, colorectal cancer8 and oral squamous 
cell carcinoma9, respectively10. Moreover, many studies have shown that a number of lncRNAs were involved in 
the p53 pathway. For example, tumor suppressor response lncRNAs LOC572558 and MT1JP regulated the p53 
signaling pathway in bladder cancer and other cancers, respectively11. In addition, functional lncRNAs used in 
this study were annotated to biochemical pathways by LncRNA2Function12, which considered all lncRNAs in the 
pathways as equal, rather than discovered their potential relationship with human cancers.

Thus, this study focused on the joint effect of common lncRNAs which have not studied and reported in reg-
ulating common cancer related pathways in pan-cancers. Based on lncRNA expression profiles and clinical data 
of human cancer patients from TCGA, we examined differentially expressed lncRNAs and mRNAs for multiple 
cancer datasets. Above all, cancer risk pathways and lncRNAs were identified using Wilcoxon signed-rank test 
and permutation test which were closely associated with not only prognosis-related functions, but also survival 
of cancer patients. The robustness of these lncRNAs was verified by independent profiles from another platform. 
By investigating lncRNAs and their regulating pathways in cancer patients, our study would provide insights into 
the oncogenesis and progression of cancers.

Results
Abnormal mRNAs and lncRNAs for cancers.  For each type of human cancer, DE protein-coding genes 
and lncRNAs were identified through t-test, controlling False Discovery Rate (FDR) at 5%. Through calculated 
reads per kilo bases per million reads (RPKM) values for the lncRNA or mRNA in human normal and cancer 
samples from TCGA, 19901 mRNAs and 14373 lncRNAs expression were recognized.

Cancer risk pathways.  Cancer associated candidate pathways were defined as significant pathways using 
the Wilcoxon signed-rank test after 1000 permutation tests (FDR <​ 0.05) in each cancer dataset. There were 419, 
835, 1048, 398, 1457 and 677 biochemical pathways which were identified as cancer associated candidate path-
ways in BLCA, BRCA, KICH, KIRC, LUAD and PRAD, respectively. These 6 cancer risk pathways were shared 
among six cancer datasets: “Anaphase-promoting complex/cyclosome (APC/C) -mediated degradation of cell 
cycle proteins”, “Cyclin B2 mediated events”, “PLK1 signaling events”, “Mitotic Prometaphase”, “Beta defensins” 
and “Defensins” pathways (Supplementary Table 1 ) and were thus termed as common cancer risk pathways.

APC/C-mediated degradation of cell cycle proteins pathway has been confirmed to involve in colorec-
tal cancer13,14. Due to a better understanding of APC/C which involved in mitosis and established a stable G1 
phase, the understanding of DNA damage or perturbation of the normal cell cycle had been greatly improved15. 
In many renal cell carcinomas, prostate cancers, basal cell carcinomas and oral squamous cell carcinomas 
(OSCC), Defensins pathway16 might participate in the regulation of oncogenesis and changed the expression of 
β​-defensins17. A new study had indicated that β​-defensins could mediate specific antineoplastic immunity and 
enhance antineoplastic consequences, in which also suggested that β​-defensins deserved further examination as 
potential neoplastic immunotherapy immunogenes18. The over-expression of β​-defensins in cancers was found 
by Semple F17. In addition, the rest of the cancer risk pathway: Mitotic Prometaphase pathway and Cyclin B2 
mediated events pathway, which usually show abnormal activities and will result in poor prognosis19 in patients 
of breast cancer.

Cancer risk lncRNAs.  As lncRNAs may be pivotal in many biochemical pathways20, we explored whether 
cancer risk lncRNAs from different cancer datasets display a similar regulation pattern with their cancer risk 
pathways or not. A total of 23 lncRNAs which involved in the regulation of cancer risk pathways were identified 
as cancer risk lncRNAs in the six cancer datasets. The performance of identifying cancer risk pathways of 23 
cancer risk lncRNAs was evaluated in each cancer dataset for 1000 permutation tests, respectively (Figure S1). 
Most cancers showed no significance of permutation p values for their corresponding risk pathways (Wilcoxon 
signed-rank test >​0.05). Then, 3% of the smallest permutation p values were selected as shown in Fig. 1. No mat-
ter the real p value of 23 cancer risk lncRNAs or the real p value of entire lncRNAs, both of them were remained 
in the boundary of the 3% of the smallest permutation p values. In addition, the p values of 23 cancer risk lncR-
NAs were smaller than the p value of entire lncRNAs for each cancer risk pathway. During the process of using 
lncRNAs to identify pathways, the p values of 23 cancer risk lncRNAs were much smaller than the p values of 
the whole lncRNAs within pathways. The result suggested that 23 cancer risk lncRNAs having better cancer risk 
pathway detection efficacy than the whole lncRNAs.

A number of studies have indicated that these 23 cancer risk lncRNAs were closely related to the occurrence 
or development of cancer. For example, Hassan M suggested that AC005076 might be a functional lncRNA to 
intervene apoptosis, and might be associated with cancer therapies clinically21. LINC00654 and STK4-AS1 were 
served as prognostic lncRNAs for cancers like breast or prostate22. Particularly the lncRNA RP4-612B15 showed 
delicate changes of genome in mantle cell lymphomas (MCL), a subset of B-cell non-Hodgkin’s lymphomas,  
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and had been acknowledged as candidate neoplasia functional lncRNA, which suggested its potential as suppres-
sor lncRNA23. Besides, viral infection is related to the development of lots of cancers, such as cervical cancer24 
and liver cancer. NRAV, which expressed in numerous tissues, had been considered as a pivotal contributor of 
antiviral innate immunity. NRAV could be associated with the pathogenesis of cancers caused by viruses25.

Evaluation of the performance of cancer risk lncRNAs.  Functional annotation of cancer risk pathways 
and risk lncRNAs.  Abnormal pathways generally take place in human cancers and usually cause insensitive 
treatment of cancer. Even though the biological characteristics of cancer are extremely complicated and which 
can be reduced and expressed by a small number of cancer hallmark-associated GO terms which can lead to 
tumor growth and metastasis dissemination26. These hallmark-associated GO terms provide a framework for 
comprehending the noteworthy multiplicity of cancers. To reveal the cancer risk pathways regulated by 23 risk 
lncRNAs that may have functions in tumor-promoting or suppressing, lots of cancer hallmark-associated GO 
terms were enriched in cancer risk pathways (hypergeometric test, FDR <​ 0.05, Fig. 2).

It was demonstrated that each cancer risk pathway enriched at least one hallmark-associated GO terms of 
cancers. In total, six cancer risk pathways were enriched in fourteen hallmark-associated GO terms of cancers. 
Among them, two cancer risk pathway “APC/C-mediated degradation of cell cycle proteins” and “Defensins” 
were enriched with nine hallmark-associated GO terms, respectively. “PLK1 signaling events” enriched with eight 
hallmark-associated GO terms and “Beta defensins” enriched with three hallmark-associated GO terms.

It was shown that some hallmark-associated GO terms were shared by several cancer risk pathways. Especially, 
four of six cancer risk pathways: “APC-C-mediated degradation of cell cycle proteins pathway”, “Cyclin B2 medi-
ated events pathway”, ”PLK1 signaling events pathway” and “Mitotic Prometaphase pathway” were enriched 
in “Hallmark mitotic spindle” and “Hallmark spermatogenesis”, these two hallmark-associated GO terms were 
important for cell division27 and development28. Hong tao Yu29 pays attention to the corrected positioning of 
the mitotic spindle. Due to sister-chromatid not accurately attached to the mitotic spindle, the spindle check-
point facilitates the assembly of checkpoint protein complexus that restrain the action of APC/C, resulting in the 
steadiness of securin, protection of sister-chromatid cohesion, and a delay in the beginning of anaphase30. The 
“Hallmark apoptosis”, a common feature of cancers, was enriched with APC/C-mediated degradation of cell cycle 
protein, Cyclin B2 mediated events and PLK1 signaling events, highlighting their roles in the development of 
cancers. In addition, these three cancer risk pathways were also enriched in “Hallmark E2F targets” (Fig. 2). E2F 
transcription factors acts a functional role in cell proliferation31, and is deregulated pRB pathway, which is a very 
recurrent occurrence in human cancer, suggesting these three risk pathways might be carcinogenesis traits of can-
cers. In addition, “Cyclin B2 mediated events” and “Mitotic Prometaphase” were enriched with “Hallmark allo-
graft rejection”, respectively. Meanwhile, these cancer risk pathways were enriched in core hallmark-associated 
GO terms related to cancer, such as, apoptosis, mitotic spindle and glycolysis, suggesting risk lncRNAs will impact 
greatly on our knowledge and understanding of cancer risk pathways in human cancers.

Figure 1.  The 3% of the smallest permutation p values of 23 cancer risk lncRNAs. (A) The 3% of the smallest 
permutation p values in BLCA. (B) BRCA. (C) KICH. (D) KIRC. (E) LUAD. (F) PRAD. In the boundary of the 
3% of the smallest permutation p values in six cancer datasets, the blue open circles and red open circles are 
the real p value of 23 cancer risk lncRNAs and the real p value of entire lncRNAs in six cancer risk pathways, 
respectively. The p values of 23 cancer risk lncRNAs were smaller than the p value of entire lncRNAs for each 
cancer risk pathway.
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The classification ability of the identified cancer risk lncRNAs in six internal test datasets.  With expression values 
of 23 cancer risk lncRNAs obtaining from the training dataset as entered features, the SVM classifier was used 
to discriminate cancer patients and normal samples in six internal test datasets. Based on AUC values, five-fold 
cross-validation method was used to assess the classification ability between normal and cancer samples, as 
described in the Methods section. It was shown that 23 cancer risk lncRNAs had a good distinguish performance 
in six internal test datasets through the cross-validation approach. The average AUC values of 1000 permutation 
tests for 6 cancer datasets were calculated, which were 0.8194, 0.7843, 0.9712, 0.8339, 0.8618 and 0.8491, respec-
tively, (Fig. 3A–F), which indicated a high classification performance. In the six internal test datasets, it was sug-
gested that the 23 cancer risk lncRNAs within six cancer risk pathways could be used as the classification features 
to recognize normal samples and cancer samples.

The prognosis of cancer risk lncRNAs.  Kaplan-Meier curves for the two groups (high-risk group or low-risk 
group) within six cancer datasets were shown in Fig. 4, representing significant difference between high-risk 
group and low-risk group in OS. The significant p values of Cox regression analysis and log-rank test observed in 
six cancer datasets for each lncRNA were displayed in Supplementary Table 2.

The classification ability of the identified risk lncRNAs in validation datasets.  Cancer is a group of diseases involv-
ing abnormal cell growth with the potential to invade or spread to other parts of the body. However, the growth 
and metastasis of cancer often relate to combined effects of lncRNAs. Some prognostic markers have been iden-
tified, but the robustness of these prognostic markers was not sufficient. Thus, the robustness of these lncRNAs 
was verified by eight independent profiles from another platform. The validation datasets contained two inde-
pendent cancer datasets (KIRP and LUSC) from TCGA IlluminaHiSeq RNASeqV2 data, other eight additional 
independent validation datasets (BLCA, BRCA, HNSC, KIRC, LIHC, LUAD, LUSC and UCEC) from TCGA 
IlluminaHiSeq RNASeq data. The AUC values of KIRP and LUSC were 0.8267 and 0.8552 (Fig. 5A,B), which 
demonstrated high classification performance.

The AUC values of eight additional independent validation datasets were 0.8079, 0.8661, 0.8655, 0.8145, 
0.8837, 0.9751, 0.8437, 0.9424 (Fig. 6A–H), indicating high classification power with eight independent datasets. 
This also suggested that 23 cancer risk lncRNAs which obtained from performing Wilcoxon log-rank test to the 
six cancer risk pathways had a good classification performance to distinguish normal and tumor samples in other 
types of cancer datasets.

The prognosis of cancer risk lncRNAs in two validation datasets.  In another two independent cancer datasets 
(KIRP and LUSC) which were also based on the IlluminaHiSeq platform, we used expression values of 23 cancer 
risk lncRNAs and clinical information of samples to conduct survival analysis aiming to further validate the 
robustness of the 23 cancer risk lncRNAs. The significant p values of Cox regression analysis observed in two can-
cer datasets and the Kaplan-Meier curves were displayed in Fig. 7, respectively. Samples of LUSC dataset assigned 
into high-risk group tended to have shorter OS than those in the low-risk group (log-rank test p =​ 0.018). On the 

Figure 2.  Enrichment analysis delineates cancer risk pathways and cancer hallmark-associated GO terms. 
R statistical software was used for visualization of the enrichment results. The bubble size indicates the p value 
of hypergeometric test between each term and each cancer risk pathway, and different color corresponds to 
different FDRs. The darker of the color, the smaller of the FDR.
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Figure 3.  Five-fold cross-validation for the cancer risk lncRNAs in six cancer datasets. (A) Five-fold cross-
validation for BLCA. (B) BRCA. (C) KICH. (D) KIRC. (E) LUAD. (F) PRAD. It is distinct that 23 cancer risk 
lncRNAs are robust and sensitive in distinguishing normal and tumor samples in six cancer datasets. FPR: False 
Positive Rate. TPR: True Positive Rate. AUC: Area Under the Curve.

Figure 4.  Survival ananlysis of six cancer datasets. Kaplan-Meier curve for overall survival of two samples 
groups with higher (top 50%) or lower (bottom 50%) expression of 23 cancer risk lncRNAs in (A) BLCA.  
(B) BRCA. (C) KICH. (D) KIRC. (E) LUAD. (F) PRAD. The blue curve indicates higher expression group and 
the red curve indicates lower expression group.
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contrary, high-risk group tended to have longer OS than those in the low-risk group (log-rank test p =​ 0.002) in 
KIRP dataset.

The stability and robustness of our approach.  To show the robustness of the predictors, re-sampling 
statistics are required, because Li et al. showed that cancer heterogeneity often prevents cancer biomarkers to 
be robust32. It is desirable to discuss different predictors representing different cancer risk pathways and cancer 
risk lncRNAs could be combined and complementary for better predictions33. We used the 1000 times leave 
one out cross-validation with a Support Vector Machine (SVM) method for both the discovery dataset and the 
validation dataset. It was shown that 23 cancer risk lncRNAs had a good distinguish performance in six internal 
discovery datasets through the 1000 times leave one out cross-validation approach. The average AUC values of 
1000 permutation tests for 6 cancer datasets were calculated, which were both 0.9527, 0.9873, 0.9894, 0.9682, 
0.9691 and 0.8867, respectively, (Supplementary Figure 2), which indicated a high classification performance. 
The AUC values of KIRP and LUSC were 0.9812 and 1 (Supplementary Figure 3A and B), which demonstrated 
high classification performance. The AUC values of eight additional independent validation datasets were 0.8079, 
0.8412, 0.8455, 0.8491, 0.8533, 0.8518, 0.8836, 0.9476, 0.9521 (Supplementary Figure 4A–H), indicating high 
classification power with eight independent datasets. In both the discovery dataset and the validation dataset, it 
was suggested that the 23 cancer risk lncRNAs within six cancer risk pathways could be used as the classification 
features to recognize normal samples and cancer samples. In order to confirm the high classification performance 
and stability of the cancer risk lncRNAs identified by our approach, we used the naive Bayes to evaluate the 
classification performance taking the cancer risk lncRNAs expression values as the classification features in the 
same way. A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes theorem with strong 
(naive) independent assumptions. The AUC values of the discovery and the validation dataset were both above 
0.840 (Supplementary Figures S3, S5 and S6). The cancer risk lncRNAs had a good classification performance 
and stability by not only the SVM methods (Supplementary Figures 2–4) but also by naive Bayes (Supplementary  
Figures S3, S5 and S6).

Figure 5.  Five-fold cross-validation for the cancer risk lncRNAs in two cancer datasets. (A) Five-fold cross-
validation for KIRP. (B) LUSC. FPR: False Positive Rate. TPR: True Positive Rate. AUC: Area Under the Curve.

Figure 6.  Survival ananlysis of KIRP and LUSC. Kaplan-Meier curve for overall survival of two samples 
groups with higher (top 50%) or lower (bottom 50%) expression of 23 cancer risk lncRNAs in (A) KIRP.  
(B) LUSC. The blue curve indicates higher expression group and the red curve indicates lower expression group.
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Discussion
At present, the research of lncRNAs in different aspects and frontiers is increasing. However, understanding the 
best way of lncRNAs in regulating pathways for giving insight into underlying mechanism and development of 
cancer is still in its infancy. In this study, we selected RNASeq data of eleven human cancers from publicly avail-
able repositories and calculated expression change (Δ​e) for each lncRNA while using Wilcoxon signed-rank test 
of Δ​e for all lncRNAs/genes within a pathway to detect the cancer risk pathway and cancer risk lncRNA. Coupled 
with clinical information, these cancer risk lncRNAs were used to conduct survival analysis. For six cancer data-
sets, 6 cancer risk pathways and 23 cancer risk lncRNAs were identified. Kaplan-Meier curves by 23 cancer risk 
lncRNAs within six cancer datasets demonstrated a significant difference in OS between high-risk group and 
low-risk group.

Pathways could be major contributors for cancer, and lncRNAs play key roles in cancer occurrence34. Here, six 
cancer risk pathways (“APC-C-mediated degradation of cell cycle proteins”, “Cyclin B2 mediated events”, “PLK1 
signaling events”, “Mitotic Prometaphase”, “Beta defensins” and “Defensins”) in six human cancers were identified 
based on p values of Wilcoxon signed-rank test and were evaluated through five-fold cross-validation approach. 
These cancer risk pathways were not only significantly enriched functional specificity with hallmark classes of 
human cancer, but also widely confirmed associated with cancers by literatures. In addition, significant cancer 
risk pathways identified by lncRNAs for six cancers could not be found by mRNAs using the same approach. In 
brief, these six cancer risk pathways would be regulated by lncRNAs in the carcinogenesis.

Notably, 23 common lncRNAs within six cancer risk pathways were considered as cancer risk lncRNAs. In the 
identification process of cancer risk pathways, the significance of 23 cancer risk lncRNAs was higher than entire 
lncRNAs (Fig. 1). In other words, 23 cancer risk lncRNAs could represent entire lncRNAs while identifying can-
cer risk pathways. In addition, SVM was adopted with 23 cancer risk lncRNAs expression values as classification 
features to distinguish normal and tumor samples. And then classification performance (Fig. 3) was estimated by 
a receiver operating characteristic (ROC) curve to further evaluate the relationship between cancers and these 23 
cancer risk lncRNAs. These cancer risk lncRNAs not only had a good classification result in the six test datasets, 
but also achieved good results in two validation datasets and eight additional independent validation datasets. 
(Figs 4 and 7) It suggested that these risk lncRNAs could be new and potential biomarkers for human cancers.

Furthermore, the weighted voting classification algorithm was adopted to investigate the classification abil-
ity of 23 cancer risk lncRNAs for normal and tumor samples. Firstly 23 risk lncRNAs were ranked according 
to signal-to-noise metric. Then the average number of misclassified patients of the 5-fold cross-validation in 
1000 permutations was calculated when increasing numbers of top ranked predictive lncRNAs (Fig. 1). As a 
result, one specific lncRNA was identified as optimal cancer-related lncRNA for each cancer dataset respectively 
(Supplementary Table 3). Four lncRNAs were found to be the optimal cancer-related lncRNA for six cancer 
datasets. Especially, NRAV as a key regulator of antiviral innate immunity25 had been identified in three cancers 
(BLCA, KICH and KIRP). RP4-612B15 showing subtle genomic alterations in mantle cell lymphomas23 had been 
found in BRCA and PRAD. In summary, the result above suggested that 23 cancer risk lncRNAs had the potential 
to be candidate tumor lncRNAs.

In addition, 23 cancer risk lncRNAs had a good classification performance for samples, and were able to 
separate samples in the entire cancer dataset into two groups with significantly different OS. With 23 cancer 
risk lncRNAs for each cancer dataset, the Kaplan-Meier analysis for OS demonstrated a significant difference 
between the groups predicted to be high expression group or low expression group (p =​ 3.44e-15, log-rank test; 

Figure 7.  Five-fold cross-validation for the cancer risk lncRNAs in eight cancer datasets. (A) Five-fold 
cross-validation for BLCA. (B) BRCA. (C) HNSC. (D) KIRC. (E) LIHC. (F) LUAD. (G) LUSC (H) UCEC. FPR: 
False Positive Rate. TPR: True Positive Rate. AUC: Area Under the Curve.
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Fig. 4). The Cox regression p values and Log rank p values were not only significantly associated with OS in 
the six test datasets, but also in two validation datasets and eight additional independent validation datasets 
(Supplementary Table 2). Therefore, 23 cancer risk lncRNAs within six cancer risk pathways could identify the 
survival difference between two groups of samples in sixteen cancer datasets, and these risk lncRNAs could be 
potential prognostic biomarkers for human cancers with stability and robustness.

We apply a relatively novel perspective way to identify cancer risk pathways and potential lncRNAs of human 
cancers. Indeed, focusing on the combination of pathways and lncRNAs could help reveal many potential lncR-
NAs which capable of taking effect in the occurrence and development process of cancer. It was worth noting that 
23 cancer risk lncRNAs identified by our approach were obtained from diverse cancer tissues, while lncRNAs 
were generally considered to be associated with specific tissues35. The cancer risk pathways regulated by these 
lncRNAs were also the cardinal factor in the progression and metastasis of various carcinomas36. Thus, our find-
ings highlighted the cancer common features shared by pan-cancer.

In our study, the robust and effective cancer biomarkers were obtained from cancer datasets which had infor-
mation of normal-tumor samples. For cancers without normal sample information, our approach could also 
be used to identify biomarkers related to molecular subtypes of cancers in their clinical outcome. Overall, our 
research can provide a new perspective for the further study of clinical diagnosis and treatment of cancer.

Methods
Materials.  TCGA datasets and clinical information of cancer patients.  Illumina RNA (IlluminaHiSeq 
RNASeqV2 and IlluminaHiSeq RNASeq) sequencing data for eleven types of human cancers which contained 
cancer and normal samples with clinical information (see Supplementary Table 4), were obtained from TCGA 
through Data Portal37. Raw read counts of each exon were originated from annotated exon quantification files 
offered by TCGA level3 datasets. Annotation of exons mapping to lncRNA or mRNA was downloaded from 
GENCODE38. Cancer patients and tumor features are detailed in Supplementary Table 5. The whole workflow for 
this study was shown in Fig. 8.

LncRNA and mRNA expression profiles across cancers.  Separately for each cancer dataset, the expression level of 
lncRNA or mRNA was calculated through computing reads per kilo bases per million reads (RPKM) values for 
the lncRNA or mRNA:

= × ×rrRPKM ( 10 )/(tr length of lncRNA or mRNA) (1)9

where rr means sum of raw read counts in all exons mapped within a lncRNA or mRNA; tr equal sum of raw read 
counts computed for all exons of every sample. We discarded lncRNAs whose RPKM expression values were 0 
in all samples to filter out lncRNAs which were not expressed across samples in sequencing data. The lncRNAs 
with more than 30% missing values in all samples were also removed from this study. All the expression values 
of lncRNAs and mRNAs were log2 transformed. LncRNAs RPKM expression values of 0 were changed to 0.05 to 
allow log transformation.

Hallmark-associated GO terms and pathway information.  A collection of Gene Ontology (GO) terms that were 
associated to the hallmark-associated GO terms of cancer were derived from a previous study39. Genes annotated 
to fifty hallmark-related GO terms were downloaded from MsigDB V5.140. Moreover, the pathway data obtained 
from Consensus Path Data Base (CPDB)41 were used for the subsequent analysis.

Methods
Identifying mRNAs and lncRNAs related to cancers.  For each type of human cancer, we identified 
differentially expressed (DE) protein-coding genes and lncRNAs by comparing expression values of cancer sam-
ples to those of normal controls. Two-tailed T-test was used to identify the differentially expressed lncRNAs and 
protein-coding genes. Multiple hypothesis testing using Benjamini and Hochberg’s method42 was used to adjust 
the differential expression p-values, controlling False Discovery Rate (FDR) at 5%. Protein-coding genes and 
lncRNAs with FDR<​0.05 were deemed as differentially expressed.

Identifying significant cancer risk pathways.  To identify risk pathways associated with tumor patients, 
the Wilcoxon signed-rank test was used to measure pathways with significant expression changes. In tumor sam-
ple n and the corresponding normal samples, we calculated expression change for every DE lncRNA/gene m,

∆ = −e log x Average(log y ) (2)m
n

2 m
n

2 m

where xm
n is the expression value of DE lncRNA/gene m in tumor sample n, and ym is the expression in the q 

matching normal samples (y1, y2, …​, yq). Then, the significance of a pathway of a cancer dataset was evaluated by 
Wilcoxon signed-rank test for Δ​e, controlling FDR at 5%.

Using 1000 permutation tests as follows to evaluate the significance of the expression changes for each pathway 
in a cancer dataset: (i) tumor and normal samples of each cancer dataset were divided into five non-overlapping 
parts, respectively. (ii) four of five parts were included in training dataset, and the remaining samples were used 
for validation in further analysis. (iii) lncRNAs/genes within a pathway were randomly selected, and equal 
number of DE lncRNAs/genes was maintained for each permutation test. (iv) the significance of Wilcoxon 
signed-rank test for each pathway was re-calculated. P value was evaluated as the percent of insignificance in 1000 
permutation tests. A significant pathway (FDR <​ 0.05) was considered as cancer associated candidate pathway. 
Here, cancer risk pathways were termed as common cancer associated candidate pathways of six cancer datasets.
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Figure 8.  The workflow of this study. Step one, lncRNAs expression screening and pathways-lncRNA 
information. First, six cancer datasets were used as training datasets and ten cancer datasets were used as 
validation datasets. Then RPKM values were calculated for each lncRNA or mRNA. Step two, identification 
of cancer risk pathways and cancer risk lncRNAs according to Wilcoxon signed-rank test of Δ​e for all DE 
lncRNAs/genes within a pathway. Step three, Evaluation of the performance with cancer risk lncRNAs based on 
SVM and survival analysis.
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Identification of cancer risk lncRNAs.  Common lncRNAs of six human cancers within cancer risk path-
ways were considered as cancer risk lncRNAs. To evaluate the significance of the pathway in tumor samples of 
each specific cancer dataset, Wilcoxon signed-rank test on common lncRNAs within a pathway was conducted, 
controlling FDR at 5%. To assess the statistical significance of the risk lncRNA expression patterns in cancer risk 
pathways of each cancer dataset, 1000 permutation tests were carried out. Cancer risk lncRNAs were randomly 
selected while preserving the pathway sizes for each permutation test. The significance of Wilcoxon signed-rank 
test for each pathway was re-calculated. Here, lncRNAs (FDR <​ 0.05) were defined as risk lncRNAs.

Evaluation of the classification performance of cancer risk lncRNAs.  To assess the classification 
performance of tumor and normal samples, a Support Vector Machine (SVM) was used while cancer risk lncR-
NAs expression values as classification features. For each cancer dataset that had been split into five parts, five-fold 
cross-validation was applied while the model is trained on the training set and tested on the testing set. In this 
manner, each part has been tested once. Then a receiver operating characteristic (ROC) curve was adopted to esti-
mate classification performance. The area under the curve (AUC) value implied the classification performance43.

Functional enrichment analysis.  The hypergeometric test was applied to dissect the association between 
genes annotated to hallmark-associated GO terms and genes within these pathways in order to investigate the 
probable biological roles of cancer risk pathways. The probability of genes within a hallmarks related GO term for 
a cancer risk pathway i was calculated as:

= =

−
− = …

( )( )
( )

P X k

K
k

N K
n k
N
n

i I( ) , ( 1, 2, , )

(3)

where N is the number of all genes in pathway i and a hallmark-associated GO term, n is the number of genes 
within a hallmark-associated GO term, K represents the number of genes in pathway i, k is the number of com-
mon genes annotated in a hallmark-associated GO term and pathway i and I is the total number of pathways. 
For each pathway, pathways (FDR <​ 0.05) were considered as significantly enriched pathways with genes which 
annotated to hallmark-associated GO terms.

Survival analysis of cancer risk lncRNAs.  The survival difference in overall survival (OS) between 
high-risk group and low-risk group was assessed by Kaplan-Meier plots, and the significance level was calculated 
by the univariate Cox regression and log-rank test.
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