
Frontiers in Oncology | www.frontiersin.org

Edited by:
Jian-Jun Wei,

Northwestern University,
United States

Reviewed by:
Lee Cooper,

Northwestern University,
United States

Jorge E. Novo,
Northwestern Medicine, United States

*Correspondence:
Xiangyi Ma

xyma@tjh.tjmu.edu.cn

Specialty section:
This article was submitted to

Gynecological Oncology,
a section of the journal
Frontiers in Oncology

Received: 09 January 2022
Accepted: 10 February 2022
Published: 11 March 2022

Citation:
Hou X, Shen G, Zhou L, Li Y,

Wang T and Ma X (2022) Artificial
Intelligence in Cervical Cancer

Screening and Diagnosis.
Front. Oncol. 12:851367.

doi: 10.3389/fonc.2022.851367

REVIEW
published: 11 March 2022

doi: 10.3389/fonc.2022.851367
Artificial Intelligence in Cervical
Cancer Screening and Diagnosis
Xin Hou1, Guangyang Shen1, Liqiang Zhou2, Yinuo Li1, Tian Wang1 and Xiangyi Ma1*

1 Department of Obstetrics and Gynecology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and
Technology, Wuhan, China, 2 Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health
Sciences, University of Macau, Macau, Macau SAR, China

Cervical cancer remains a leading cause of cancer death in women, seriously threatening
their physical and mental health. It is an easily preventable cancer with early screening and
diagnosis. Although technical advancements have significantly improved the early
diagnosis of cervical cancer, accurate diagnosis remains difficult owing to various
factors. In recent years, artificial intelligence (AI)-based medical diagnostic applications
have been on the rise and have excellent applicability in the screening and diagnosis of
cervical cancer. Their benefits include reduced time consumption, reduced need for
professional and technical personnel, and no bias owing to subjective factors. We, thus,
aimed to discuss how AI can be used in cervical cancer screening and diagnosis,
particularly to improve the accuracy of early diagnosis. The application and challenges
of using AI in the diagnosis and treatment of cervical cancer are also discussed.

Keywords: cervical cancer, cervical intraepithelial neoplasia (CIN), artificial intelligence, deep learning, cytology,
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1 INTRODUCTION

Cervical cancer is one of the most common malignancies in women, with 604,000 new cases and
342,000 deaths in 2020 (1). It is the only cancer that can be eliminated via primary prevention
strategies comprising a fully effective 9-valent human papillomavirus (HPV) vaccine, early
detection, and timely treatment (2).

Almost all cases of cervical cancer are caused by persistent infection of the cervical epithelium
with one of the 15 genotypes of the carcinogenic HPV. The four major steps in the development of
cervical cancer are as follows: infection of the metaplastic epithelium at the cervical transformation
zone, persistent HPV infection, progression of persistently infected epithelium to cervical precancer,
and invasion through the basement membrane of the epithelium (3). The HPV vaccines can protect
girls and young woman against infection with the HPV virus. But HPV vaccine coverage rate is very
low at present (even in some developed countries) (2, 4) and the beneficiaries are limited to young
women aged <26 in terms of 9-valent HPV vaccines. According to American Cancer Society,
vaccinated women are also recommended that be screened the same as unvaccinated women
because it is impossible to avoid risk completely (5). Hence, routine screening for cervical cancer is
still important to women. Approximately 30% of cervical intraepithelial neoplasia (CIN) grade 3
lesions develop into invasive cancers within 30 years. Slow progression offers many opportunities
for the detection and treatment of these lesions (6). Screening and treatment of precancerous lesions
in women is a cost-effective way to prevent cervical cancer (7). Ideally, screening strategies should be
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able to detect early lesions that may develop into cervical cancer,
while avoiding the detection of transient HPV infections and
benign abnormalities that can lead to overtreatment and other
hazards associated with screening (5). With the continuous
improvement of screening techniques, there has been an
increase in the detection rate of cervical cancer and a decrease
in the mortality rate; however, most deaths occur in low- and
middle-income countries (8). Despite new developments in
effective screening programs, many of these cannot be
implemented or maintained because of weak health
infrastructure (9, 10). Moreover, the accuracy of manual
screening is not always 100% (11), resulting in some related
lesions that cannot be timely diagnosed. Thus, developing a more
accurate and economical cervical cancer screening method is the
main challenge for the early diagnosis of cervical cancer.

In recent years, AI has been increasingly applied in the
diagnosis of various diseases, such as the classification of skin
tumors (12, 13), diagnosis and classification of retinal diseases
(14), and imaging diagnosis of tumors (15), and has shown
promising application value. AI can automatically recognize
images, extract features, learn classification, and process data
using complex algorithms. The application of AI in the early
screening and diagnosis of cervical cancer is conducive to
addressing limited human resources and improving
diagnostic accuracy.

This article aimed to introduce recent AI technologies and
demonstrate their utility and potential for the screening and early
diagnosis of cervical cancer. This review also discusses the
current challenges and proposes future research directions.
2 METHODS FOR CERVICAL CANCER
SCREENING AND DIAGNOSIS

The latest World Health Organization guidelines recommend the
following three screening methods for the early detection of
cervical cancer: HPV testing, cytology (including traditional pap
smear and liquid-based cytology smear), and visual inspection
with acetic acid (VIA) (16). We focused on the first two methods
because VIA is only used when the first two are not available. HPV
testing and cytology uses brushed exfoliated cells from the cervix
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as test samples. HPV testing detects high-risk types of HPV
infection in the cervix, whereas cytological examination uses a
microscope to identify cells taken from the cervix for possible
cervical cancer or precancerous lesions (17). Figure 1 shows the
evolution of cervical cancer screening methods. However,
colposcopy-guided biopsy remains as the gold standard for
cervical cancer diagnosis, followed by staging according to the
clinical examination and imaging results.

2.1 Introduction to Cytology
A conventional Pap smear (CPS) is a manual screening
procedure used to identify and classify exfoliated cervical cells
under a microscope according to the color and characteristics of
the nucleus and cytoplasm (18). Liquid-based cytology (LBC)
can improve preparation techniques (19). The LBC specimen is
better fixed in glass slides, easier to preserve and perform
artificial removal, and has a more uniform sample distribution
than CPS (20).

Cytology results are described according to the Bethesda
system (TBS) (21). Cervical cells are grouped into specific
categories according to their abnormal changes about nuclear
size, degree of dyeing etc (22). Abnormal epithelial cells include
atypical squamous cells and atypical glandular cells. The TBS
nomenclature details are listed in Table 1.

2.2 Introduction to Colposcopy
Colposcopy is defined as the use of a specific instrument to magnify
the fully exposed cervix by 5 to 40 times for a real-time visual
assessment of the cervix, especially the transformation area, for the
detection of CIN or squamous intraepithelial lesion (SIL) and
invasive cancer (23). A colposcopy-guided biopsy of the suspected
site is performed to determine whether further treatment, such as
conization or cryotherapy, is needed, which is important in patients
with high-grade CIN or more severe disease (24).

2.3 Procedures for Early Screening and
Diagnosis of Cervical Cancer
According to the latest recommendations of the American
Cancer Society on cervical cancer screening, women with a
cervix aged ≥25 years are recommended to undergo cervical
cancer screening. For women between the ages of 25 and 65,
FIGURE 1 | Evolution of cervical cancer screening methods. The figure shows major milestones in the evolution of cervical cancer screening. The main screening
methods for cervical cancer are HPV testing and TCT (cytology) nowadays.
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primary HPV test should be performed every five years (5). If a
primary HPV test is not available, co-testing (HPV testing in
combination with cytology) or cytology evaluation can be
performed every three years. Colposcopy or recommended
screening methods can be performed based on the results (25),
which are shown in the Figure 2.

Referral colposcopy further determines the presence of CIN
and identifies or excludes invasive carcinoma (4). Patients with a
high suspicion of invasive cancer should undergo colposcopy-
guided biopsy, the gold standard for the diagnosis of cervical
cancer and plays a key role in the early detection of cervical
cancer (26).
3 APPLICATIONS OF AI IN EARLY
SCREENING OF CERVICAL CANCER

3.1 HPV Typing and Detection
Continuous high-risk HPV infection can lead to cervical cancer
(27). HPV testing can detect HPV infection and help screen
Frontiers in Oncology | www.frontiersin.org 3
high-risk populations. Genotyping of HPV will make it easier to
assess the risk of women with positive cervical smear results and
HPV DNA-positive results (28), thus making it more conducive
for cervical cancer screening and management. AI learning
technology uses research related to HPV testing to improve
accuracy and diversify the use of HPV testing in cervical cancer
screening. These studies are summarized in Table 2.

Different types of HPV are associated with different types of
lesions. For example, cervical adenocarcinomas are usually
associated with HPV 18 type and tend to shed fewer cells; thus,
they are difficult to detect by cytology (32). Having high-risk HPV
types (e.g., 16, 18, and 31) contributes to a greater risk of
developing cervical malignancies (11). Therefore, distinguishing
among the specific types of HPV will make it easier to classify and
manage HPV-infected women. Based on the additional
genotyping information provided by Onclarity, Wong et al.
derived a decision system with 94.32% specificity of the best
classifier. The system highlighted the patients who are at high
risk of developing CIN2/3+, demonstrated that some infections
involving multiple HPV types carry additional risks, and identified
FIGURE 2 | Cervical cancer screening procedures are recommended for women aged 25 to 65. The American Cancer Society recommends screening starting at
age 25 Colposcopy is recommended for HPV16/18 +, ASC-US and high risk HPV+ cytology with cytological results above ASC-H. Re-screening is recommended
after 1 year for other abnormalities, and after 3 years for normal ones.
TABLE 1 | The Bethesda system.

Cell types Classification

Normal
Atypical squamous cells (ASC) (1) atypical squamous cells of uncertain significance (ASC-US)

(2) Highly squamous intraepithelial disease (ASC-H) cannot be ruled out;
(3) Low-grade squamous intraepithelial lesions (LSILs, equivalent to CIN1);
(4) Highly squamous intraepithelial lesions (HSILs), including CIN2 CIN3 and carcinoma in situ (CIS);
(5) Squamous cell carcinoma (SCC)

Atypical glandular cells (AGC) (1) Atypical glandular cells, not otherwise specified (AGC-NOS); (specify endocervical, endometrial, or not otherwise specified)
(2) Atypical glandular cells, favor neoplastic; (specify endocervical or endometrial)
(3) Endocervical adenocarcinoma in situ (AIS);
(4) adenocarcinoma (specify endocervical, endometrial, extrauterine, or not otherwise specified).
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the most important gene combinations (29). Pathania proposed
the HPV AI surveillance, which uses a deep learning (DL)
algorithm combined with digital micro-holography, and
reported excellent sensitivity and specificity (100% coincidence)
in detecting HPV 16 DNA and HPV 18 DNA in cell lines (30).

However, more studies are underway. The high sensitivity of
HPV testing results in an increased rate of colposcopy referrals,
which may lead to more potentially harmful treatments (33).
Tian et al. analyzed HPV integration status, somatic mutation,
and copy number variation through capture-based next-
generation sequencing and obtained enriched biomarkers of
CIN 2. They then used a machine learning algorithm (random
forest) to build a risk stratification model for cervical precursor
lesions, which successfully predicted CIN2+ with an average
accuracy probability score of 0.814 (31). This method effectively
stratified the risk of cervical lesions and provided valuable
integrated triage strategies.

At present, HPV typing mostly depends on test kits; however,
these have some disadvantages, such as false-negative rate and
high cost. AI has shown great potential and application in the
detection of HPV types and associated molecular markers that
can aid in the diagnosis of cervical lesions.

3.2 Screening of Cervical Cytology
Cytology-based cervical cancer prevention programs have
reduced the incidence of cervical cancer in many Western
countries (34). Cytology screening for high-grade cervical
precancerous lesions is highly specific but less sensitive (50–
70%) (11) and requires careful microscopy observation by well-
trained cytologists. Each process is cumbersome, labor-intensive,
and error-prone (35). In addition, cytological reproducibility is
low, resulting in low accuracy (36). Furthermore, changing the
observer yields inconsistent and subjective results (37). So the
researchers hope to develop automatic image analysis methods to
relieve these pressures.

The first commercial automatic screening systemwas PAPNET
(38) in 1992. The system was approved as a method of re-
screening for slides that were judged negative by cytologists. In
2004, FAD approved the Thinprep imaging system as a
commercial screening product. The system can select the 22
most concerned fields of view (FOV) according to the
proprietary algorithm, and if abnormal cells are found,
cytotechnologists need to manually screen the entire slide (39).
Frontiers in Oncology | www.frontiersin.org 4
The system improves the sensitivity and efficiency of screening.
Later, the Focal point GS imaging system emerged in 2008. It
identified 10 FOV of cervical cells most likely to be abnormal and
stratified the risk to improve the efficiency (40). However, some
reviews indicate that the cost-effectiveness of these automation
systems is limited and is not suitable for use in low-and medium-
developing countries (41). And its research technology still has
weaknesses (42) and still depends on the final manual screening
process. Therefore, some researchers continue to optimize the
application of artificial intelligence technology in cervical cytology.

3.2.1 Segmentation of Cervical Cells
A typical automatic smear analysis system comprises the
following five stages: image acquisition, preprocessing,
segmentation, feature extraction, and classification (43). AI
technology is applied in the segmentation and classification
stages for the automatic analysis of a smear, which is helpful to
improve screening efficiency.

The first step in cytological diagnosis is the accurate
identification of cells and their respective structural components.
As the diagnostic criteria for cervical cytology are mainly based on
nuclear and cytoplasm abnormalities, accurate segmentation is a
prerequisite for screening solutions (44–46). Studies on the
application of AI in cell segmentation have been carried out
continuously and have shown good results in the segmentation of
hepatoma cells (47), human metaphase II oocytes (43), and
pluripotent stem cells (48). It has also been introduced for the
automatic segmentationof cervical cells, and good results have been
reported (49). For example, Chankong et al. used fuzzy c-means
clustering technology to segment single-cell images into the
nucleus, cytoplasm, and background to realize whole-cell
segmentation (41). Some researchers extracted adaptive shape
from cytoplasmic contour fragments and shape statistics to
segment the overlapped cytoplasm of cells in cervical smear
images using supervised learning. Experimental results show that
this method is efficient and always superior to the most advanced
methods (50). Segmentationmodel on images frompap smear slide
also was explored which has been achieved through using nucleus
localization to classify normal and abnormal cells, combined with
single cell classification algorithm. The accuracy and sensitivity are
91.7% respectively and themodel consists of two stages as shown in
Mask-RCNN architecture part in Figure 3 (51). Review of relevant
literature results are provided in Table 3.
TABLE 2 | Application of AI in HPV testing.

Reference Year Aim of study Number of subjects Methods Results

Wong et al.
(29)

2019 Identifying high-grade lesions and in
triaging equivocal smears

605 cervical cytology samples Decision tree, random forest
SVM-linear SVM-nonlinear

Specificity: 94.32%
Specificity: 90.91%
Specificity: 90.91%
Specificity: 90.91%

Pathania D
et al. (30)

2019 Point-of-care HPV screening Training sets: 13000 images
Validation: 35 cervical specimens

CNN Sensitivity: down to a single
cell specificity: 100%

Tian R et al.
(31)

2019 Predicting cervical lesion grades 10 HPV+ cases
10 CIN1 cases
14 CIN2+cases

Random forest unsupervised
clustering

Accuracy 0.814
March 2022 |
HPV, human papillomavirus; CIN, cervical intraepithelial neoplasia; SVM, support vector machine; CNN, convolutional neural network.
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AI makes cervical cell automatic segmentation true, accurate,
and unified. Thus, time-intensive manual segmentation process
and subjective shortcomings can be overcome to realize accurate
abnormal cell classification.

3.2.2 Classification of Cervical Cells
Accurate classification of cervical cells in smears is a crucial step
in cervical cancer screening. The low accuracy of manual
classification and the high requirement for professional degree
of the observer limit the application of cytology (52), particularly
in areas where trained cytopathologists are scarce. The use of AI
has addressed these limitations (Table 4).

In the past few decades, many classification methods have
been proposed, most of which are based on segmentation or
texture feature extraction. Chankong et al. segmented the
cervical single-cell image into the nucleus, cytoplasm, and
background, and obtained the morphological features to realize
automatic multi-label classification. The results showed an
accuracy rate of more than 93% (44). Mariarputham et al.
extracted seven groups of texture features of cervical cells for
classification. The support vector machine (SVM) classifier had
the highest accuracy and the best performance (57). Three
classifiers, i.e., least square support vector machine (LSSVM),
Frontiers in Oncology | www.frontiersin.org 5
multilayer perceptron (MLP) and random forest (RF), were used
in the integrated classifier designed by Kden et al. The accuracy
of these classifiers was 98.11% at the smear level and 99.01% at
the cell level (53). Reducing the time of manual observation
eliminates observer bias and improves efficiency.

Classification that does not rely on an accurate segmentation
algorithm has also been proposed and accepted by an increasing
number of scholars. Zhang et al. applied DL and transfer learning
(58) to cervical cell classification for the first time. Automatic
extraction of embedded deep-level features in cell images for
classification is a superior method compared with previous
algorithms in terms of classification accuracy (98.3%), AUC
(0.99), and specificity (98.3%) (54). Six different convolutional
neural networks (CNNs) were used for the first time for the
diagnosis of cervical precancerous lesions. The accuracy,
sensitivity, and specificity of the integrated classifier were
0.989, 0.978, and 0.979, respectively (43). Shi et al. proposed a
method of cervical cell classification based on a graph
convolution network to explore the potential relationship
between cervical cell images and improvement of classification
performance. Its accuracy (98.37%), sensitivity (99.80%),
specificity (99.60%), and F-measure (99.80%) were all better
than those of the existing method (55). In addition, hybrid
March 2022 | Volume 12 | Article 851367
TABLE 3 | Application of AI in cervical cell segmentation.

Reference Year Number of subjects Methods Datasets Results

Wang et al. (44) 2014 362 cervical cell images
(3722 cells)

Mean-Shift clustering algorithm Private Sensitivity: 94.25%
Specificity: 93.45%

Song et al. (50) 2019 8 cervical cell images
22 cervical images

CNN ISBI2015
Private

DSC: 0.84
DSC: 0.83

Zhao et al. (45) 2016 917 single-cell images Superpixel-based
Markov random field

Herlev
The real-word Datasets

Herlev
ZSI of nuclei: 0.93
ZSI of cytoplasm:
0.82

Gautam et al. (46) 2018 917 single-cell images Patch-based CNN Herlev DSC: 0.90
Precision: 89%
CNN, convolutional neural network; DSC, dice similarity coefficient; ZSI, zijdenbos similarity index.
FIGURE 3 | A example segmentation model based on Mask-RCNN architecture. Reproduced with the permission of ref. (51), copyright@IEEE, 2019. In training
phase, input was pap smear slide image and nucleus ground truth mask with class label was preprocessed and then trained in Mask R-CNN. In testing phase, pap
smear slide image was preprocessed. Mask RCNN was used to specify bounding box, nucleus mask, and class of each cell.
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deep feature fusion techniques were proposed, with high
accuracy in the SIPAKMeD dataset (56).

3.2.3 AI Improves the Screening accuracy
of Cervical Intraepithelial Lesions
After the establishment of a good automated cytological
detection model based on the AI method, some studies have
found that cytological examination assisted by AI can classify
cervical cells to guide triage and improved the detection rate of
CIN compared with that of standard pathological biopsy results
(32, 59) (Table 5).

A prospective cohort study of 700,000 women in a
population-based cervical cancer screening program using a
validated AI-assisted cytological diagnostic system was
conducted by Bao et al. They reported a total coincidence rate
of 94.7% and a 5.8% increase in sensitivity (3.0–8.6%) compared
to manual reading (60). Another observational study was
conducted to evaluate the ability of AI-assisted cytology to
histologically detect CIN or cancer. Detection rates for CIN 2
and CIN 3+ of 92.6% and 96.1%, respectively, were obtained.
These were significantly higher than those of manual reading
(61). Furthermore, Wang et al. established a DL-based cervical
disease diagnosis system that detects high squamous
intraepithelial lesions (HSILs) or higher, and an accuracy of
0.93 was achieved (62). Zhu et al. developed an AI-assisted TBS
(AIATBS) (21) diagnostic system, which showed higher
sensitivity than the diagnosis by senior cytologists. The
Frontiers in Oncology | www.frontiersin.org 6
sensitivity of the AIATBS in detecting CIN was 94.74% in a
clinical prospective validation (63).

The evidence above overall indicates that AI has been widely
used for HPV testing and cytology and has achieved a good
detection rate and accuracy. More studies and applications are
underway in this regard. For example, Tang et al. developed an
AI microscope with an augmented reality (AR) display for
cervical cytology screening. They reported that it significantly
improved detection sensitivity for low squamous intraepithelial
lesion (LSIL) and HSIL and consistency in multiple
classifications and atypical squamous cells of uncertain
significance recognition. In addition to diagnostic applications,
training novice cytopathologists could be another potential
application for AI microscopes (64).
4 APPLICATIONS OF AI IN CERVICAL
CANCER DIAGNOSIS

Cervical cancer and precancerous lesions are diagnosed by
colposcopy-guided biopsy and staged according to the
Federation International of Gynecology and Obstetrics (FIGO)
staging standard (65). In 2018, the FIGO allowed the use of
imaging and pathologic findings (if any) in staging (66). AI
technology has been used in colposcopy and magnetic resonance
imaging (MRI) to assist in the diagnosis and staging of cervical
cancer and has shown satisfactory results. Figure 4 illustrates the
TABLE 4 | Application of AI in cervical cell classification.

Reference Year Methods Datasets (Num. of images) Classes Results

Chankong et al. (41) 2014 Bayesian classifier KNN ANN ERUDIT (552) 4-class Accuracy 96.20%
2-class Accuracy 97.83%

Herlev (917) 7-class Accuracy 93.78%
2-class Accuracy 99.27%

LCH (300) 4-class Accuracy 95.00%
2-class Accuracy 97.00%

Borakden et al. (53) 2017 Ensemble classifier: LSSVM MLP RF Cell level (1610) 2-class Accuracy 99.07%
Specificity 98.90%

Smear level (1320) 3-class Accuracy 98.11%
Specificity 99.35%

Hervel (917) 2-class Accuracy 96.51%
Specificity 89.67%

Zhang et al. (54) 2017 CNN; Transfer learning Herlev (917) 7-class Accuracy 98.30%
Specificity 98.30%

HEMLBC (2370) 2-class Accuracy 98.60%
Specificity 99.00%
sensitivity 98.30%

Hussain et al. (52) 2020 CNN; Transfer learning LBC (own) (1670), Conventional(own) (1320) 4-class Accuracy 98.90%
Sensitivity 79.80%
Specificity 97.90%

Shi J et al. (55) 2020 CGN SIPAKMeD (4049) 5-class Accuracy 98.37%
Sensitivity 99.80%

MOTIC (25378) 7-class Accuracy 94.93%
Sensitivity 92.98%

Rahaman et al. (56) 2021 HDFF Herlev (917) 2-class Accuracy 98.32%
7-class Accuracy 90.32%

SIPAKMeD (4049) 2-class Accuracy 90.32%
5-class Accuracy 99.14%
March 2
022 | Volume 1
KNN, K- Nearest Neighbor; ANN, Artificial Neural Network; LSSVM, Least Squares Support Vector Machine.
CNN, convolutional neural network; CGN, graph convolution network; HDFF, hybrid deep feature fusion techniques.
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workflow of the CNN model and transfer learning used in
colposcopy image classification.

4.1 Coloscopy
At present, the consistency between colposcopy and pathology is
poor, which may lead to misdiagnosis and missed diagnosis.
Colposcopy performed by an unskilled clinician could result in
potential harm (including bleeding, infection, vaginal discharge,
pain, or discomfort) and therefore, requires adequate training
and experience to achieve proficiency and ensure maintenance of
operating procedures. However, the long training period of
professional colposcopy doctors and the lack of qualified
Frontiers in Oncology | www.frontiersin.org 7
personnel create challenges for the use of colposcopy in the
diagnosis of cervical cancer (67).

4.1.1 AI Boosts Image Classification Performance
Recently, DL has been widely used in medical imaging (15). The
application of DL technology in the classification of colposcopy
is helpful in solving the bottleneck of traditional colposcopy and
improving its diagnostic performance (Table 6).

Miyagi et al. developed and trained a CNNAI classifier for the
LISIL/HSIL classification of colposcopy images. The accuracy,
sensitivity, and specificity of the AI classifier and oncologist in
diagnosing HSIL were 0.823 and 0.797, 0.800 and 0.831, and
FIGURE 4 | Schematic representation of application of Convolutional Neural Network in colposcopy images. Schematic depicting that a CNN pre-trained on other
large-scale image datasets can be adapted to significantly increase the accuracy and shorten the training duration of a network trained on a novel dataset of
colposcopy images.
TABLE 5 | Application of AI in cytology to detect CIN.

Reference Year N Methods Databases Results

Yu et al. (32) 2018 1839 Risk score algorithm Cytological image HPV testing CIN2+ AUC 0.710
CIN3+ AUC 0.740

Bao et al. (60) 2020 703103 DL Cytological image CIN1+ Sensitivity 88.9%
Specificity 95.8%
CIN2+ Sensitivity 90.10%
Specificity 94.80%

CIN3+Sensitivity 90.90%
Specificity 94.40%

Bao et al. (61) 2020 2145 ResNet Cytological image CIN2+ AUC 0.762
CIN3+ AUC 0.755

Wang et al. (62) 2020 143 DL whole slide images (WSIs) precision 93.00%
recall 90.00%,
F-measure 88.00%

Holmström O et al. (59) 2021 740 DL Cytological image HSIL+ AUC
0.970Sensitivity 85.7%
Specificity 98.5%

Zhu et al. (63) 2021 980 AIATBS Cytological imageBiopsy
diagnosis results Sensitivity 94.74%
March 2022 | V
DL, deep learning; CNN, convolutional neural network; AIATBS, artificial intelligence-assisted TBS; CIN, cervical intraepithelial neoplasia; AUC, area under the curve; HSIL, high squamous
intraepithelial lesion.
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0.882 and 0.773, respectively (24). Later, a classifier based on DL
was developed, which uses HPV types and cervical SIL images to
classify HSIL/LSIL. The accuracy of the classifier was 0.941 (73).
Xue et al. developed an AI method (CAIADS) to grade the
colposcopy impression and guide the biopsy. The consistency of
CAIADS-graded colposcopy impression and pathological results
(82.2%) was higher than that traditional colposcopy (65.9%)
(74). The ResNet model based on DL was established by Yuan
et al. Its sensitivity and specificity based on DL were 85.38% and
82.62%, respectively. The model helps in colposcopy diagnosis
and guides biopsy (26). The C-RCNN algorithm was proposed
by Yue et al. to classify cervical lesions, and the time and spatial
features were extracted using long-term and short-term memory
network. Models with better specificity (98.22%), sensitivity
(95.09%), accuracy (96.13%), and area under the curve (0.94%)
were obtained (75).

4.1.2 AI Helps Detect High-Grade Cervical Lesions
and Guides Biopsy
Clinically, one of the most important goals of cervical cancer
screening is to distinguish between normal/CIN 1 and CIN 2/3+.
If the lesion is classified as CIN 2/3+, treatment is required. In
Frontiers in Oncology | www.frontiersin.org 8
contrast, mild dysplasia in CIN 1 is usually cleared following
approximately a year of immune response and can therefore be
observed or treated more conservatively. Kim et al. developed a
data-driven computer interpretation algorithm for cervical images
based on color and texture. They obtained a sensitivity of 74% and a
specificity of 90% in differentiating high-grade cervical lesions (CIN
3+) from low-grade lesions and normal tissues (68). Hu et al.
conducted a longitudinal cohort study on 9,406 women for 7 years.
The cervical images obtainedwere used to validate themodel based
on the fast R-CNNmethod. The AUC of the model for diagnosing
CIN 2+ was 0.91, which exceeded the interpretation of the same
image by the colposcope evaluator and was superior to those of
traditional Pap smears and alternative types of cytology (70). Cho
et al. developed a binary decision model to determine the need to
biopsy for a cervical lesion.TheNeed-To-Biopsywas defined as ‘not
being normal’, referring to CIN+ and LSIL+. The performance of
the best RESNET-152 model showed an average AUC of 0.947, a
sensitivity of 85.2%, and a specificity of 88.2% (71); thus, the model
helps an inexperiencedclinician judgewhether toperformacervical
biopsy or refer the patient to a specialist.

The powerful image analysis ability of AI has solved the
problem of diagnosing cervical cancer using a large number of
TABLE 6 | Application of AI in colposcopy.

Reference Year Aim of the study Number of
subjects

Methods Images Results

Kim E et al. (68) 2013 Detection of CIN2+ 2000images SVM Cervicography Sensitivity 75.00%
Specificity 75.00%

Song et al. (69) 2015 Detection of CIN2+ 7669patients MCNN Cervicography Accuracy 80.00%
Sensitivity 83.21%
Specificity 94.79%

Hu et al. (70) 2019 Detection of CIN2+ 9406patients Faster-
CNN

Cervicography AUC 0.91

Chao et al. (71) 2020 Detection lesions need to biopsy and
classification

791 patients CNN Optical colposcopy image Sensitivity 85.20%
Specificity 88.20%
AUC 0.947

Asiedu et al. (72) 2019 Classification of cervical lesions 134 patients SVM Digital colposcopy images Accuracy 80.00%
Sensitivity 81.30%
Specificity 78.60%

Yuan et al. (26) 2020 Classification of cervical lesions 22330images CNN Digital colposcopy images Sensitivity 85.38%
Specificity 82.62%

Miyagi et al. (73) 2019 Classification of cervical lesions 253patients CNN Traditional colposcopy
images

Accuracy 83.30%
Sensitivity 95.60%

Miyagi et al. (23) 2019 Classification of cervical lesions 310images CNN Traditional colposcopy
images

Accuracy 82.30%
Sensitivity 80.00%
Specificity 88.20%

Xue et al. (74) 2020 Classification of cervical lesions 19435patients CAIADS Digital colposcopy images LSIL Sensitivity 90.50%
Specificity 51.80%
HSIL Sensitivity
71.90%
Specificity 93.90%

Yue et al. (75) 2020 Classification of cervical lesions 4753images CNN, cervigram images Accuracy 96.13%
Sensitivity 95.09%
Specificity 98.22%
AUC 0.94

Venkatesan et al.
(76)

2021 Classification of cervical lesions 5679images CNN colposcopy photographs Accuracy 83.30%
Sensitivity 95.60%

Peng et al. (77) 2021 Classification of cervical lesions 300images VGG16 colposcopy images Accuracy 86.30%
Sensitivity 84.10%
Specificity 89.80%
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colposcopy images. With the assistance of AI technology, the
accuracy of detecting lesions and performing biopsy under
colposcopy becomes relatively high, thus reducing the
misdiagnosis rate of colposcopy (69, 72, 76, 77).

4.2 Pelvic MRI
MRI has proven to be highly accurate in the preoperative staging
of cervical cancer (78, 79). Therefore, MRI is the first choice for
local staging, evaluation of treatment response, detection of
tumor recurrence, and follow-up of patients with cervical
cancer (80). The primary objective of MRI is to determine the
presence of peritumoral infiltration and lymph node metastasis
(LNM) (81) (Table 7).

4.2.1 Segmentation of Cervical Cancer Lesions
MRI has a higher soft tissue resolution than CT. It can determine
tumor size and adjacent pelvic structures and assess periuterine
invasion and uterine and vaginal involvement (68). Lin et al.
developed a U-Net CNN to accurately locate and segment
cervical carcinoma in diffuse-weighted imaging (DWI). They
reported the highest learning efficiency during image training,
with a dice coefficient of 0.8, sensitivity of 0.89, and a positive
predictive value of 0.92 (82). Liang et al. established a
computational model of a DL algorithm based on wireless
network, which can be used to segment cervical cancer MRI
images with a 98% accuracy, which is evidently better than that
of traditional depth-learning algorithms (<90%) (84). AI is more
accurate, objective, and faster than manual segmentation. Wang
et al. established a non-invasive radiologic model based on T2-
weighted imaging (T2WI) and DWI, divided MRI images, and
extracted features to predict periuterine invasion. The AUCs of
T2WI and T2WI combined with DWI in the validation cohort
were 0.780 and 0.921, respectively (83).

4.2.2 Diagnosis of Cervical Cancer LNM
AI also contributes to the early diagnosis of cervical cancer LNM.
Although the accuracy of computed tomography and MRI in
assessing lymph node involvement only ranged from 83% to
Frontiers in Oncology | www.frontiersin.org 9
85%, their specificity was very high, ranging from 66% to 93%
(74). In 2018, the cervical cancer staging system was revised to
include lymph node status as a staging criterion for the first time.
Cervical cancer with lymph node involvement on imaging or
pathology was classified as stage IIIC (66). Wu et al. developed a
DL model using preoperative MRI to predict LNM in patients
with cervical cancer. The AUC using both intratumoral and
peritumoral DL models in T1WI was 0.844, whereas that of the
hybrid model, which combines the tumor image information
from DL mining with the lymph node status reported by MRI,
was 0.933 (89), thus improving the detection rate of LNM.

Over the past decade, radiology has evolved to bridge the gap
between imaging and precision medicine. Radiology uses
complex image analysis tools combined with statistical analysis
to extract rich information hidden in medical images (90). Wu
et al. used MRI radiomic analysis to improve the diagnostic level
of LNM in patients with cervical cancer. The combination of
T2WI and decision tree of lymph node status had the best
diagnostic effect; in the training and validation cohorts, the
AUC and sensitivity were 0.895% and 94.3% and 0.847% and
100%, respectively (89). Wang et al. showed that radiographic
images based on T2WI and DWI showed a good predictive
power for pelvic LNM in early cervical cancer (83). More values
are listed in Table 7 (85–89).
5 LIMITATIONS AND FUTURE DIRECTIONS

AI performs well in both computing and image analyses. These
characteristics make it a rising star in the field of medical
research, helping clinicians in decision-making, reducing the
workload of doctors, and reducing the rate of misdiagnosis.
Overall, AI can improve the specificity and accuracy of
screening and diagnostic programs, overcome time constraints
and limited professional and technical personnel, and avoid bias
caused by subjective factors, which will enable cervical cancer
screening to be implemented in resource-poor areas, thus
markedly reducing the incidence of cervical cancer.
TABLE 7 | Application of AI in MRI to diagnosis cervical cancer.

Reference Year Aim of study Number of cases Methods Results

Lin et al.
(82)

2020 Cervical Cancer MRI Image
segmentation and location

169 patients (training set
144; validation set 25)

DL Radiomics A dice coefficient: 0.82; Sensitivity: 0.89, PPV:0.92

Wang et al.
(83)

2020 Segmentation: Prediction of
parametrial invasion

137 patients (training set
91; validation set 46)

Radiomics Training set AUC T2WI: 0.797 T2WI and DWI0.780 (95% CI)
Validation set T2WI 0.946 (95% CI) T2WI and DWI 0.921 (95% CI)

Peng et al.
(84)

2019 Enhancing Cervical Cancer
MRI Image Segmentation

Not mention Wireless
network; DL

AUC 0.980

Yu et al.
(85)

2019 Assisting diagnosis of lymph
node metastasis

153 patients (training set
102; validation set 51)

Radiomics Training set AUC: 0.870Validation set AUC 0.864

Wu et al.
(86)

2019 Assisting diagnosis of lymph
node metastasis

189 patients (training set
126; validation set 63)

Radiomics Training set AUC 0.895 Sensitivity 94.3%Validation set AUC 0.847
Sensitivity 100%

Wang et al.
(87)

2019 Assisting diagnosis of lymph
node metastasis

96 patients (training set
96; validation set 96)

RadiomicsSVM Training set C-index 0.893(P=4.311*10-5)Validation set C-index 0.922
(P=3.412*10-2)

Xiao et al.
(88)

2020 Assisting diagnosis of lymph
node metastasis

233 patients (training set
155; validation set 78)

Radiomics Training set C-index 0.856 (95% CI)Validation set C-index 0.883
(95% CI)

Wu et al.
(89)

2020 Assisting diagnosis of lymph
node metastasis

479 patients (training set
338; validation set 141)

DL AUC 0.933 (95% CI)
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However, the application of AI involves some challenges. First
is data; machine learning (ML) algorithms sometimes lack data
in that they typically require millions of observations to achieve
acceptable performance levels (86). However, current clinical
data may be scarce, lack markers, and have uncertain quality.
The management of medical data is another major obstacle for
the development of automated clinical solutions (15). The
establishment of not only multiple but also standardized and
large databases is a future concern. Data security issues and
overfitting should also be considered as they can give rise to
exaggerated results that can lead to overdiagnosis (90). Second,
models established using AI have not been applied and
popularized in clinical practice; therefore, a series of
prospective clinical studies are urgently needed to verify these
results. Third, AI cannot replace clinicians as it is only an
auxiliary diagnostic approach. AI may also cause system
paralysis, requiring technical maintenance skills. Furthermore,
maintenance systems need to be trained and established.

AI is promising in cervical cancer screening, especially its
application in cervical cytology is relatively mature. But the
segmentation technology is still faced with many challenges
which is important for automatic classification. Such as the
segmentation of overlapping nuclei, the processing of non-
target cells, and fragments and the quality control of slide
dyeing differences are still problem that needs to be optimized.
We also mentioned that some classification methods do not rely
on segmentation techniques in the previous. It will avoid many
pre-processing steps and may be a direction for future
development. In addition to the application of early screening
and diagnosis mentioned in this paper, AI can be applied to the
treatment, prognosis prediction, and prevention of cervical
cancer. In the future, more research on treatment and
prediction is needed for better treatment decision-making. This
Frontiers in Oncology | www.frontiersin.org 10
will facilitate cervical cancer eradication programs worldwide.
Furthermore, as the incidence of cervical adenocarcinoma and
other rare pathological types increases, AI should be applied for
the early diagnosis of such diseases in the future. AI can also be
used for noninvasive differentiation of cervical cancer from other
diseases. Further development of AI technologies will greatly
enhance the prediction of cervical cancer, maximize the
improvements in cervical cancer screening and diagnosis,
optimize staging systems, and improve patient prognosis.
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