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At present, little is known about brain functional connectivity and its small-world topologic properties in first-episode
schizophrenia (SZ) patients during cool executive function task. In this paper, the Trail Making Test-B (TMT-B) task was used
to evaluate the cool executive function of first-episode SZ patients and electroencephalography (EEG) data were recorded from
14 first-episode SZ patients and 14 healthy controls during this cool executive function task. Brain functional connectivity
between all pairs of EEG channels was constructed based on mutual information (MI) analysis. The constructed brain
functional networks were filtered by three thresholding schemes: absolute threshold, mean degree, and a novel data-driven
scheme based on orthogonal minimal spanning trees (OMST), and graph theory was then used to study the topographical
characteristics of the filtered brain graphs. Results indicated that the graph theoretical measures of the theta band showed
obvious difference between SZ patients and healthy controls. In the theta band, the characteristic path length was significantly
longer and the cluster coefficient was significantly smaller in the SZ patients for a wide range of absolute threshold T. However,
the cluster coefficient showed no significant changes, and the characteristic path length was still significantly longer in SZ
patients when calculated as a function of mean degree K. Interestingly, we also found that only the characteristic path length
was significantly longer in SZ patients compared with healthy controls after using the OMST scheme. Pearson correlation
analysis showed that the characteristic path length was positively correlated with executive time of TMT-B for the combined SZ
patients and healthy controls (r = 0 507, P = 0 006), but not for SZ patients alone (r = 0 072, P = 0 612). The above results
suggested a less optimal organization of the brain network and could be useful for understanding the pathophysiologic
mechanisms underlying cool executive dysfunction in first-episode SZ patients.

1. Introduction

Schizophrenia (SZ), one of the most serious mental disor-
ders, usually causes many aspects of cognitive dysfunction,
including memory, attention, and executive function [1].
And executive dysfunction is considered to be one of the
most critical cognitive dysfunctions [2]. Generally, executive
function is involved in a range of higher-level cognitive
processes including anticipation, goal selection, planning,
behavior’s choice, inhibition, self-control, and self-
monitoring [3, 4]. At present, a large number of studies have
shown that patients with schizophrenia are accompanied by
severe executive dysfunction [5–8].

It has been demonstrated that the cognitive dysfunction
or other symptoms of SZ can be interpreted in terms of
altered brain functional connectivity among different brain
regions [9]. A large number of electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI)
studies have confirmed dysfunctional connectivity in SZ
patients [10–16]. Among the usually applied methods to
study functional connectivity, such as coherence and correla-
tion coefficient, mutual information (MI) has been widely
applied in many studies to investigate the information com-
munication and connectivity among different brain regions
[11, 17, 18]. MI is based on information theory [19] and
can be used to measure the amount of information that can
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be obtained about one variable from the measurement of
another. Different from the traditional correlation coefficient
which only measures linear dependence between time series,
MI takes account of both linear and nonlinear dependencies,
which makes MI a superior method for studying dynamical
coupling or information transmission between EEG data.
Some researchers tried to use MI to study schizophrenia,
but the results do not seem consistent [11, 17, 20].

In recent years, graph theory analysis has been widely
applied to study the topologic characteristics of brain func-
tional networks. Previous studies have implied that the
small-world network is considered to be one of the most
appropriate models to balance local segregation and
integration in the human brain [21, 22]. The small-world
network is characterized by a higher cluster coefficient com-
pared to a random network and a shorter path length com-
pared to a regular network, which allows for more efficient
information transfer among distant brain regions. Previous
EEG studies have indicated that SZ patients showed a dis-
rupted small-world network in the rest state [23, 24], during
working memory task [25–27], during oddball paradigm task
[28, 29], and in processing local contextual information [30].
For example, Shim et al. [28] found that reduced cluster coef-
ficients and increased path lengths appeared in SZ patients
during an oddball task. Therefore, we hypothesized that the
disrupted small-world network would also appear in SZ
patients during a cool executive function task.

Because executive function impairment is considered to
be one of the most critical cognitive dysfunctions, it is of
importance to investigate the brain functional networks in
SZ patients during an executive function task. Zelazo and
Müller [31] divided executive function into cool executive
function and hot executive function. The hot executive func-
tion is related to emotional involvement and needs flexible
evaluation about the emotional significance of the stimulus,
whereas the cool executive function is unrelated to emotional
involvement and often caused by decontextualized tasks,
because the cool executive function is not involved in emo-
tional arousal and clinical observations have shown that
emotional reactions of SZ patients usually do not match their
inner experience [32]. At present, some cool executive func-
tion tasks including Trail Making Test-A (TMT-A) and Trail
Making Test-B (TMT-B) have been applied to evaluate the
cool executive function of schizophrenia patients [33, 34].
However, little is known about the brain functional connec-
tivity and its small-world topologic properties in first-
episode schizophrenia patients during a cool executive
function task.

By taking all these considerations into account, the aim of
the present study was to combine functional connectivity
based on MI with graph theory analysis to investigate the
brain functional network in first-episode SZ patients during
a cool executive function task. In this paper, the functional
connectivity matrixes were constructed by using MI analysis
between all pairs of EEG channels in different frequency
bands. Then, the constructed brain functional networks were
filtered by three thresholding schemes: absolute threshold,
mean degree, and a novel data-driven scheme based on
orthogonal minimal spanning trees (OMST), and graph

theoretical measures were calculated. The differences
between SZ patients and healthy controls were evaluated by
statistical analysis. Finally, Pearson’s correlation was used
to evaluate the relationship between cluster coefficient C or
path length L and task performance.

2. Materials and Methods

2.1. Subjects. 14 first-episode SZ patients (9 male and 5
female) were recruited from the Henan Psychiatric Hospital
of China according to the Structured Clinical Interview for
DSM-IV, and any patients with a history of medication treat-
ment, drug abuse/dependence, electroconvulsive therapy, or
other psychiatric and neurological diseases were excluded.
The mean age of the 14 SZ patients was 28.21± 6.94 years,
the mean duration of illness was 18.26± 7.03 months, and
all patients are right-handed. For healthy controls, a group
of 14 subjects matched for sex, age, and dominant side was
recruited (9 male and 5 female; mean age: 25.13± 3.75; all
right-handed), and any healthy controls with a past or cur-
rent psychiatric illness, drug dependence, neurological disor-
ders, or severe somatic diseases were excluded. The study was
approved by the ethics committee of Henan Psychiatric Hos-
pital of China, and an informed consent form was signed by
all participants before the experiment.

2.2. EEG Recordings and MI Computation. The EEG data
were recorded from all participants when they were perform-
ing a cool executive function task, that is, the TMT-B task. As
for the TMT-B task that evaluates quick visual search, visual
space sorting, and cognitive set transfer functions, the partic-
ipants were asked to connect numbers (1–13) and letters (A–
M) using a pen on a paper according to an alternating
sequence as fast as possible, and the pen tip cannot leave
the paper during this process. The execution time to com-
plete this task and the error number that is the number of
incorrectly linked numbers and letters were used to evaluate
the task performance of the participants.

The EEG data were recorded at a sampling rate of
1000Hz from 24 channels (FP1, FPz, FP2, AF3, AF4, F7,
F5, F3, F1, Fz, F2, F4, F6, F8, T7, C3, C4, T8, P7, P3, P4,
P8, O1, and O2) that were mounted on the scalp with a 64-
channel EEG cap according to the 10-20 standard system.
And the impedance of all electrodes was below 10 kΩ.

Offline EEG preprocessing was carried out by using
Matlab 7.7.0 R2010a software (Mathworks Inc., USA)
equipped with the EEGLAB toolbox [35]. Firstly, a 0.5–
30Hz zero-phase bandpass filter was applied. Then, ocular
and prominent muscle artifacts were removed by means of
independent component analysis (ICA), and the average
number of artifactual independent components was 3.1
± 0.8 (mean± std) and 3.4± 0.7 (mean± std) for healthy con-
trols and SZ patients, respectively. Subsequently, the EEG
data were divided into 10-second epochs and recomputed
against the average reference. Finally, the following 4 fre-
quency bands were obtained using a zero-phase bandpass fil-
ter: delta (0.5–3Hz), theta (4–7Hz), alpha (8–13Hz), and
beta (13–30Hz).
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MI is based on information theory and can be used to
measure the amount of information that can be obtained
about one variable from the measurement of another. The
main advantage of MI is that it takes account of both linear
and nonlinear dependencies. The detailed calculation
method of MI was described in some previously published
literature [11, 17, 18, 36]. Briefly, given two random variables
X and Y , the pairwise MI is defined as

MI X, Y =〠
x,y
PXY x, y log2

PXY x, y
PX x PY y

, 1

where PX x is the probability that x is drawn from X and
PXY x, y is the joint probability density function for the
measurements of X and Y that produce the values x and y.

MI is estimated from a finite number of samples, and the
probability densities, PX x and PXY x, y , are approximated
by histogram (using bin size of 100). For a fair comparison
across subjects and frequency bands, here we computed the
normalized MI as

NormalizedMI X, Y = MI X, Y
H X +H Y

, 2

where H X and H X are the entropies and H X is
defined as ∑xPX x log2PX x . The normalized MI is in
the range of [0, 1]. Here, the data are separated into 10-
second epochs for MI computation in order to increase
the sample size as well as to enhance the stationarity and
consistency of the MI computation.

MI between all pairs of EEG channels was computed,
resulting in a 24× 24 matrix (24 is the number of EEG chan-
nels). For each epoch, the MI matrix was computed, and an
average MI matrix for each subject was obtained by averag-
ing the MI matrixes calculated from all epochs. According to
the above process, the MI matrixes for the above-mentioned
four frequency bands (delta: 0.5–3Hz, theta: 4–7Hz, alpha:
8–13Hz, and beta: 13–30Hz) were computed.

2.3. Graph Theoretical Analysis. In this paper, the MI matrix
was converted into an undirected binary graph by applying
three network filtering schemes: absolute threshold T, mean
degree K, and OMST method. Because there is no optimal
way to select T, here the range of 0 15 < T < 0 45 (in step of
0.005) was selected for the four bands. It is well-known that
the edge number in a graph has a great relationship with
the values of L and C, and the edge number in the 2 graphs
(SZ patients and healthy controls) will be different by apply-
ing a certain T. Therefore, in order to eliminate this effect, the
L and C were calculated as a function of degree K (2 < K < 8,
in step of 0.1).

Recently, Dimitriadis et al. [37, 38] proposed a novel
data-driven topological filtering scheme based on OMST,
which filters brain connectivity networks based on the opti-
mization between the global efficiency of the network and
the cost preserving its wiring. Here, we tried using the OMST
method to filter the constructed brain networks and recom-
puted graph theoretical measures. After the MI matrix was

converted into an undirected binary graph, the graph theo-
retical measures, such as characteristic path length L and
cluster coefficient C, were computed. Detailed descriptions
and calculation methods for L and C could be found in some
previously published literature [39, 40].

The small-world network is characterized by a similar
path length and higher cluster coefficient compared to a
random network, that is, γ = Creal/Crandom > 1, λ = Lreal/
Lrandom ≈ 1. And the small-world index could be defined as
σ = γ/λ. For the small-world network, the σ is greater than 1.
Here, in order to compute small-world indexes of experi-
mental networks (SZ patients and healthy controls), after
applying the OMST filtering scheme, 300 random networks
were generated for each experimental network by using the
Markov-chain algorithm [41, 42]. As a result, the mean
small-world index σ of experimental networks (SZ patients
and healthy controls) was computed.

2.4. Statistical Analysis. All statistical analyses were car-
ried out using SPSS version 21.0 software (SPSS Inc.,
Chicago, IL). The Shapiro-Wilk test was used to test for nor-
mality of distribution. Task performance, such as execution
time and error number, was statistically compared between
SZ patients and healthy controls by using independent sam-
ple t-test. The differences of C and L between SZ patients and
healthy controls for each value over a range of T or degree
K were compared by using the Mann–Whitney U test. In
addition, Pearson correlation analysis was applied to
explore whether there existed correlation between C or L
and task performance. P < 0 05 showed that a significant
difference existed.

3. Results

The mean executive times of the TMT-B task for SZ patients
and healthy controls were 123.85± 27.11 s and 75.93
± 17.79 s, respectively. Independent sample t-test was used
to analyze their statistical difference, and results indicated
that the mean executive time of SZ patients was significantly
longer than that of healthy controls (P = 0 000). The mean
error numbers during TMT-B for SZ patients and healthy
controls were 1.46± 1.98 and 0.31± 0.84, respectively, and
statistical analysis implied that the mean error number of
SZ patients was significantly larger than that of healthy con-
trols (P = 0 001). We believed that the above behavioral
results were mainly due to the cool executive dysfunction of
SZ patients.

Figure 1 showed the computed mean cluster coefficient C
and characteristic path length L for SZ patients and healthy
controls as a function of threshold T in the delta band
(Figure 1(a)), theta band (Figure 1(b)), alpha band
(Figure 1(c)), and beta band (Figure 1(d)). In all frequency
bands, it was found that the mean cluster coefficient C
decreased almost linearly with the increase of T. This was
because more and more connectivity between the nodes in
the graph was lost when threshold T increased. In addition,
when T values were small, the characteristic path length L
increased almost linearly with the increase of T, and this
was because more and more connectivity between the nodes
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Figure 1: Continued.
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dropped out when threshold T increased, which increased
the average path length between randomly selected nodes.
When the threshold T reached a certain value, the character-
istic path length L started to decrease. This phenomenon
could be explained by the fact that the graph was divided into
more than 2 subgraphs when T further increased and the
resulted subgraphs were smaller than the original graph,
which led to the decrease of mean L.

As shown in Figures 1(a), 1(c), and 1(d), there existed no
significant difference between SZ patients and healthy con-
trols for C and L in the delta, alpha, and beta bands in the
range of 0 15 < T < 0 45 (in step of 0.005). As indicated in
Figure 1(b), for a wide range of T (0 15 < T < 3 3), there
always existed significant differences between SZ patients
and healthy controls for C and L in the theta band. And the
most significant difference for C and L occurred at
T=0.195 (Mann–Whitney U test, U=40.000, W=145.000,
P = 0 008) and 0.305 (Mann–Whitney U test, U=27.000,
W=132.000, P = 0 001), respectively.

As shown in Figure 2, the mean cluster coefficient C and
characteristic path length L for SZ patients and healthy con-
trols were computed as a function of degree K in the delta
band (Figure 2(a)), theta band (Figure 2(b)), alpha band
(Figure 2(c)), and beta band (Figure 2(d)). For all frequency
bands, it was found that the mean cluster coefficient C
increased almost linearly with the increase of K. For the delta
(Figure 2(a)), alpha (Figure 2(c)), and beta (Figure 2(d))
bands, there was no significant difference between SZ
patients and healthy controls for C and L. As shown in
Figure 2(b), there existed significant difference for L between
SZ patients and healthy controls for wide ranges of 2 2 < K
< 2 8 and 4 0 < K < 5 8 (P < 0 05), and the most significant
difference occurred at K = 4 1 (Mann–Whitney U test,
U=37.000, W=142.000, P = 0 005). However, there was no
significant difference for C between SZ patients and healthy
controls for the whole range of K.

The above two network thresholding schemes (absolute
threshold and mean degree) are arbitrary thresholding

schemes that might add bias for group and task comparisons
and reduce the possibility of the reproducibility of the find-
ings across studies from different research groups. So
recently, Dimitriadis et al. [37, 38] proposed a novel data-
driven topological filtering scheme based on OMST, which
filters brain connectivity networks based on the optimization
between the global efficiency of the network and the cost pre-
serving its wiring. Here, the graph theoretical measures were
recomputed by applying the OMST filtering scheme. As
shown in Figure 3, the mean cluster coefficient C
(Figure 3(a)) and characteristic path length L (Figure 3(b))
for SZ patients and healthy controls were computed based
on the OMST scheme in the four bands. It is obvious that
there was no significant difference for C between SZ patients
and healthy controls in the four bands. However, significant
difference existed only in the theta band for L between SZ
patients and healthy controls (Mann–Whitney U test,
U=30.500, W=135.500, P = 0 002), which was consistent
with that of the mean degree K scheme (Figure 2(b)).

The small-world index could be defined as σ = γ/λ,
where γ = Creal/Crandom and λ = Lreal/Lrandom. After apply-
ing the OMST filtering scheme for experimental networks
(SZ patients and healthy controls), 300 random networks
were generated for each experimental network by using
the Markov-chain algorithm [41, 42], and the corresponding
γ, λ, and σ were computed. Results indicated that the
small-world indexes of SZ patients and healthy controls
were 3.148± 1.263 and 2.892± 1.475, respectively, and the
small-world indexes of both groups were greater than 1,
indicating that both groups had small-world network char-
acteristics during the TMT-B task. However, it was found
that there was no significant difference for the small-world
index between the two groups (Mann–Whitney U test,
U=64.000, W=169.000, P = 0 118).

Pearson correlation analysis was applied to explore
whether there existed correlation between C or L and the task
performance (executive time). As indicated in Figure 4(a),
the correlation coefficient between executive time and C

2.8

2.4
2.6

2.2
2

1.8

L

1.6
1.4
1.2

1

1

0.9

0.8

0.7

0.6C

0.5

0.4

0.3

0.2
0.15 0.2 0.25 0.3 0.35 0.4

T
0.15 0.2 0.25 0.3 0.35 0.4

T

SZ
Controls

(d) Beta band

Figure 1: Mean cluster coefficient C and characteristic path length L for SZ patients (square) and healthy controls (circle) as a function of T in
the delta band (a), theta band (b), alpha band (c), and beta band (d). The asterisks showed significant difference between SZ patients and
healthy controls (P < 0 05).

5Behavioural Neurology



SZ
Controls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

3 4 5 6 7 82
K

1

1.5

2

2.5

3

3.5

4

L

3 4 5 6 72 8
K

(a) Delta band

SZ
Controls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C

3 4 5 6 7 82
K

1

1.5

2

2.5

3

3.5

4

L

3 4 5 6 7 82
K

(b) Theta band

SZ
Controls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C

3 4 5 6 7 82
K

1

1.5

2

2.5

3

3.5

4

L

3 4 5 6 7 82
K

(c) Alpha band

Figure 2: Continued.

6 Behavioural Neurology



was not significant for the combined SZ patients and healthy
controls (r = 0 146, P = 0 448) or SZ patients alone
(r = −0 186, P = 0 521). Figure 4(b) showed that the L were
positively correlated with executive times for the combined
SZ patients and healthy controls (r = 0 507, P = 0 006), but
not for SZ patients alone (r = 0 072, P = 0 412).

4. Discussion

Here, we studied the brain functional connectivity and its
small-world topologic properties underlying cool executive
dysfunction in first-episode SZ patients for the first time.
We observed that changes of small-world network properties
mainly appeared in the theta band, not in the delta, alpha, or

beta band, and the SZ group was characterized by a longer
characteristic path length L (having significant difference
compared with the healthy group) and relatively higher clus-
ter coefficient C (no significant difference compared with the
healthy group) in the theta band, suggesting a less optimal
organization of the brain network in SZ patients.

It was well-known that the characteristic path length L is
defined as the average shortest paths for all possible pairs of
nodes and stands for global efficiency of information
integration across different brain areas. Our results showed
that in the theta band, the L of SZ patients was signifi-
cantly longer than that of healthy controls over a wide
range of threshold T (Figure 1(b)), and this pattern was still
present when L was calculated as a function of degree K
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(Figure 2(b)) or by using the OMST filtering scheme
(Figure 3(b)), suggesting a more effective information inte-
gration and communication across different brain regions
in healthy controls compared with SZ patients. In addition,
some fMRI studies have reported fewer hubs (i.e., highly con-
nected nodes) in SZ patients [43, 44], and such reduction in
the number of highly connected nodes may explain the
longer L for SZ patients in our study. Moreover, the cluster
coefficient C was considered as a metric of the network segre-
gation and of the local efficiency of information communica-
tion. It was indicated that the C of SZ patients was
significantly smaller than that of healthy controls over the
whole range of T (Figure 1(a)), suggesting that the local con-
nections of networks in SZ patients were relatively spared.
However, no significant difference for C occurred between
SZ patients and healthy controls when C was calculated as a
function of degree K (Figure 2(a)) or by applying the OMST
filtering scheme (Figure 3(a)). It was well-known that the
edge number in a graph has a great relationship with the
values of L and C, and the edge number in the two graphs
(SZ patients and healthy controls) will be different by apply-
ing a certain T. Therefore, it was necessary to compute L and
C as a function of degree K, which ensured the same edge
number in the two groups, and the resulted differences in L
and C between the two groups would represent the differ-
ences of network configuration.

Although the above two network thresholding schemes
(absolute threshold and mean degree) have been widely
applied to threshold brain networks, they might add bias
for group and task comparisons and reduce the possibility
of the reproducibility of the findings across studies from dif-
ferent research groups. Therefore, in order to test the repro-
ducibility of our results, we applied a novel data-driven
topological filtering scheme based on the OMST proposed
by Dimitriadis et al. [37, 38] to filter our constructed brain
networks. Interestingly, we also found that significant differ-
ence existed only in the theta band for L between SZ patients

and healthy controls (Figure 3(b)), which was consistent with
that of the mean degree K scheme (Figure 2(b)). As described
above, no matter which filtering scheme is used, our results
always showed that SZ patients showed a significantly longer
L compared to healthy controls. Therefore, the longer L in SZ
patients cannot be due to the influence of other factors in the
two groups and reflects a true disturbance in the brain net-
work organization of this illness, which was consistent with
some previously published literature [27–29].

We applied the OMST scheme to threshold experimental
networks (SZ patients and healthy controls), and corre-
sponding random networks were generated to compute the
small-world index. For a small-world network, the C should
be much larger than that of the random network and L
should be close to that of a random network. Interestingly,
the calculated small-world indexes of both groups were
greater than 1, suggesting that both groups had small-world
network characteristics in the theta band. However, the
small-world index of SZ patients was larger than that of
healthy controls, but no significant difference existed.

We also studied the correlations between C
(Figure 4(a)) or L (Figure 4(b)) of the theta-band brain net-
work and task performance (executive time). Previous liter-
atures have reported that SZ patients need to spend more
time to finish some executive tasks due to their executive
dysfunction [3, 45], and our results indicated that the mean
executive time of TMT-B task for SZ patients was signifi-
cantly longer than that of healthy controls, which was con-
sistent with these literatures. Figure 4(b) showed that the L
was positively correlated with executive times for the com-
bined SZ patients and healthy controls, suggesting that the
longer L would lead to the longer executive time of the
TMT-B task. It was well-known that L reflects the global
efficiency of information integration across different brain
areas, and the L of SZ patients was significantly longer
than that of healthy controls (Figure 3(b)). By taking all
these considerations into account, we could infer that
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increased L, suggesting reduced global information integra-
tion ability, eventually led to increased executive time in
SZ patients.

In recent years, a large number of studies have found that
abnormal theta oscillation was closely related to SZ [46].
Increased theta activity was often observed in SZ patients
during the rest state [47], whereas many studies showed
reduced theta activity in SZ patients during various tasks
[48]. In addition, the altered theta-band brain functional
connectivity among different brain regions in SZ patients
also has been confirmed in many literatures [10, 49]. The
theta band was considered to play a key role in large-scale
functional integration by combining the activities of various
brain regions together [46, 50], and executive function that
is involved in a range of higher-level cognitive processes
relies on the integration of different brain areas for proper
functioning [49]. The present study showed that there existed
significant difference for small-world topologic properties
between the two groups during the cool executive task only
in the theta band, not in the other frequency bands, which
supported the above-mentioned results. However, our study
indicated that there was no significant difference for the
small-world index in the theta band between first-episode
SZ patients and healthy controls during the cool executive
function task, which was in contrast with the study of Jhung
et al. [26] in which the small-world index in the theta band of
first-episode SZ patients during working memory task signif-
icantly decreased compared with that of healthy controls.
This might suggest that the impairment degree of the cold
executive function is much less than that of working memory
function in first-episode SZ patients.

The present study has certain limitations. Firstly, in order
to get more reliable conclusions, the sample size of subjects
must be increased. Secondly, we studied the small-world
topologic properties of SZ patients during only one cool
executive task, that is, the TMT-B task, but it is not clear
whether task difficulty influences the small-world topologic
properties of SZ patients. Therefore, it is necessary and inter-
esting to design cool executive tasks with different difficulty
to study this issue in future work. Moreover, from a method-
ological point of view, our study converted functional con-
nectivity based on MI into a binary graph, which would
result in the loss of part of the information compared to the
weighted graph.

5. Conclusions

Our results indicated that a less-optimal organization of the
brain functional network in the theta band occurred in
first-episode SZ patients compared with healthy controls.
SZ patients owned a significantly longer characteristic path
length L in the theta band no matter which filtering scheme
is used, which suggested a disturbance in globally efficient
communication between different brain areas in SZ patients.
The present study combining functional connectivity and
graph theory analysis provided helpful findings to reveal
the pathophysiologic mechanisms underlying cool executive
dysfunction in first-episode SZ patients.
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