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The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells,
stromal cells, and immune cells. Analysis of the composition of TME is essential to assess
the prognosis of patients with breast cancer (BC) and the efficacy of different regimes.
Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its
function contributes to the development and progression of BC by suppressing anti-
tumor immunity directly or indirectly through multiple mechanisms. In addition,
conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and
neo-therapies, such as immune-checkpoint blockades, have a significant impact on the
absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent.
Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies.
All these results suggest that we can manipulate the abundance of Treg to achieve the
ultimate effect of both conventional and novel treatments. In this review, we discuss new
insights into the characteristics of Treg in BC TME, the impact of different regiments on
Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
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BACKGROUND

In 1995, Sakaguchi et al. (1) described T cells (Tregs) as CD4+ CD25+ T cells with
immunosuppressive effects on the human immune system. Tregs can suppress effector T cell
responses as well as the activity of other immune cells, such as mast cells, dendritic cells, and B cells;
thus, they are involved in cellular activation, maintenance of immune homeostasis (2), and allergy,
Abbreviations: MHC, major histocompatibility complex; CTLs, cytotoxic T lymphocyte; TME, tumor microenvironment;
Treg, regulatory T cell; BC, breast cancer; TILs, tumor-infiltrating lymphocytes; OS, overall survival; APCs, antigen-presenting
cells; TCR, T cell receptor; JAK, Janus kinase; PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase;
STAT5, signal transducer and activator of transcription 5; mTORC2, mTOR complex 2; FOXO, Forkhead box O; tTreg,
thymus-derived Treg; pTreg, peripheral Treg; Tconv, conventional T cells; TCGA, The Cancer Genome Atlas; AJCC,
American Joint Committee on Cancer; Th1, T helper type 1; Th2, T helper type 2; CNA, copy number alteration; BCSS, breast
cancer specific survival; pCR, pathological completed response; ORR, objective response rate; NAC, neoadjuvant
chemotherapy; CTK, cyclophosphamide; TKIs, tyrosine kinase inhibitors; ADCC, antibody-dependent cellular cytotoxicity;
CDK4/6, cyclin-dependent kinases 4 and 6; DNMT1, DNAmethyltransferase 1; TGF- b, transforming growth factor-b; IL-2R,
interlukin-2 receptor.
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while in malignant tumors they promote tumor progression by
suppressing anti-tumor immunity (3, 4). The tumor
microenvironment (TME) is a collective term for a complex
ecosystem composed of heterogeneous cancer cells, stromal cells,
and immune cells rather than a simple homogeneous population
of cancer cells. Specifically, the immune cells in the TME consist
of different cells, such as CD8+ CTLs CD4+ Th cells and Treg.
However, the TME is relatively unique in different cancers.
Among the TME of breast cancer (BC), tumor-infiltrating
lymphocytes (TILs) are probably the most representative and
studied component of BC and provide insights into the
immunogenicity of breast cancers (5). However, when tumors
are clinically detected, this immune response is, in most cases,
unable to stop the cancer progression because tumors have
developed the immune constructive process. Several studies
have shown that, in primary breast cancer, Treg (6–8)
infiltration of BC is associated with immune tolerance and
leads to overall survival (OS) prognosis. Considering the
important role of Treg in BC TME, it is necessary to evaluate
the unique properties of Treg in BC TME by studying its onset,
progression, and anti-immune mechanism. Many breast cancer
drugs used today have also been shown to have direct or indirect
effects on immunity, thus altering cancer progression. Therefore,
we want to investigate the impact of these mechanisms on Treg.
If these mechanisms can alter the abundance of Treg in BC TME,
can Treg predict the effect of mechanisms, and can Treg
abundance be used as a prognostic marker in BC patients?
Here we will also discuss the latest advances in knowledge
related to these questions.
THE DEVELOPMENT OF Treg IN BC TME

Treg development begins in self-reactive thymocytes selected
through high-affinity interactions with major histocompatibility
complex (MHC) class II molecules expressed by thymic antigen-
presenting cells (APCs) (4). A fraction of CD4+ CD8-
thymocytes that receive strong T cell receptor (TCR)
stimulation via self-antigen peptide–MHC complexes acquires
the expression of CD25 (also known as IL-2Ra), which functions
to increase the affinity for the interlukin-2 receptor (IL-2R)
subunit CD122 (also known as IL-2Rb). The IL-2–CD25 dimer
then recruits CD122, followed by the common cytokine receptor
g-chain (gc). Subsequently, these three subunits make up a
trimeric receptor expressed on Treg (9, 10). Upon IL2 and
IL-2R binding, signaling occurs via multiple intracellular
pathways, including the Janus kinase (JAK)–STAT pathway,
the phosphoinositide 3-kinase (PI3K)–AKT pathway, and the
mitogen-activated protein kinase pathway (11–13), wherein
subsequent signaling via signal transducers and transcription
activator 5 (STAT5) emits IL-2R signaling, leading to the
expression of FOXP3, which confers various Treg cell-specific
features to the cells, including the production of high levels of
immune-suppressive molecules (14–16). In addition, signaling
via the co-stimulatory receptor CD28 contributes to the
commitment of a fraction of T cells in the thymus to the Treg
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cell lineage by inducing epigenetic and additional differentiation
events in these cells (17–20). This commitment process involves
many molecules; however, PI3K, AKT, and mTOR form a
common intracellular signaling hub for TCR, CD28, and IL-2R
that activates AKT through PI3K and mTOR complex 2, leading
to the modulation of many cellular targets, including the
forkhead box O family transcripts that are critical for Treg cell
lineage commitment (21–23). As shown in Figure 1, we visualize
the development process.

Thymus-derived Treg (tTreg) (formerly known as natural
TREG—nTreg cells) and peripheral Treg (pTreg) cells (known
as induced Treg—iTreg—cells when induced in vitro) are two
types of Treg generated at different sites (4, 24). tTreg cells are
generated through high-affinity contact with their own peptide
MHC class II complexes in the thymus that are generated as a
functionally mature T cell subpopulation. Under certain specific
conditions, peripheral conventional T cells (Tconv) can
differentiate into Treg cells in the presence of transforming
growth factor-b (TGF-b) and are termed pTreg cells (25–31).
However, whether this process requires the involvement of IL2 is
unclear. Several studies supported the theories that IL-2 plays a
key role in promoting TGF-b-mediated Foxp3+ expression in
CD4+-naïve T cells, although it cannot induce Foxp3 alone
(32–34).

There is compelling evidence that PD-ligand 1 (PD-L1) plays
a key role in the induction and maintenance of pTregs, leading to
pTregs amplification in TME, which then inhibits T cell
responses to tumors (35–38). In vitro, PD-L1 can induce Tregs
in the absence of TGF-b, suggesting that PD-L1 signaling can
promote pTreg development (36). In vivo, blocking PD-L1
signaling abrogates induction in a tumor-induced Treg
transformation model even in the presence of TGF-b (39). The
internal mechanism can be attributed to the reduction of the Akt
signaling pathway, which is essential for pTreg cell development
(40). The specific development and infiltration process of tTregs
and pTregs are presented in Figure 2.

These two subgroups share similar phenotypic characteristics
and suppressive function in response to T cell-mediated immune
response and cancer. Although some minor differences are found
between these two groups, such as mRNA transcript and protein
expression, epigenetic modification, and stability, it is still difficult to
distinguish them, so the term Tregs can, by default, be used directly
to refer to FOXP3+ Tregs (41). Treg cells are chemo-attracted to the
BC TME, where they can recognize their cognate antigens, be
activated, and proliferate. The chemotaxis of Treg cells to the TME
is mediated by combinations of chemokines and their receptors
(for example, CCL22–CCR4, CCL28–CCR10, CXCL12–
CXCR4, CCL5–CCR5, and/or CCL1–CCR8). They differ
in different cancers (42–45). Especially in BC, CCR5, CCR8,
CCR10, CX3CR1, CXCR3, and CXCR6 are stably and
differentially expressed by tumor-resident Treg cells at the mRNA
and protein levels (46, 47). While CCR4 was highly expressed by
both tumor and peripheral blood Treg cells, CCR7 and CCR9 were
downregulated in the Treg of TME. CCR5, CCR2, CXCR3, and
CXCR6 were highly expressed by both tumor Tconv and Treg.
However, CCR8 was found to be only highly enriched in tumor
November 2021 | Volume 11 | Article 766248
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Treg cells and were much less abundant in Tconv cells, suggesting
that Treg and Tconv cells may embrace both distinct and shared
pathways to maintain their chemotaxis to the breast tumor
microenvironment (47). In BC mouse models, blocking
chemotactic signaling using antibodies or small molecules
targeting CCL1–CCR8 reduces Treg cell accumulation in BC
TME (46). Interestingly, these Treg cells recruit chemokines that
can be produced not only by macrophages and tumor cells in TME
(42–45, 47) but also by dysfunctional CD8+ T cells in TME that
exhibit defective IL-2 production, such as CCL1 and CCL22.

Immune cell infiltrations are greatly heterogeneous between
tumor types, and they can be located in different parts of the
tumor, such as the center, margins, or adjacent lymphoid
structures (48). High levels of Tregs in the periphery and TME
were reported in peripheral and TME of breast (49),
gastrointestinal tract (50), living carcinoma (51), pancreatic
(52), and ovarian carcinoma (43). However, more Tregs
infiltrate in TME than in adjacent normal tissue and peripheral
blood in patients with primary breast cancer (47, 49, 53, 54).
Notably, the density of Treg cells in the TME does not always
correlate with matched peripheral blood (55). Within TME,
Tregs were mainly distributed in the interstitial (also called
mesenchymal) compartments and around the edges of BC
infiltration (56). Interestingly, the specific TME in BC confers
different characteristics to Treg cells. In a study by G Plitas et al.
(47), the gene expression pattern of tumor-resident Treg
resembled that of normal breast tissue but differed from that of
Frontiers in Oncology | www.frontiersin.org 3
corresponding activated or memory T cells isolated from
peripheral blood, suggesting that the TME and its surrounding
healthy regions are the main determinants of the gene expression
characteristics of tumor and tissular Treg. TME usually contains
large numbers of overexpressed immunosuppressive Treg cells of
molecules, such as CTLA4 (57), PD-1 (58), LAG-3 (59), TIM-3
(60), and TIGIT (61), which are essential for their suppressive
function (62). There have been many hypotheses on the
composition of Treg in TME since Green et al. (63) who found
amphiregulin to be expressed by Treg cells in a model of murine
lung cancer. A more reliable conclusion is that Treg cells within
TME in human cancer patients can be (i) tTreg recruited to the
tumor site from outside the tissue and actively expanding (64)
and/or (ii) a pool of pTreg derived from Tconv cells in periphery
(64, 65) and/or, possibly, (iii) local expansion of tissue-resident
Treg and/or (iv) Tregs converted from original TME- resident
Tconv in TME. However, in BC TME, the difference of TCR
sequence among blood and tumoral Tregs and Tconv cell was
analyzed by Palita et al. (47). These analyses revealed a low TCR
repertoire overlap between normal tissue and tumoral Treg cell
and between intratumoral Treg and Tconv, which argue against
hypotheses (iii) and (iv). However, both normal tissue and tumor
Treg subsets contained large, expanded clones (47), similarly to
the activated CD45RO+ (pTreg) but not to the resting CD45RA+
Tregs (tTreg) in peripheral blood, supporting hypothesis (ii) and
denying hypothesis (i). These results together validated the
possibility that, in breast cancer TME, the majority of Tregs in
FIGURE 1 | Graphic representation of the development of Tregs. The location of origin of Tregs consisted of the thymus and secondary lymphoid tissue. The
process involved in the thymus includes the selection of high-affinity CD25+ Treg cells and the expression of FOXP3 and other essential receptors expressed on the
membrane through a complex signal transduction. The other process taking place in the secondary lymphoid tissue is attributed to the binding of PD-1 and PD-L1
and the cytokine TGF-b, but the inner mechanism remains unclear.
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breast tumors were initially recruited from the periphery
(lymphoid tissue and blood), after which their phenotypic and
functional features were shaped by the local environment. On the
other hand, in certain circumstances like the late stages of cancer
progression, the Th1 cells may convert to Tregs, thus promoting
cancer development and progression, consequently conferring
negative prognostic effects on breast cancer patient outcomes
(66, 67).
DIFFERENCES IN TME BETWEEN
DIFFERENT SUBTYPES OF BC

The TME of BC is relatively unique among the different
subtypes. The immune infiltrate is heterogeneous and can be
located in different parts of the tumor, such as the core (the
center), the infiltrative margin, or the adjacent tertiary lymphoid
Frontiers in Oncology | www.frontiersin.org 4
structures. As for TILs, the most-studied component, it was
higher in HER2+ and TNBC than in tubulointerstitial BC
subtypes, as demonstrated by a secondary analysis of several
clinical trials, such as FinHer (5), NeoALTTO (68),
GeparQuattro (69), etc. Specifically, in a recent TNBC study
(70), TME within TNBC is classified as immunoreactive subtype
or “immune-cold” subtype by microdissection of tumor tissue.
The CD8+ T levels are high, and PD-L1 was amplified, indicating
a good effect of TME. However, in the “immune-cold” subtype,
TME showed a negative expression of CD8+ T cells instead of the
B7 family co-suppressor molecule B7-H4, which could suppress
the effects of T cell effector function and infiltration. This result
suggests that Her2-positive and Luminal BC can also be classified
into subtype, and we can select the immune response subtypes
for immunotherapy.

TME is diverse, but its signature is associated with primary
cancer tissue, suggesting a link between BC and tissue-resident
Tregs (71). Treg enrichment is thought to be reflected in more BC
FIGURE 2 | Detailed process of lymphocyte infiltration in a breast cancer microenvironment.
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with a higher histological grade (47, 72), invasive characteristics
of the tumor (73, 74), and BC subtypes (6, 56, 72). The Treg
infiltration rate increases in the order of Luminal A < Luminal B <
Luminal HER2 < HER2-enriched < basal-like breast cancer.
TNBC had the highest proportion of CD4+ T cells among the
subtypes of breast cancer, and thus Treg cells transformed by
Tconv were particularly prominent. In addition, the higher
number of Tregs in the HER2-enriched BCs is partly explained
by the higher level of chemokines, cytokines (75, 76), and TGF-b
(77, 78) present in TME. However, a recent study of Masanori
Oshi overturned these theories (79). According to The Cancer
Genome Atlas database, the abundance of Tregs in primary
tumors was not related with BC subtype, American Joint
Committee on Cancer staging, or Nottingham pathological
grade. Strikingly, the Treg infiltrating order of subtypes was
entirely consistent with the order in which the PD-L1
expression rate increased (72), indicating that chemokines,
cytokines, and/or immune checkpoint may be the inner factor
that determines Treg infiltration instead of these clinical
characteristics. To date, besides in vitro or animal models, the
correlation between PD-L1 expression in tumor cell and the
amount of Tregs in TME has been evaluated in patients with
gastric and colorectal carcinoma (80, 81). However, in BC, this
correlation remains controversial. However, as mentioned above,
basal-like breast cancer with a higher level of CD8+ T cells
expresses amplified PD-L1 (70), so this correlation is likely to
be present in all BC subtypes.
THE ROLE OF TREG IN THE TME OF
DIFFERENT BC SUBTYPES AND THE
ESTABLISHMENT OF TARGETING
Treg TREATMENT

There are several mechanisms Treg can perform to suppress
immune cells (82), such as (i) releasing granzyme B and perforins
to induce the apoptosis of effector cells (83), (ii) negative
signaling to T cells through conversion of ATP to AMP,
thereby inhibiting T cell proliferation and IL-2 formation (1,
84), (iii) interacting with B7 expressed by responder T cells
through the CTLA-4 (85, 86), and (iv) secreting cytokines, IL-10
and IL-35, which are the key suppressive cytokines for Treg
production to inhibit antitumor immunity and favor tumor
growth by reducing effector expansion and cytokine
production (IFNc and TNFa) (87). The effect of TGF-b1 on
the generation of pTreg was well defined, but the suppressive
function of TGF-b1 is still unknown. Three recent letters on
TGF-b1 were published, two of which (88, 89) claimed that TGF-
b1 did not work, but Stephen-Victor et al. (90) insisted that their
debate can be attributed to the difference of gene editing. The
conclusion from the study of Stephen can be attributed to the fact
that they did not ablate the tgfb1 gene successfully but, rather,
reverse it, which made the chromosomes fragile and triggered the
mutant mice to death. Overall, Treg cells suppress strong
antitumor immunity, thereby impeding an effective immune
Frontiers in Oncology | www.frontiersin.org 5
response to tumors. In addition to direct immunosuppressive
activity, Treg cells can also inhibit the development of high
endothelial venules by suppressing the self-amplification loop
activated by mouse T cell (91, 92). Thus, the absence of Treg cell
promoted the development of high endothelial venules, which
have an important role in lymphocyte recruitment (91),
representing a novel role of Treg cell in TME.

Considering these mechanisms of Treg action in TME,
appropriate methods can be used to inhibit their anti-
immunity effect. First of all, we can reduce the number of
infiltrating Tregs while preserving the peripheral Treg—for
example, anti-chemokines like anti-CCR4 mAb (93) and anti-
CCR8 (94) treatments specifically depleted Treg in TME, with
the result that Treg depletion will contribute to the activation of
APC and upregulate CD80/86 expression to enhance the
presentation of autoantigens and tumor antigens to Tconv
cells, and these activated Tconv cells can then further activate
the APCs. This positive loop inhibits anti-tumor immunity and
inhibit tumor growth. It is worth noting that the CCR8
expression within Treg is exclusively on Treg cells in breast
cancer (26), and the enrichment of CCR8 expression has been
correlated with poor prognosis in patients with various types of
cancer, including breast cancer and melanoma (47). Targeting
CCR8 mAb may be a more effective therapeutic strategy than
anti-CCR4 mAb.

In addition to anticancer factors, antagonizing cytokines that
regulate Treg factors in TME may be another promising
approach to inhibit Treg action—for example, TGF-b1 has a
strong impact on pTreg production with insignificant immune-
suppressive effect, so anti-TGF-b1 is highly likely to reduce
Tregs. A study performed in melanoma has shown that the
combination with anti-CTLA-4 mAbs and the TGF-b1 receptor
serine/threonine kinase inhibitor galunisertib directly inhibited
the generation of pTreg, increased the CTL/Treg ratio, and
decreased the indoleamine 2,3-dioxygenase expression of APCs
in tumor-draining lymph nodes (95). The fusion protein
(M7824) combined by anti-PD-L1 and anti-TGF-b1 was also
investigated in some studies (96), and M7824 exhibited a good
effect in reducing Treg on patients with clinical benefits.
Considering the suboptimal effect of anti-PD-1/PD-L1 or anti-
CTLA-4 in the treatment of breast cancer, the addition of anti-
TGF-b1 is still under investigation if it enhances the overall effect
of improving anti-tumor immunity, and further studies are
needed to evaluate Treg after using this drug.

In addition, it is even more important to inhibit Treg
infiltration by targeting the molecules that perform the
primary function—for example, anti-CTLA-4 is applied to stop
the process of downregulating B7 expression on APCs. An
increasing number of studies have shown the antibody-
dependent cellular cytotoxicity (ADCC) effect of anti-CTLA-4
on Tregs based on this theory (97–99), while clinical responders
of anti-CTLA-4-(ipilimumab)-treated melanoma patients can
also achieve a depletion effect of Treg (100). Unlike CTLA-4,
anti-PD-1 could not be included in our targeted Treg group
despite the fact that it has been shown to be an effective
option for treating cancer patients. This is because PD-1 is an
November 2021 | Volume 11 | Article 766248
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auto-inhibitor of PD-1-expressing cells, and therefore inhibition
of PD-1 in CD4+ T cell enhances the function of PD-1-
expressing T cells and Treg cells (101), with the overall effect
of increasing anti-tumor immunity. This phenomenon can be
explained by the hypothesis that anti-programmed death-1
(PD1)/PD-L1 mainly targets PD-1hi Tconv cells and has a
greater effect on these cells than on Treg cells. Considering the
characteristics of Tregs and the great differences between anti-
Treg treatments, the anti-BC immunity strategy can be tailored
to be an effective combination of immunotherapies and other
targeted therapies.
Treg INTERACTIONS WITH A VARIETY
OF CELLS

TME provides an environment for residing Treg to interact with
their other immune cells,fibroblasts aswell as vascular endothelium
in TME. The interaction between these cells in TME nurture direct
contact or indirect signals that promote or inhibit breast cancer
growth, invasion, angiogenesis, and metastasis.

The mutual communication between Treg and Tconv is
mainly indirect. First of all, the CTLA-4 on Treg can capture
its ligands CD80 and CD86 on APCs, thus impairing their ability
for co-stimulation of Tconv cells (85, 102, 103). The loss of co-
stimulation makes Tconv more vulnerable to Treg suppression,
and these Tconv with high-affinity TCRs will die by apoptosis
(104). In addition, the competition of Tconv against IL-2 and
other cytokines (57, 84) and the conversion of ATP into AMP (1,
84) are other indirect reactions that prevent optimal T
cell activation.

The high abundance of Treg was also associated with
increased infiltration of M2 macrophages and T helper type 2
(Th2) cells and decreased infiltration of T helper 1 (Th1) cells
(79, 105). Similarly, in one of our unpublished original papers,
CIBERSORT algorithm was used to test the correlation between
Treg and macrophages in BC. We found that Treg was positively
related to macrophage 0 (M0) but negatively correlated with
macrophage 1 (M1). The negative correlations between M1 and
Treg can be attributed to the suppressing M1-to-Treg contact
(106) and/or inhibiting effect of soluble factors like TNF secreted
by M1 on the accumulation of Tregs in TME (107). Some studies
have demonstrated that TNF produced by M1 can diminish the
suppressive activity of Treg cells through the NF-kB pathway
(108, 109).

Carcinoma-associated fibroblasts are abundant in TME and
involve many cancerous features such as tumor cell proliferation,
angiogenesis, drug resistance, and metastases (110, 111). In BC,
their enhanced role in tumor invasion and metastases is more
pronounced. In addition, cancer-associated fibroblasts (CAFs)
are able to secrete chemokines and cytokines, such as TGFb,
CXCL12, VEGF, and IL6, which stimulate cancer cell
proliferation, epithelial–mesenchymal transition, and migration
(112–115). The interaction between Treg and fibroblast in TME
is also well identified. In a study of Costa et al. (116), multicolor
flow cytometry and principal component analysis were
Frontiers in Oncology | www.frontiersin.org 6
performed to classify CAFs into four subtypes. Notably,
the most representative subtype, CAF-S1, characterized by a
high expression of the six fibroblast markers (FAP, integrin
b1/CD29, aSMA, S100-A4/FSP1, PDGFRb, and CAV1) except
CAV1, was positively found to be correlated with the number
and function of Tregs but negatively correlated with CD8+ T
lymphocytes. The internal mechanism was also well studied,
namely, that CAF-S1 secrets CXCL12, which attracts Tregs and
retains these cells through OX40L, PL-L2, and JAM2. In
addition, CAF-S1 increases T lymphocyte survival and
promotes their differentiation into Tregs via B7H3, CD73,
and DPP4.

The interaction between Treg and vascular endothelial cells is a
two-way process. Vascular endothelial cells can lessen the
infiltration of Treg through chemical signals and physical
barriers; they can also downregulate Treg activity through the
production of leptin (117). Correspondingly, Tregs have also been
reported to reduce endothelial cell activity and their chemotaxisofT
cells (118). First of all, adhesion molecules, such as intercellular
adhesion molecule and vascular adhesion molecules, are two main
factors that promote T cell infiltration (119, 120).

However, the vascular endothelium cannot upregulate the
expression of these two molecules in TME, which leads to the
difficulty of T cell penetration. Meanwhile, this low expression
can be reversed prophylactically by Treg depletion (121), which
can be another mechanism of anti-Treg treatment. Additionally,
the vascular endothelium establishes a physical barrier that
restricts T cell infiltration. Accordingly, the blockade of the
VEGF–VEGFR2 axis reportedly inhibits tumor growth through
the decreased recruitment of Treg cells in the BC TME of a
preclinical mouse model (122). In gastric cancer, anti-VEGFR2
mAb ramucirumab has already shown to lessen the density of
effector Tregs (eTregs) but preserve CD8+T cells in the TME
(74). The clinical efficacy of the combination of anti-VEGF–
VEGFR2 axis and immune checkpoint blockade has been found
in NSCLC (123), gastric cancer (124), RCC (125), etc.
THE HETEROGENEITY OF Tregs IN
PERIPHERAL AND TME

The heterogeneity of Tregs was generated during, before, and
after the entry of Tregs into BC TME. When Tregs are in the
periphery, it can be subdivided according to the difference of
transcription factors. Under the appliance of the transcriptional
factor FOXP3 and other two surface markers, CD25 and
CD45RA, circulating Tregs can be divided into three main
groups: fraction I—CD45RA+ CD25/FOXP3lo naive Tregs,
fraction II—CD45RA+CD25/FOXP3hi eTregs, and fraction III
—CD45RA-CD25/FOXP3lo cells, non-Treg. Helios, another
transcription factor from Ikaros family, expressed by Treg but
not Tconv cells in mice (126), can further classify Treg cells. FrII
Treg cells in human blood exclusively express Helios, while both
Helios-positive and Helios-negative cells are included in Fr I and
Fr III Helios+. It was proposed that the expression of Helios by
human Treg cells may promote leukemic cell survival and
November 2021 | Volume 11 | Article 766248
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angiogenesis in in vitro assays (127). Moreover, Helios-negative
Tregs were found to have low levels of Treg-specific
demethylation region demethylation, so it shows a higher
inflammatory cytokine production (128) and lesser suppressive
activity (129). Based on these characteristics of Helios in Treg,
Helios represents an attractive target for cancer immunotherapy
at present. Consistently, it was argued that agonistic anti-
glucocorticoid-induced TNFR-related protein (GITR)
antibodies could inhibit Helios expression in Treg cells,
whereby executing its anti-tumor function (130). Besides
Helios, other markers, like TIGIT, CD226 (128), CD15s, HLA-
DR, TIM-3, CD177 (47), and ICOS (131, 132), are promising
markers expressed by Tregs that have the potential to further
classify Tregs based on their function.

Chemokines, such as CCR4, CCR6, CCR8, and CXCR3, have
also been used to characterize peripheral Treg. In this review,
attention was paid to CCR8 and CD177, which play the critical
role exclusively in BC. The study of Plitas (47) has shown that
CCR8 was significantly upregulated in intratumoral Treg cells
compared with normal adjacent tissue residents and their
peripheral counterparts. Obviously, the enrichment of CCR8 is
also correlated with a worse prognosis in BC patients (47).
Moreover, the ratio of CCR8 and Foxp3 mRNA amounts can
be an independent prognostic factor for the survival of BC
patients. CCL1 is a known cognate of CCR8 which is highly
expressed by intratumoral myeloid cells (47). Stimulating CCL1
can also enhance the suppressive capacity of human Treg cells in
vitro through the STAT3-dependent pathway (133). As a result,
targeting CCR8+ Treg cells through anti-CCR8 mAb or anti-
CCL1 neutralizing mAb provides an opportunity for the selective
depletion of Treg cells as an immunotherapeutic approach for
the treatment of breast cancer. CD177 is another protein
associated with cell adhesion and migration, which is highly
expressed by Treg cell subsets (10–50% of the total number of
Treg cells in breast cancer) (47). The role of CD177 on Treg cells
remains to be unclear, and it is very likely that CD177 performs
some functions and further subdivides Treg. Compared with
CCR8 expressed on all Treg cells, CD177 was found to be
expressed highly on a subset of tumor-associated Treg cells
through flow cytometry. Moreover, single-cell analyses
confirmed that CD177 is expressed highly in some Treg
clusters in BC TME (134)..

Upon entry, TME will also remodel Tregs, resulting in a high
degree of heterogeneity in genomic, transcriptional programs
and chemokine receptor expression within the tumor Tregs
despite their strong similarity to effector molecules. Recent
work using multiregional genome sequencing of tumors has
revealed a high degree of tumoral subclonality difference
between spatial regions (135), including breast cancer (136). As
for differences in transcriptional programs, single-cell RNA-seq
detected differences in the co-expression patterns between Treg
subpopulations of checkpoint receptor genes (CTLA-4, TIGIT,
and GITR and other co-receptors) in certain Treg subset that can
be mutually exclusively expressed in other subsets, indicating a
different spatial and functional distribution of these
subpopulations. Considering the results mentioned above, it is
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critical to decipher the inner mechanisms that shape and stabilize
the Treg cell phenotype through the whole process of Treg
recruitment. This is essential for us to evaluate, i.e., the
feasibility and safety of novel therapeutic approaches aiming at
targeting a specific Treg target.
THE RELATIONSHIP BETWEEN THE
DENSITY OF Treg AND PROGNOSTICS OF
PATIENTS WITH BC

As mentioned above, the abundance of Tregs in the TME
is not always linked to those in matching peripheral blood,
suggesting that the analysis of the TME where T cells directly
interact with tumor cells is more essential in studies of cancer
immunology. Interestingly, within the TME, the density of
intratumoral and stromal Treg infiltration should be assessed
separately because they are independent prognostic factors (137).
In a study with 1,270 samples of whole-tissue sections,
intratumoral infiltration by Tregs is highly correlated with the
prognosis of breast cancer (6, 72, 138). Although stromal Treg is
sensitive to chemotherapy, intratumoral Treg is a better
prognostic predictor of patients with breast cancer (6, 139).

Survival analysis was conducted by some research teams with
respect to Treg high- and low-density BC subgroups without
considering the subtypes of BC. The mean DMFS, DFS, breast
cancer-specific survival (BCSS), OS, and DSS were comparable
between the two groups, so the Treg levels did not significantly
affect DMFS, DFS, or BCSS (56, 79).. Then how about the
correlation within each subtype?

In breast cancer, a high frequency of TILs is associated with
poorer survival in patients with ER+ and Her2+ breast tumor
(56), while in TNBCs, the most aggressive and immunogenic
subtype (140–142), the high incidence of TILs is significantly
associated with longer survival (79, 143–145), indicating that the
mere presence of TILs is insufficient to precisely predict their
influence, and disease progression and clinical outcomes are
influenced by TIL subtypes and their biological and functional
characteristics rather than their density (146). Bohling and
Allison (147) found a possible association between Treg
infiltrates with TNBC subtype. According to Joe Yeong (148,
149), patients with TNBC exhibiting high intratumoral Treg
density also have significantly longer DFS and OS than those
with fewer intratumoral Tregs. In addition, some studies have
demonstrated the association between Tregs in TME with HR-
and HER2+ (6, 137, 150, 151). Jiang et al. (152) found that an
abundant Treg infiltrate had an opposing prognostic significance
in HR- and HR+ BC. The prognostic significance of Tregs was
associated with HR- tumor status. On the HR- BC subgroup,
high Treg showed a favorable effect on BCSS, in contrast to the
lack of impact on BCSS among HR+ BCs (56). However, M
Gobert et al. and (53) and GJ Bates et al. (8) found that the
abundance of Treg has an influence on prognosis in HR+ BCs,
while the prognostic value is unfavorable. The relation between
Treg and prognostic value in HER2 overexpression is also
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controversial. In BC patients where an association between Treg
infiltration and HER2 overexpression was discovered, Tregs were
mainly linked to poor prognostics, such as higher tumor grade
and decreased OS and PFS (6, 150). In addition, Tsang et al.
(153) found that TILs were associated with a smaller tumor size
in HER2-enriched tumors. However, he considered both
cytotoxic CD8+ T lymphocytes and Tregs together as a factor
and observed only a correlation between this subtype and the
CTL, which could explain why the TIL was associated with a
better prognosis. As we have mentioned above, no statistically
significant difference was found with respect to Treg in relation
to tumor stage, lymph node status, and tumor size. Nonetheless,
a lower CTL/Treg ratio was observed among locally advanced
BCs as compared to early BCs (56). Moreover, the recruitment of
Tregs to TME has been associated with the development of
metastases in patients with BC (73, 74, 154–156).

Some immune checkpoints expressed on Tregs also have a
certain prognostic value. CTLA-4, expressed on the surface of
naive effector T cells and Tregs with a low level, was the first
clinically targeted immune checkpoint molecule (157). CTLA-4
has a high affinity toward CD80 and CD86, thereby dampening
the stimulatory signals and attenuating T cell activation by
interrupting the conventional TCR signaling (158, 159). In the
TME, CTLA-4 inhibits immune response and promotes tumor
cell survival (159). CTLA-4+ tumor-infiltrating Tregs could also
contribute to tumor immune evasion by suppressing antitumor
immunity and downregulating CD80/86 expression on APCs
(86). A higher expression of CTLA-4 on Tregs in BC TME
compared to peripheral blood Treg cells revealed more active
and proliferative Treg cells in TME (47). PD-1 and PD-L1 are
expressed on the surface of both activated T cells and Tregs. PD-1
and its interactions with PD-L1 play important roles in the tumor
evasion of immune responses through different mechanisms,
including inhibition of effector T cell proliferation, reducing
cytotoxic activity, induction of apoptosis in T cells, and Treg
expansion in TME. As we have mentioned above, Treg infiltration
is likely to be an unfavorable factor in the HR-positive and triple-
negative BC patients. Interestingly, Li et al. (72) noticed that, in
the TNBC, PD-L1 was also proved to be an independent
unfavorable prognostic factor for OS by multivariate analysis
adjusted by age, tumor size, grade, and lymph node status.
However, there was nearly no data and study to specifically
investigate the abundance of PD-1 and PD-L1 expressed on
Treg in BC TME. Considering the unique function of Treg,
further studies are warranted to analyze these two molecules on
Treg using flow cytometry and other experimental methods. The
treatment of breast cancer includes the treatment of local disease
with surgery, radiation therapy, and systemic treatment with
chemotherapy, endocrine therapy, biologic therapy, or
combinations of these. In this section, we will introduce the
latest information on the role of Treg in the systemic treatment
of BC. We put a great emphasis on both the influence of different
regimes on the density and function of Tregs and the impact of
Treg on the efficacy of different treatments in preoperative stage.
The efficacy marker of drugs or regimens includes pathological
completed response (pCR), objective response rate, etc.
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THE CORRELATION BETWEEN Tregs
AND DIFFERENT THERAPEUTIC
STRATEGIES OF BC

CDK4/6
Cyclin-dependent kinases 4 and 6 (CDK4/6) are fundamental
drivers of the cell cycle and are required for the initiation and
progression of various malignancies. The pharmacologic
inhibitors of CDK4/6 have been found to have a significant
activity against several solid tumors (160, 161). Their primary
mechanism of action is thought to be the inhibition of
phosphorylation of the retinoblastoma (RB) tumor suppressor,
inducing G1 cell cycle arrest in tumor cells (162). Currently,
three CDK4/6 inhibitors have now been approved by the FDA
for the treatment of ER-positive metastatic breast cancer:
palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib
(LY835219). S Goel et al. (163) used murine models of BC and
other solid tumors to show that CDK4/6 inhibitors not only
induce tumor cell cycle arrest but also promote anti-tumor
immunity. Deng et al. (164) indicated that palbociclib or
trilaciclib (another CDK4/6 inhibitor) significantly enhances
Tconv cell activation, thus contributing to antitumor effects in
vivo. However, in addition to the effect on Tconv cell, CDK4/6
can also markedly suppress Treg proliferation associated with the
reduced activity of the E2F target, DNA methyltransferase 1
(DNMT1) (163). Similarly, in the studies of S Goel et al. (163)
and JRWhittlee et al. (165), the flow cytometric analysis of breast
cancer in murine revealed that abemaciclib or the combination of
fulvestrant–palbociclib did not alter the fractions of most types of
TIL but significantly increased the CD3+ T cells and reduced the
Tregs in both the TME and periphery. Moreover, the CTL/Treg
cell ratio increased significantly in abemaciclib-treated tumors,
further suggesting a tipping of the immune balance in favor of
anti-tumor immunity (163). In particular, the Treg was more
sensitive to CDK4/6 inhibitors compared with other
lymphocytes, and this behavior has been related to the high
expression in these cells of the proteins of the CDK4/6–cyclin D-
RB axis (166, 167) or the reduced activity of DNMT1 (163).
Reduced expression of the immune checkpoint receptor PD1 on
Tregs was also observed in the study of S Goel, which was
consistent with the diminishment of the immune-suppressing
function of Treg in BC TME (163), suggesting that CDK4/6
inhibitors may enhance the susceptibility of such tumors to
immune checkpoint blockade (53).
Immune Checkpoint Inhibitors
Immune checkpoint blockade is a promising drug working by
blocking checkpoint proteins from binding with their partner
proteins. In this review, we will focus on three representative
ICBs, PD-1/PD-L1 inhibitor, and CTLA-4 blockage. The effect of
ICB on BC patients is still under investigation. However, there are
several ongoing trials using PD-1/PD-L1 inhibition and/or
CTLA-4 blockage in combination with standard anti-HER2
therapy for HER2+ BC—for example, the phase II DIAmOND
study is investigating the combination of PD-L1 and CTLA-4
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inhibition added to trastuzumab in patients with HER2+ mBC
who progressed on prior trastuzumab-based therapy (168). In
another trial, Santa-Maria et al. found that the response rates to
PD-1/PD-L1 and CTLA-4 inhibition were low in all MBC.
However, high rates of clinical benefit were observed in TNBC
(169) because of their high expression of these IC molecules. To
date, most studies revealed the effect of ICBs on T effector cells,
and little is known about their effect on Tregs. As mentioned
above, Tconv cells and Treg cells in TME similarly express
immune checkpoint molecules, including CTLA-4 and PD-1, at
levels that are dependent on the TME, indicating that antibodies
targeting these proteins could affect both cell types.

The anti-tumor activity of the anti-CTLA-4 blockade was
originally hypothesized to depend on the reinvigoration of
dysfunctional CTLA-4-expressing Tconv cells (170). However,
evidence from several preclinical studies indicate that the anti-
tumor effects of these drugs depend on macrophages depleting
Treg cells expressing CTLA-4 in the TME through ADCC,
thereby increasing the CTL/Treg cell ratio (62, 98, 99), which
implies that CTLA-4 blockade can activate anti-tumor immunity
in the presence of enough TILs (171). Nonetheless, there is an
absence of studies of Treg depletion in BC TME. Thus, further
analyses to address the roles of CTLA-4 in Treg cells in BC
settings are warranted.

PD-1 inhibits the excessive activation of Tconv cells by
suppression of TCR and costimulatory and renders them
dysfunctional or exhausted (172–174). As indicated above, Treg
and Tconv cells in the TME express comparable PD-1 and are
dependent on TCR and CD28 signaling for their survival and
function. PD-1 inhibition potentiates the activation and
immunosuppressive function of Treg cells. In line with this
hypothesis, a study using a mouse model of autoimmune
pancreatitis revealed that PD-1-deficient Treg cells had an
increased immunosuppressive activity that was sufficient to
rescue the auto-immune phenotype, indicating that PD-1 reduces
the immunosuppressive function of Tregs (58). Y Togashi et al.
found that, in vitro, anti-PD-1 mAbs enhance Treg cell-mediated
immunosuppression using human samples (175). One of the
representative anti-PD1, pembrolizumab, effectively blocked PD-1
expression but did not affect the expression of other Treg-related
markers. These results suggest that anti-PD-1 mAbs may reverse
immune escape by directly blocking the PD-1/PD-L1 interaction
instead of altering the Treg phenotype or function (176).

Anthracycline-Based Neoadjuvant
Chemotherapy
Anthracycline-based neoadjuvant chemotherapy (NAC) with or
without taxanes for the initial treatment of patients with invasive
BC is the top preoperative systemic therapy regimen
recommended by the National Comprehensive Cancer
Network panel. In general, the abundance of TILs in BC TME
predicts the response to NAC (177, 178). Moreover, Denkert et
al. found that the decreased Treg in TME is also linked to the
pCR to NAC (179). However, the correlation between pCR and
Tregs before NAC is still controversial. Fangxuan Li et al. (180)
found that it has no significant relation with pCR. Nevertheless,
in some studies, pCR to NAC is associated with less Treg
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abundance in TNBC but not in ER-positive/Her2-negative
breast cancer (79). To be more specific, Ladoire et al. (181)
and Senovilla et al. (182) found that, in patients treated with
NAC, it is the increased CTL/Treg cell ratio in TME that can
precisely predict pCR. Interestingly, the levels of CD8+ T cells
and Tregs decreased during NAC in patients of TNBC (183),
which raise a question of whether the dynamics of Treg can
predict pCR. Hamy et al. (179) found that the decrease of
lymphocyte infiltration during chemotherapy is related to the
increase of PCR rate, which may be related to the disappearance
of Treg after neoadjuvant therapy, but there are few related
studies. Adriamycin is one of the typical anthracycline drugs. In
BC, docetaxel can indirectly favor immunosurveillance upon
polyploidization (182). Moreover, docetaxel is correlated with a
reduced activity of Treg in BC and increases the CTL/Treg cell
ratio (184). Nevertheless, little studies are conducted to
investigate the influence of docetaxel on BC TME.

Anthracycline-based NAC not only contains anthracycline
but also can be added with a series of other cytotoxic agents,
including taxanes, platinum, and cyclophosphamide (CTK).
These cytotoxic treatments can temporarily overcome the
immunosuppressive TME, contributing to greater antitumor
immune responses (185). CTK embraces direct alkylating and
antiangiogenic properties. It is also reported to modulate the
immune system in the host through many mechanisms (186).
Sistigu et al. (187) reviewed some of these mechanisms, including
Th2/Th1 to Th17 shifts in cytokine production, induction of
Th17 cells, enhancement of T cell proliferation, resetting
of dendritic cell homeostasis, and, more importantly, inhibition
of Tregs. However, depending on the dose administered, the
antitumor effects of cyclophosphamide can be either through
immunopotentiation or direct cytolytic activity (188). Low-dose
CTK contributes to antitumor immunity, whereas high-dose
CTK works solely through its cytotoxic effects. Patients with
breast cancer and treated with metronomic low-dose CTK were
found to have a transient reduction in circulating Tregs, lasting 4
to 6 weeks, and diminished functionality (189). Ghiringhelli et al.
also found that low-dose CTK depletes Treg cells in peripheral
blood, causing the activation of antitumor immunity (190), and
thus patients gained survival benefits more or less. However, low-
dose CTK also gives rise to higher lymphocyte-infiltrating BC
TME, including Treg, but the repletion of Treg cells abolished the
antitumor effect of low-dose CTK to some extent (191), which
was consistent with a murine experiment (192). These opposite
effects of low-dose CTK on circulating and BC TME Treg beg a
question on whether low-dose CTK induces the recruitment of
Treg from peripheral blood to the TME. In addition to
cyclophosphamide, several studieshave revealedthat other
cytotoxic agents can also deplete Treg cells. Nevertheless, these
data remain controversial, and further preclinical and clinical
studies are needed.

Anti-HER2
HER2-blocking therapies, such as trastuzumab, an IgG1
monoclonal antibody, and/or pertuzumab in combination with
chemotherapy, represent the standardfirst-line treatment forHER2
+ BC. In addition to the direct targeting effects on HER2-positive
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cells, it has been reported that trastuzumab is able to induce a long-
lasting immune response in patients with BC (193), but it is still
unclear whether trastuzumab has direct effects on Treg immune
subsets.A significantdecrease in thenumber of circulatingTregwas
revealed in patients treated with transtuzumab (194–196). In
addition, the decrease of circulating Treg was associated with an
objective clinical response ordisease stabilization inpatients treated
with trastuzumab, and the frequency of Treg increased as the
disease progressed during trastuzumab treatment (196).
Moreover, the recurrence of BC during trastuzumab therapy
highly correlates with an increase in Treg frequency. Taken
together, circulating Treg can be a predictive marker for response
to trastuzumab of the patients.

Small-molecule tyrosine kinase inhibitor (TKIs) is another
highly rational anti-HER2 therapeutic regime targeting the
adenosine triphosphate (ATP) binding domains of EGFR family
due to the homological structure of the ATP, resulting in inhibiting
tyrosine kinase phosphorylation (197). It has achieved extreme
success in the treatment of other oncogene-driven malignancies.
However, treating HER2-positive BC have fallen short of
expectations. Some combination therapies of TKIs showed a
higher disease-free survival in HER2+ metastatic breast cancer
patients (198, 199). Unfortunately, the outcomes of these studies
have been disappointing so far. Classic TKIs, such as a dual HER1/
HER2 kinase inhibitor, the HER2/HER3 dimerization inhibitor
pertuzumab, and the pan-HER (HER1, 2, and 4) kinase inhibitor
neratinib canpostpone or overcome anti-HER2 resistance andhave
yieldedclinical advantages combinedwith chemotherapy,hormone
therapy, and/or another HER2-inhibiting agent (200, 201). Unlike
pertuzumab only improving the anti-trophic effect of the HER2-
block, it was shown by the EGF104900 study, lapatinib also
amplifies the trastuzumab-induced ADCC effect (202), indicating
that lapatinib is more likely to have an antitumor effect through the
depletion of Tregs in TME. Additionally, studies from L
Hannesdottir et al. (203) in MMTV-neu animals shed light on
the effects of lapatinibonenhancing the antitumor immunity. In the
neoadjuvant phase II SOLTI-1114 PAMELA trial (NCT01973660),
151 HER2+ BC patients received lapatinib and trastuzumab, plus
hormonal therapy if HR+; no significant difference in immune
subpopulation densities in TME was observed. BC treated with
trastuzumab or/and lapatinib achieving a pCR showed numerically
higher densities of Treg cells (204), which is in accordance with the
work of Hannesdottir.
CONCLUSIONS

With the deepening of research on TME in breast carcinoma,
analysis on the composition of TME becomes increasingly
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important for evaluating the prognosis of patients with BC
disease and the efficacy of different regimes. As a crucial role in
TME, the functionofTregs directly and indirectly suppress the anti-
tumor immunity through a variety of cellular interactions. In TME,
tTreg and pTreg are recruited through the binding of some certain
chemokines and their receptors. However, they cannot be easily
distinguished. In BC, Tregs have a significantly distinct prognostic
value of BC with different subtypes, and the conclusions of these
articles are fairly conflictingwith eachother. By comparingdifferent
theories, Tregs are more likely to be an unfavorable factor of the
prognosis of BC as a whole. However, further research or meta-
analysis needs tobedone toverify this effect. Inviewof thediscovery
of the great potential value of Treg, Treg cells are under intense
scientific and commercial scrutiny as a novel therapeutic strategy or
biomarker for anticancer treatment. Some classic regimes, such as
anthracycline-based NAC, anti-Her2 treatment, immune
checkpoint inhibitor, and cyclin-dependent kinases 4 and 6
(CDK4/6), proved to have a strong impact on depleting Treg in
BCTME throughdifferent immunological effects. The link between
Treg and the efficacy evaluation of tumor response to different
treatments is found in anthracycline-basedNAC, anti-HER2NAC,
but the relationship is still unknown in other treatments, which is a
potential research field for us to manipulate Treg to reach the
highest efficacy of these treatment strategies.
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