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This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete
and continuous entropies, controller design methods are proposed based on probability density function control, which can drive
the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is
proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed.
Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve
more accurate tracking.

1. Introduction

Quantum control has become an important topic in quantum
information [1, 2], molecular chemistry [3], and atomic
physics [4].Many controlmethods, including optimal control
[5], Lyapunov control [6], learning control [7], feedback
control [8], and incoherent control [9, 10], have been used in
controller design of quantum systems. Our recent work [11,
12] has extended the classical probability density function
(PDF) control method into quantum area. Based on classical
PDF control, there is also a developing research area on
Shannon entropy control, which has achieved good perfor-
mance in classical systems, such as stochastic control [13,
14], networked control [15], and biological control [16]. The
extension of Shannon entropy control into quantum areamay
also enhance quantum control performance.

Shannon entropy in atomic calculations has further been
related to various properties such as atomic ionization poten-
tial [17], molecular geometric parameters [18], chemical sim-
ilarity of different functional groups [19], characteristics of
correlation methods for global delocalizations [20], molec-
ular reaction paths [21], orbital-based kinetic theory [22],
highly excited states of single-particle systems [23], and
nature of chemical bonds [24]. The consistency of the Shan-
non entropy when applied to outcomes of quantum experi-
ments has been analyzed [25], and it is shown that Shannon
entropy is fully consistent and its properties are never violated
in quantum settings.

In the recent research about quantum sliding-mode
control (SMC) [26, 27], a slidingmode is defined based on the
fidelity with a desired eigenstate, and the goal is to maintain
the state in the mode or drive it back into the mode after
measurement. In fact, the fidelity here is directly related to
Shannon entropy. There is also research about coherent con-
trol based on tracking control for two-level systems [28].
Since coherence corresponds to large entropy, while fidelity
corresponds to small entropy, we can directly control the
entropy to achieve the goal. If the entropy can track a desired
trajectory, the state will be able to slide among different
modes, rather than in one mode in the existing quantum
SMC. For 𝑛-level systems which cannot be depicted by Bloch
sphere, such method can also provide a systematic way to
maintain fidelity or coherence.

For the biological and physiological datasets, quantifying
disorder of the system has become popular as an intense
area of promising recent research. In the recent study of
a complexity measure for nonstationary signals [16], Shan-
non entropy has been used to distinguish “healthy” from
“unhealthy” biological signals. The study has quantified the
information evolution of transitions associated with proba-
bilities assigned to each state, with a goal of providing single
value (an entropy) to describe the information content. Sim-
ilar approach can be adopted to systems where the change in
parameter would be indicative of a change in the “health” of
the system. For example, in the recent research about infor-
mation theoretic measures of the electron correlation for
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both continuous [29] and discrete [30] cases, it is shown that
Shannon entropy can also provide a new way to calculate
electron correlation energy more accurately. An accurate
description of atomic and molecular properties requires an
explicit account of electron correlation, while there is no ope-
rator in quantum mechanics whose measurement gives the
correlation energy. Since strong correlation corresponds to
large entropy, we can also use Shannon entropy as a new
approach to control quantum correlation.

Quantum von Neumann entropy is a good measure of
entanglement, and it will reduce to Shannon entropy for the
pure state case. It can provide a real-time noise observation
and a systematic guideline to make reasonable choice of
control strategy. The von Neumann entropy is just a measure
of the purity of the given density matrix without explicit ref-
erence to information contained in individual measurements
[31]. While quantum Shannon entropy can reveal a great deal
of information from the perspective of geometrical changes to
the density [21], it shows interesting features about the bond
forming and breaking process that are not apparent from
the conventional reaction energy profile. Recent research has
studied how to image and manipulate the shape of electronic
wavefunction [32] and how to directly measure the quantum
wavefunction for photons [33]. If the probability density
function can be well measured and controlled in the future,
we can directly control the detailed spatial distribution for
both pure andmixed states. Sometimes, the detailed distribu-
tion may not be important, while we only need to make the
distribution more ordered or disordered. This also calls for
the control of the uncertainty, which can be directly reflected
by Shannon entropy.

This paper provides two primarymethods to steer the dis-
crete and continuous quantumShannon entropy via quantum
PDF control. And for the discrete case, a method based on
discretization approximation is provided which can directly
control the entropy and achieve more accurate performance.
This paper is organized as follows. Section 2 presents the basic
quantum control model and the definitions of both discrete
and continuous quantum Shannon entropy. Sections 3 and 4
provide the controller design methods based on PDF control
for discrete and continuous entropy, respectively. Section 5
provides a direct control method for discrete entropy based
on discretization approximation. Section 6 shows the numer-
ical simulation examples. Concluding remarks are given in
Section 7.

2. Preliminary

In quantum control, the state of a closed quantum system
is represented by a state vector (wavefunction) 𝜓(𝑥, 𝑡) in a
Hilbert space. Here, for the space variable we only consider
one-dimensional position variable 𝑥. The evolution of the
state obeys the Schrödinger equation:

𝜄ℎ𝜓̇ (𝑥, 𝑡) = [−

ℎ
2

2𝑚

⋅

𝜕
2

𝜕𝑥
2
+ 𝑈 (𝑥, 𝑡)]𝜓 (𝑥, 𝑡) , (1)

where 𝜄 = √−1 and the external potential field 𝑈(𝑥, 𝑡) ∈ R is
taken as the control term. For an infinite dimensional quan-
tum system, the wavefunction 𝜓(𝑥, 𝑡) is the superposition of
free Hamiltonian’s eigenstates 𝜓

𝑖
(𝑥):

𝜓 (𝑥, 𝑡) =

∞

∑

𝑖=1

𝑐
𝑖
(𝑡) 𝜓
𝑖
(𝑥) , (2)

where both the wavefunction and the coefficients should be
normalized:

∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝜓 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2d𝑥 =
∞

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

= 1. (3)

Defining the state of the system as follows:

𝐶 (𝑡) = [𝑐
1
(𝑡) , 𝑐
2
(𝑡) , . . . , 𝑐

𝑛
(𝑡) , . . .]

𝑇

, (4)

and the Schrödinger equation can be written as follows:

𝐶̇ (𝑡) = [𝐴 +

𝑘

∑

𝑖=1

𝐵
𝑖
𝑈
𝑖
(𝑡)]𝐶 (𝑡) , (5)

where both𝐴 and 𝐵
𝑖
are skew-Hermitianmatrices. If the case

with only one control𝑈(𝑡) can be well solved, it will be easier
for multiple control cases. So, this paper only considers the
following case with one control:

𝐶̇ (𝑡) = 𝐴𝐶 (𝑡) + 𝐵𝑈 (𝑡) 𝐶 (𝑡) . (6)

Assuming a system that consists of 𝑛 states, in which the
probability for the 𝑖th state to happen is 𝑝

𝑖
, the traditional

discrete Shannon entropy in information science is defined
as follows:

𝑆
𝑑
= −

𝑛

∑

𝑖=1

𝑝
𝑖
ln𝑝
𝑖
, (7)

which shows the degree of randomness of the system. For
example, when 𝑝

1
= 𝑝
2
= ⋅ ⋅ ⋅ = 𝑝

𝑛
= 1/𝑛, every state happens

in the equal probability, which is a random system. In this
situation, the Shannon entropy takes its maximum value ln 𝑛.
If 𝑝
1
= 1, the system is completely predictable; that is, the

first state always happens, and the entropy takes its minimum
value 0. We can also regard the entropy as the superposition
of the uncertainties ln(1/𝑝

𝑖
) because larger probability can

lead to smaller uncertainty. Similarly, the discrete quantum
Shannon entropy can be defined as follows:

𝑆
𝑑
(𝑡) = −

∞

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2 ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

, (8)

where |𝑐
𝑖
(𝑡)|
2 is the probability that the superposition state

collapses to the 𝑖th eigenstate upon quantum measurement.
Next, for the continuous case, Shannon proposed that the
entropy for a system with a probability distribution 𝑝(𝑥) in
one dimension could be characterized by the following:

𝑆
𝑐
= −∫𝑝 (𝑥) ln𝑝 (𝑥) d𝑥, ∫𝑝 (𝑥) d𝑥 = 1, (9)
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which measures the delocalization or the lack of structure in
the respective distribution. Thus, the entropy is maximal for
uniform distribution and is minimal when the uncertainty
about the structure of the distribution is minimal. Since the
quantum probability density can be denoted by a continuous
function |𝜓(𝑥, 𝑡)|2, we can define continuous quantum Shan-
non entropy as follows:

𝑆
𝑐
(𝑡) = −∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝜓 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2 ln 󵄨󵄨󵄨
󵄨
𝜓 (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

2d𝑥, (10)

where integral can be used to deal with continuous proba-
bility distribution. Our goal is to drive the entropy from any
initial value to any target.

3. Controller Design for Discrete Entropy
Based on PDF Control

Here, we consider finite dimensional quantum systems. From
definition (8), we know that the discrete entropy satisfies the
following:

𝑆
𝑑
(𝑡) = −

𝑛

∑

𝑖=1

󵄨
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󵄨
󵄨
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𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

≥ 0. (11)

It is clear that when |𝑐
1
(𝑡)|
2
= |𝑐
2
(𝑡)|
2
= ⋅ ⋅ ⋅ = |𝑐

𝑛
(𝑡)|
2
= 1/𝑛,

𝑆
𝑑
(𝑡) reaches its maximum ln 𝑛. 𝑆

𝑑
(𝑡) reaches its minimum 0

when

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

= {

1, 𝑖 = 𝑘,

0, 𝑖 ̸= 𝑘,

(12)

where 𝑘 is a given integer.This conclusion can be provedusing
the following fact:

lim
𝑥→0

𝑥 ln𝑥 = lim
𝑥→0

ln𝑥
1/𝑥

= lim
𝑥→0

(d/d𝑥) (ln𝑥)
(d/d𝑥) (1/𝑥)

= lim
𝑥→0

(−𝑥) = 0.

(13)

The control of 𝑆
𝑑
(𝑡) can be realized by controlling the proba-

bility density |𝑐
𝑖
(𝑡)|
2.

Denote the target of 𝐶(𝑡) as follows:

𝐶 = [𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
]
𝑇

, (14)

which satisfies the normalization condition
𝑛

∑

𝑖=1
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𝑐
𝑖

󵄨
󵄨
󵄨
󵄨

2

= 1. (15)

There are several methods [6, 34] to reach the target under
some assumptions, though the asymptotic stability may not
be guaranteed. Here, we provide another method which
can deal with any final condition without guaranteeing the
asymptotic stability. First, we define the error as follows:

𝑒 (𝑡) =

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡) − 𝑐

𝑖

󵄨
󵄨
󵄨
󵄨

2

. (16)

In order to make the error decrease, we let

̇𝑒 (𝑡) = −𝑘𝑒 (𝑡) , (17)

where 𝑘 ∈ R+can be preselected. Substituting (3), (14), and
(15) into (16) we have the following:

𝑒 (𝑡) =

𝑛

∑
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(𝑡) − 𝑐

𝑖
]
∗
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󵄨
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󵄨
󵄨

2

+

𝑛

∑
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󵄨
󵄨
󵄨
󵄨
𝑐
𝑖

󵄨
󵄨
󵄨
󵄨

2

−

𝑛

∑

𝑖=1
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∗

𝑖
𝑐
𝑖
(𝑡) + 𝑐

∗

𝑖
(𝑡) 𝑐
𝑖
]

= 2 − 2

𝑛

∑

𝑖=1

R [𝑐
∗

𝑖
𝑐
𝑖
(𝑡)] = 2 − 2R[

𝑛

∑

𝑖=1

𝑐
∗

𝑖
𝑐
𝑖
(𝑡)]

= 2 − 2R [𝐶
+
𝐶 (𝑡)] ,

(18)

where 𝐶+ = (𝐶
∗
)
𝑇. Then we can obtain the following

relationship based on (6), (17), and (18):

̇𝑒 (𝑡) = − 2R [𝐶
+
𝐶̇ (𝑡)]

= − 2R {𝐶
+
[𝐴 + 𝑈 (𝑡) 𝐵] 𝐶 (𝑡)}

= − 2R [𝐶
+
𝐴𝐶 (𝑡)] − 2𝑈 (𝑡)R [𝐶

+
𝐵𝐶 (𝑡)]

= − 𝑘 {2 − 2R [𝐶
+
𝐶 (𝑡)]} .

(19)

From (19), we can get the following controller:

𝑈 (𝑡) =

𝑘 −R {𝐶
+
[𝐴 + 𝑘𝐼] 𝐶 (𝑡)}

R [𝐶
+
𝐵𝐶 (𝑡)]

. (20)

This is the desired controller which can make the error
decrease.

When the state has reached its target, in order to keep
it unchanged, we can do the following calculation about the
derivative of the probability density:

d
d𝑡

[

[

[

[

[

[

[
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󵄨
󵄨
󵄨
󵄨
𝑐
1
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
𝑐
2
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

...
󵄨
󵄨
󵄨
󵄨
𝑐
𝑛
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

]

]

]

]

]

]

]

]

=

d
d𝑡
[𝐶 (𝑡) ∘ 𝐶

∗
(𝑡)] = 𝐶̇ (𝑡) ∘ 𝐶

∗
(𝑡) + 𝐶 (𝑡) ∘ 𝐶̇

∗
(𝑡)

= 2R [𝐶̇ (𝑡) ∘ 𝐶
∗
(𝑡)]

= 2R {[𝐴𝐶 (𝑡) + 𝐵𝑈 (𝑡) 𝐶 (𝑡)] ∘ 𝐶
∗
(𝑡)}

= 2R [𝐴𝐶 (𝑡) ∘ 𝐶
∗
(𝑡)] + 2𝑈 (𝑡)R [𝐵𝐶 (𝑡) ∘ 𝐶

∗
(𝑡)] ,

(21)
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where “∘” is defined as follows, which means the correspond-
ing elements are multiplied:

[

[

[

[

[

𝑎
1

𝑎
2

...
𝑎
𝑛

]

]

]

]

]

∘

[

[

[

[

[

𝑏
1

𝑏
2

...
𝑏
𝑛

]

]

]

]

]

=

[

[

[

[

[

𝑎
1
𝑏
1

𝑎
2
𝑏
2

...
𝑎
𝑛
𝑏
𝑛

]

]

]

]

]

. (22)

From (21), it is easy to find that in order to keep the probability
constant, we only need the following:

R [𝐴𝐶 (𝑡) ∘ 𝐶
∗
(𝑡)] + 𝑈 (𝑡)R [𝐵𝐶 (𝑡) ∘ 𝐶

∗
(𝑡)] ≡

[

[

[

[

[

0

0

...
0

]

]

]

]

]𝑛×1

.

(23)

When 𝐴 is diagonal, all the elements in 𝐴 should be pure
imaginary because 𝐴 is skew-Hermitian. Assuming 𝐴 =

diag{𝑎
11
𝜄, 𝑎
22
𝜄, . . . , 𝑎

𝑛𝑛
𝜄} (𝑎
𝑖𝑖
∈ R), we have the following:

R [𝐴𝐶 (𝑡) ∘ 𝐶
∗
(𝑡)]

= R {𝜄 [𝑎
11

󵄨
󵄨
󵄨
󵄨
𝑐
1
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

+ 𝑎
22

󵄨
󵄨
󵄨
󵄨
𝑐
2
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

+ ⋅ ⋅ ⋅ + 𝑎
𝑛𝑛

󵄨
󵄨
󵄨
󵄨
𝑐
𝑛
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

]} = 0.

(24)

Hence, once the system’s entropy reaches the target, we can
use 𝑈(𝑡) = 0 to maintain the entropy unchanged. For other
quantum systems with nondiagonal 𝐴, it is not easy to keep
the entropy unchanged with (23). Then we will develop an
approximation method in Section 5 to achieve good perfor-
mance.

4. Controller Design for Continuous Entropy
Based on PDF Control

From definition (10), we know 𝑆
𝑐
(𝑡) ≥ 0. It is easy to prove

that 𝑆
𝑐
(𝑡) can reach its maximumwhen the probability distri-

bution |𝜓(𝑥, 𝑡)|2 is a uniform distribution and can reach its
minimum when the uncertainty about the structure of the
distribution is minimal, for example, a delta-like distribu-
tion. We can control the continuous entropy by controlling
|𝜓(𝑥, 𝑡)|

2.
Define the target distribution of 𝜓(𝑥, 𝑡) as 𝜓

𝑑
(𝑥) which

satisfies the following:

∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝜓
𝑑
(𝑥)
󵄨
󵄨
󵄨
󵄨

2d𝑥 = 1. (25)

The error can be defined as follows:

𝑒 (𝑡) = ∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝜓 (𝑥, 𝑡) − 𝜓

𝑑
(𝑥)
󵄨
󵄨
󵄨
󵄨

2d𝑥. (26)

The goal is to make the error decrease in this way:

̇𝑒 (𝑡) = −𝑘𝑒 (𝑡) . (27)

Based on (3) and (25), we can rewrite 𝑒(𝑡) as follows:

𝑒 (𝑡) = ∫

∞

−∞

[𝜓 (𝑥, 𝑡) − 𝜓
𝑑
(𝑥)]
∗

[𝜓 (𝑥, 𝑡) − 𝜓
𝑑
(𝑥)] d𝑥

= ∫

∞

−∞

󵄨
󵄨
󵄨
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󵄨
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󵄨
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− ∫
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∗
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= 2 − 2∫

∞

−∞

R [𝜓
∗

𝑑
(𝑥) 𝜓 (𝑥, 𝑡)] d𝑥.

(28)

Then we can obtain the following relationship based on (1),
(27), and (28):
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= −2∫

∞

−∞
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∗

𝑑
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∞

−∞
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2
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𝜄

ℎ

𝑈 (𝑡) 𝜓 (𝑥, 𝑡)]} d𝑥
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𝑚
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∞
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2
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𝑚

∫

∞

−∞

I[𝜓
∗

𝑑
(𝑥)

𝜕
2
𝜓 (𝑥, 𝑡)

𝜕𝑥
2

] d𝑥

−

2𝑈 (𝑡)

ℎ

∫

∞

−∞

I [𝜓
∗

𝑑
(𝑥) 𝜓 (𝑥, 𝑡)] d𝑥

= −𝑘{2 − 2∫

∞

−∞

R [𝜓
∗

𝑑
(𝑥) 𝜓 (𝑥, 𝑡)] d𝑥} .

(29)

From (29), we can get the following controller:

𝑈 (𝑡) = (

ℎ
2

2𝑚

∫

∞

−∞

I[𝜓
∗

𝑑
(𝑥)

𝜕
2
𝜓 (𝑥, 𝑡)

𝜕𝑥
2

] d𝑥

−𝑘ℎ∫

∞

−∞

R [𝜓
∗

𝑑
(𝑥) 𝜓 (𝑥, 𝑡)] d𝑥 + 𝑘ℎ)

× (∫

∞

−∞

I [𝜓
∗

𝑑
(𝑥) 𝜓 (𝑥, 𝑡)] d𝑥)

−1

.

(30)

This is the desired controller which can make the error
decrease when applied to the quantum system. We can sub-
stitute (30) into the Schrödinger equation (1) to solve𝑈(𝑡) out
because only 𝜓(𝑥, 𝑡) and 𝑈(𝑡) are unknown. This task can
be numerically accomplished by computer simulation or dis-
cretization. Moreover, in practice, some methods have been
developed for the real-time measurement of quantum PDF
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under some special cases [32, 35]. If the quantum PDF can be
measured online in the future, we can directlymeasure𝜓(𝑥, 𝑡)
and calculate 𝑈(𝑡) with (30).

When 𝜓(𝑥, 𝑡) → 𝜓
𝑑
(𝑥), 𝑈(𝑡) will not be asymptotic

stable. We can design an external field to make 𝜓(𝑥, 𝑡)
unchangedwhen it is near to𝜓

𝑑
(𝑥) at time 𝑡

𝑓
. Tomake𝜓(𝑥, 𝑡)

unchanged is just to make

∀𝑡 > 𝑡
𝑓
, 𝜓 (𝑥, 𝑡) = 𝜓 (𝑥, 𝑡

𝑓
) . (31)

Substituting (31) into the Schrödinger equation (1) we obtain
the following:

0 = −

ℎ
2

2𝑚

⋅

d2𝜓 (𝑥, 𝑡
𝑓
)

d𝑥2
+ 𝑈 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡

𝑓
) ,

(32)

which gives the following:

𝑈 (𝑥, 𝑡) = 𝑈 (𝑥) =

ℎ
2

2𝑚 ⋅ 𝜓 (𝑥, 𝑡
𝑓
)

⋅

d2𝜓 (𝑥, 𝑡
𝑓
)

d𝑥2
. (33)

Such a field will keep 𝜓(𝑥, 𝑡) constant.

5. Controller Design for Discrete Entropy
Based on Discretization Approximation

In the above two methods, the entropy does not truly enter
the control procedure and cannot be driven to the target at
any prespecified time. To achieve more direct and accurate
control, we can adopt discretization to clarify the relationship
between the entropy and the controller.

Assuming the sampling period is𝑇, the control model (6)
with dimension 𝑛 can be descretized as follows:

𝐶 (𝑇) − 𝐶 (0)

𝑇

= 𝐴𝐶 (0) + 𝐵𝑈 (0) 𝐶 (0) , (34)

where 𝐶(0) is the initial state, 𝐶(𝑇) is the state at time 𝑇, and
𝑈(0) is the external potential field which will remain constant
in the first sampling period 𝑇. Then we have the following:

𝐶 (𝑇) = (𝐼 + 𝑇𝐴)𝐶 (0) + 𝑇𝐵𝑈 (0) 𝐶 (0) , (35)

where 𝐼 is the identity matrix with dimension 𝑛. For finite
dimensional quantum systems, the derivative of the discrete
entropy (8) is as follows:

d𝑆
𝑑
(𝑡)

d𝑡
= −

𝑛

∑

𝑖=1

[ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

+ 1]

d󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

d𝑡

= −

𝑛

∑

𝑖=1

d󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

d𝑡
ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

−

𝑛

∑

𝑖=1

d󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

d𝑡
.

(36)

It is clear that

𝑛

∑

𝑖=1

d󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

d𝑡
=

d
d𝑡
[

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

] ≡ 0. (37)

Hence (36) can be changed into the following:

d𝑆
𝑑
(𝑡)

d𝑡
= −

𝑛

∑

𝑖=1

d󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

d𝑡
ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

. (38)

We discretize (38) as

𝑆
𝑑
(𝑇) − 𝑆

𝑑
(0)

𝑇

= −

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

−
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2

𝑇

ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2

, (39)

which implies

𝑆
𝑑
(𝑇) − 𝑆

𝑑
(0)

= −

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

2 ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2

+

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2 ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2

.

(40)

It is clear that

𝑆
𝑑
(0) = −

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2 ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2

. (41)

Substituting (41) into (40) leads to the following:

𝑆
𝑑
(𝑇) = −

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑇)

󵄨
󵄨
󵄨
󵄨

2 ln 󵄨󵄨󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2

. (42)

Here, we use −∑𝑛
𝑖=1
|𝑐
𝑖
(𝑇)|
2 ln |𝑐
𝑖
(0)|
2 to approximate −∑𝑛

𝑖=1

|𝑐
𝑖
(𝑇)|
2 ln |𝑐
𝑖
(𝑇)|
2. The following theorem shows that not only

the approximation is feasible, but also the approximation
error is an infinitesimal of higher order than the change of
probability under small change of the probability.

Theorem 1. When |𝑐
𝑖
(0)|
2
̸= 0 (for all 𝑖) holds, if the probabil-

ity change is very small (for all 𝑖, |𝑐
𝑖
(𝑇)|
2
− |𝑐
𝑖
(0)|
2
→ 0),

𝑆
𝑑
(𝑇) = −∑

𝑛

𝑖=1
|𝑐
𝑖
(𝑇)|
2 ln |𝑐
𝑖
(𝑇)|
2
(𝑇 → 0) can be approx-

imated by −∑𝑛
𝑖=1
|𝑐
𝑖
(𝑇)|
2 ln |𝑐
𝑖
(0)|
2, and the approximation

error 𝑒 = ∑
𝑛

𝑖=1
|𝑐
𝑖
(𝑇)|
2 ln |𝑐
𝑖
(𝑇)|
2
− ∑
𝑛

𝑖=1
|𝑐
𝑖
(𝑇)|
2 ln |𝑐
𝑖
(0)|
2 is

an infinitesimal of higher order than the probability change
∑
𝑛

𝑖=1
||𝑐
𝑖
(𝑇)|
2
− |𝑐
𝑖
(0)|
2
|.

Proof. Assume |𝑐
𝑖
(0)|
2
= 𝑝
𝑖
̸= 0, |𝑐
𝑖
(𝑇)|
2
− |𝑐
𝑖
(0)|
2
= Δ
𝑖
, and 𝑒

can be written as follows:

𝑒 =

𝑛

∑

𝑖=1

(𝑝
𝑖
+ Δ
𝑖
) ln (𝑝

𝑖
+ Δ
𝑖
) −

𝑛

∑

𝑖=1

(𝑝
𝑖
+ Δ
𝑖
) ln𝑝
𝑖

=

𝑛

∑

𝑖=1

(𝑝
𝑖
+ Δ
𝑖
) ln

𝑝
𝑖
+ Δ
𝑖

𝑝
𝑖

.

(43)
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It is clear that

lim
Δ 𝑖→0

(𝑝
𝑖
+ Δ
𝑖
) ln ((𝑝

𝑖
+ Δ
𝑖
) /𝑝
𝑖
)

Δ
𝑖

= lim
Δ 𝑖→0

ln ((𝑝
𝑖
+ Δ
𝑖
) /𝑝
𝑖
)

Δ
𝑖
/ (𝑝
𝑖
+ Δ
𝑖
)

= lim
Δ 𝑖→0

(d/dΔ
𝑖
) (ln ((𝑝

𝑖
+ Δ
𝑖
) /𝑝
𝑖
))

(d/dΔ
𝑖
) (Δ
𝑖
/ (𝑝
𝑖
+ Δ
𝑖
))

= lim
Δ 𝑖→0

(𝑝
𝑖
/ (𝑝
𝑖
+ Δ
𝑖
)) ⋅ (1/𝑝

𝑖
)

(𝑝
𝑖
+ Δ
𝑖
− Δ
𝑖
) /(𝑝
𝑖
+ Δ
𝑖
)
2

= lim
Δ 𝑖→0

(1 + Δ
𝑖
/𝑝
𝑖
) = 1,

(44)

so we can get lim
Δ 𝑖→0

(𝑝
𝑖
+Δ
𝑖
) ln((𝑝

𝑖
+Δ
𝑖
)/𝑝
𝑖
) = lim

Δ 𝑖→0
Δ
𝑖
,

which implies lim
Δ 𝑖→0

𝑒 = lim
Δ 𝑖→0

∑
𝑛

𝑖=1
Δ
𝑖
= 0. Since

the limit of the approximation error is zero, we can say the
approximation is feasible. Moreover, we have the following:

lim
Δ 𝑖→0

𝑒

∑
𝑛

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑇)

󵄨
󵄨
󵄨
󵄨

2

−
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2󵄨󵄨
󵄨
󵄨
󵄨

= lim
Δ 𝑖→0

∑
𝑛

𝑖=1
Δ
𝑖

∑
𝑛

𝑖=1

󵄨
󵄨
󵄨
󵄨
Δ
𝑖

󵄨
󵄨
󵄨
󵄨

= 0. (45)

Hence,

𝑒 = 𝑜(

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑇)

󵄨
󵄨
󵄨
󵄨

2

−
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(0)
󵄨
󵄨
󵄨
󵄨

2󵄨󵄨
󵄨
󵄨
󵄨
) . (46)

Theorem 1 allows us to use (42) to approximate the
entropy after change. Here, for simplicity we define a row
vector:

𝐷 ≜ [− ln 󵄨󵄨󵄨
󵄨
𝑐
1
(0)
󵄨
󵄨
󵄨
󵄨

2

, − ln 󵄨󵄨󵄨
󵄨
𝑐
2
(0)
󵄨
󵄨
󵄨
󵄨

2

, . . . , ln 󵄨󵄨󵄨
󵄨
𝑐
𝑛
(0)
󵄨
󵄨
󵄨
󵄨

2

]

= [𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
] ∈ R1×𝑛.

(47)

Since 0 ≤ |𝑐
𝑖
(0)|
2
≤ 1, we know 𝑑

𝑖
≥ 0. Substituting (47) into

(42) leads to the following:
𝑆
𝑑
(𝑇) = 𝐷 [𝐶 (𝑇) ∘ 𝐶

∗
(𝑇)]

= 𝐷 { [(𝐼 + 𝑇𝐴)𝐶 (0) + 𝑈 (0) 𝑇𝐵𝐶 (0)]

∘ [(𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0) + 𝑈 (0) 𝑇𝐵

∗
𝐶
∗
(0)]}

= 𝐷 {(𝐼 + 𝑇𝐴)𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0)

+ 𝑈
2
(0) 𝑇𝐵𝐶 (0) ∘ 𝑇𝐵

∗
𝐶
∗
(0)

+ 𝑈 (0) [𝑇𝐵𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0)

+ (𝐼 + 𝑇𝐴)𝐶 (0) ∘ 𝑇𝐵
∗
𝐶
∗
(0)]} .

(48)

Define
𝑀 ≜ 𝑇𝐵𝐶 (0) ∘ 𝑇𝐵

∗
𝐶
∗
(0) ∈ R𝑛×1,

𝑁 ≜ 𝑇𝐵𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0)

+ (𝐼 + 𝑇𝐴)𝐶 (0) ∘ 𝑇𝐵
∗
𝐶
∗
(0) ∈ R𝑛×1,

𝐾 ≜ (𝐼 + 𝑇𝐴)𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0) ∈ R𝑛×1,

(49)

which can change (48) into the following:

𝑆
𝑑
(𝑇) = 𝑈

2
(0)𝐷𝑀 + 𝑈 (0)𝐷𝑁 + 𝐷𝐾. (50)

It is clear that all the elements in𝑀 and 𝐾 are nonnegative,
which lead to𝐷𝑀 ≥ 0 and𝐷𝐾 ≥ 0. When𝐷𝑀 = 0, to make
the entropy in (50) reach its target, we can simply choose
𝑈(0) = (𝑆

𝑑
(𝑇)−𝐷𝐾)/𝐷𝑁. But inmost caseswe have𝐷𝑀 > 0,

and from (50) the one-step controller can be calculated as
follows:

𝑈 (0) =

−𝐷𝑁 ± √(𝐷𝑁)
2
− 4𝐷𝑀[𝐷𝐾 − 𝑆

𝑑
(𝑇)]

2𝐷𝑀

.
(51)

Here, the selection of plus andminus depends on the value of
|𝑈(0)|, and detailed discussions can be found in Section 6.1.
Since 𝑈(0) belongs to the real domain, we have (𝐷𝑁)2 −
4𝐷𝑀[𝐷𝐾 − 𝑆

𝑑
(𝑇)] ≥ 0, which leads to the following:

𝑆
𝑑
(𝑇) ≥ 𝐷𝐾 −

(𝐷𝑁)
2

4𝐷𝑀

. (52)

Thismeans that 𝑆
𝑑
(𝑇)has a lower bound. Proposition 2 shows

that the lower bound is nonnegative.

Proposition 2. Consider the following:

𝐷𝐾 −

(𝐷𝑁)
2

4𝐷𝑀

≥ 0. (53)

Proof. Define two column-vectors as follows:

𝑥 ≜ 𝑇𝐵𝐶 (0) =

[

[

[

[

[

𝑥
1

𝑥
2

...
𝑥
𝑛

]

]

]

]

]

∈ C𝑛×1,

𝑦 ≜ (𝐼 + 𝑇𝐴)𝐶 (0) =

[

[

[

[

[

𝑦
1

𝑦
2

...
𝑦
𝑛

]

]

]

]

]

∈ C𝑛×1,

(54)

and𝑀,𝑁, and𝐾 can be rewritten as follows:

𝑀 = 𝑥 ∘ 𝑥
∗
=

[

[

[

[

[

[

󵄨
󵄨
󵄨
󵄨
𝑥
1

󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
𝑥
2

󵄨
󵄨
󵄨
󵄨

2

...
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

]

]

]

]

]

]

,

𝑁 = 𝑥 ∘ 𝑦
∗
+ 𝑦 ∘ 𝑥

∗
= 2R (𝑥 ∘ 𝑦

∗
) = 2

[

[

[

[

[

R (𝑥
1
𝑦
∗

1
)

R (𝑥
2
𝑦
∗

2
)

...
R (𝑥
𝑛
𝑦
∗

𝑛
)

]

]

]

]

]

,

𝐾 = 𝑦 ∘ 𝑦
∗
=

[

[

[

[

[

[

󵄨
󵄨
󵄨
󵄨
𝑦
1

󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
𝑦
2

󵄨
󵄨
󵄨
󵄨

2

...
󵄨
󵄨
󵄨
󵄨
𝑦
𝑛

󵄨
󵄨
󵄨
󵄨

2

]

]

]

]

]

]

.

(55)
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We can do the following calculation:

(𝐷𝑀) (𝐷𝐾) −

(𝐷𝑁)
2

4

= (

𝑛

∑

𝑖=1

𝑑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

)(

𝑛

∑

𝑖=1

𝑑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖

󵄨
󵄨
󵄨
󵄨

2

) − [

𝑛

∑

𝑖=1

𝑑
𝑖
R (𝑥
𝑖
𝑦
∗

𝑖
)]

2

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

𝑑
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑖
R (𝑥
𝑖
𝑦
∗

𝑖
) 𝑑
𝑗
R (𝑥
𝑗
𝑦
∗

𝑗
)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑖
𝑑
𝑗
[

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

−R (𝑥
𝑖
𝑦
∗

𝑖
)R (𝑥

𝑗
𝑦
∗

𝑗
)] .

(56)

For 𝑖 = 𝑗,

𝑑
𝑖
𝑑
𝑗
[

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

−R (𝑥
𝑖
𝑦
∗

𝑖
)R (𝑥

𝑗
𝑦
∗

𝑗
)]

= 𝑑
2

𝑖
[
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨

2

−
󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑖
𝑦
∗

𝑖
)
󵄨
󵄨
󵄨
󵄨

2

] ≥ 0.

(57)

For 𝑖 ̸= 𝑗,

𝑑
𝑖
𝑑
𝑗
[

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

−R (𝑥
𝑖
𝑦
∗

𝑖
)R (𝑥

𝑗
𝑦
∗

𝑗
)]

+ 𝑑
𝑗
𝑑
𝑖
[

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

−R (𝑥
𝑗
𝑦
∗

𝑗
)R (𝑥

𝑖
𝑦
∗

𝑖
)]

= 𝑑
𝑖
𝑑
𝑗
[

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

− 2R (𝑥
𝑖
𝑦
∗

𝑖
)R (𝑥

𝑗
𝑦
∗

𝑗
)]

= 𝑑
𝑖
𝑑
𝑗
[

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

− 2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
− 2

󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑖
𝑦
∗

𝑖
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑗
𝑦
∗

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

+2
󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑖
𝑦
∗

𝑖
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑗
𝑦
∗

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
− 2R (𝑥

𝑖
𝑦
∗

𝑖
)R (𝑥

𝑗
𝑦
∗

𝑗
) ]

= 𝑑
𝑖
𝑑
𝑗
{(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

+ 2 [
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
−
󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑖
𝑦
∗

𝑖
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑗
𝑦
∗

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
]

+2 [

󵄨
󵄨
󵄨
󵄨
󵄨
R (𝑥
𝑖
𝑦
∗

𝑖
)R (𝑥

𝑗
𝑦
∗

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
−R (𝑥

𝑖
𝑦
∗

𝑖
)R (𝑥

𝑗
𝑦
∗

𝑗
)] }

≥ 0.

(58)

So, (𝐷𝑀)(𝐷𝐾)−((𝐷𝑁)2/4) ≥ 0, which implies𝐷𝐾−((𝐷𝑁)2/
4𝐷𝑀) ≥ 0.

Proposition 2 shows that 𝑆
𝑑
(𝑇) has a nonnegative lower

bound, which will affect the selection of the target. When
the lower bound is smaller than 𝑆

𝑑
(0), the entropy can be

reduced; otherwise, the entropy cannot be reduced in time
𝑇. However, it is possible to reduce the entropy after 𝑇 using
suitable control, which will be demonstrated by simulation
in Section 6.1. This conclusion coincides with our common

sense. Just as we know, it is always easy to make a system
disordered, but it is not always easy tomake a system ordered.
To investigate when the entropy cannot be reduced, we can
calculate the gap between the lower bound and 𝑆

𝑑
(0) as fol-

lows:

𝑆
𝑑
(0) − [𝐷𝐾 −

(𝐷𝑁)
2

4𝐷𝑀

]

=

1

𝐷𝑀

{

(𝐷𝑁)
2

4

− 𝐷𝑀[𝐷𝐾 − 𝑆
𝑑
(0)]}

=

1

𝐷 [𝑇𝐵𝐶 (0) ∘ 𝑇𝐵
∗
𝐶
∗
(0)]

× {

1

4

{2𝐷R [𝑇𝐵𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0)]}
2

− 𝐷 [𝑇𝐵𝐶 (0) ∘ 𝑇𝐵
∗
𝐶
∗
(0)]

× {𝐷 [(𝐼 + 𝑇𝐴)𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0)]

−𝐷 [𝐶 (0) ∘ 𝐶
∗
(0)]} }

=

1

𝑇
2
𝐷 [𝐵𝐶 (0) ∘ 𝐵

∗
𝐶
∗
(0)]

× {{𝐷R [𝑇𝐵𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0)]}
2

− 𝐷 [𝑇𝐵𝐶 (0) ∘ 𝑇𝐵
∗
𝐶
∗
(0)]

× 𝐷 [𝑇𝐴𝐶 (0) ∘ 𝐶
∗
(0) + 𝑇𝐶 (0) ∘ 𝐴

∗
𝐶
∗
(0)

+𝑇
2
𝐴𝐶 (0) ∘ 𝐴

∗
𝐶
∗
(0)]}

=

𝑇
2

𝑇
2
𝐷 [𝐵𝐶 (0) ∘ 𝐵

∗
𝐶
∗
(0)]

× {{𝐷R [𝐵𝐶 (0) ∘ (𝐼 + 𝑇𝐴
∗
) 𝐶
∗
(0)]}
2

− 𝐷 [𝐵𝐶 (0) ∘ 𝐵
∗
𝐶
∗
(0)]

× 𝐷 {2𝑇R [𝐴𝐶 (0) ∘ 𝐶
∗
(0)]

+𝑇
2
𝐴𝐶 (0) ∘ 𝐴

∗
𝐶
∗
(0)}}

=

1

𝐷 [𝐵𝐶 (0) ∘ 𝐵
∗
𝐶
∗
(0)]

× { {𝐷R [𝐵𝐶 (0) ∘ 𝐶
∗
(0)]

+𝑇𝐷R [𝐵𝐶 (0) ∘ 𝐴
∗
𝐶
∗
(0)]}
2

− 2𝑇𝐷 [𝐵𝐶 (0) ∘ 𝐵
∗
𝐶
∗
(0)]𝐷R [𝐴𝐶 (0) ∘ 𝐶

∗
(0)]

−𝑇
2
𝐷[𝐵𝐶 (0) ∘ 𝐵

∗
𝐶
∗
(0)]𝐷 [𝐴𝐶 (0) ∘ 𝐴

∗
𝐶
∗
(0)]} .

(59)

Let

𝑆
𝑑
(0) − [𝐷𝐾 −

(𝐷𝑁)
2

4𝐷𝑀

] =

𝑎𝑇
2
+ 𝑏𝑇 + 𝑐

𝐷 [𝐵𝐶 (0) ∘ 𝐵
∗
𝐶
∗
(0)]

, (60)
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𝑏 = 0

𝑇

𝑏 < 0 𝑏 > 0

𝑎𝑇2 + 𝑏𝑇 + 𝑐

0

Figure 1: The relationship between 𝑎𝑇2 + 𝑏𝑇 + 𝑐 and 𝑇.
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−
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)

Figure 2:The relationship between entropy and probability for two-
level quantum systems.

where

𝑎 = {𝐷R [𝐵𝐶 (0) ∘ 𝐴
∗
𝐶
∗
(0)]}
2

− 𝐷 [𝐵𝐶 (0) ∘ 𝐵
∗
𝐶
∗
(0)]𝐷 [𝐴𝐶 (0) ∘ 𝐴

∗
𝐶
∗
(0)] ,

𝑏 = 2𝐷R [𝐵𝐶 (0) ∘ 𝐶
∗
(0)]𝐷R [𝐵𝐶 (0) ∘ 𝐴

∗
𝐶
∗
(0)]

− 2𝐷 [𝐵𝐶 (0) ∘ 𝐵
∗
𝐶
∗
(0)]𝐷R [𝐴𝐶 (0) ∘ 𝐶

∗
(0)] ,

𝑐 = {𝐷R [𝐵𝐶 (0) ∘ 𝐶
∗
(0)]}
2

.

(61)

From𝐷[𝐵𝐶(0)∘𝐵
∗
𝐶
∗
(0)] ≥ 0, we know that the entropy can-

not be reducedwhen lim
𝑇→0

(𝑎𝑇
2
+𝑏𝑇+𝑐) ≤ 0.The following

proposition shows that 𝑎 ≤ 0.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

𝑆 𝑑
(𝑡
)

𝑈(0) = 3.785

𝑈(0) = −89.373

Figure 3: Evolutions of the entropy for system (69) with initial state
𝐶(0) = [√3/2, 1/2]

𝑇 under controller 𝑈(0) = 3.785 and −89.373.

Proposition 3. Consider the following:

𝑎 = {𝐷R [𝐵𝐶 (0) ∘ 𝐴
∗
𝐶
∗
(0)]}
2

− 𝐷 [𝐵𝐶 (0) ∘ 𝐵
∗
𝐶
∗
(0)]𝐷 [𝐴𝐶 (0) ∘ 𝐴

∗
𝐶
∗
(0)] ≤ 0.

(62)

Proof. Assume

𝐵𝐶 (0) =

[

[

[

[

[

[

𝑝
1

𝑝
2

...
𝑝
𝑛

]

]

]

]

]

]

∈ C𝑛×1, 𝐴𝐶 (0) =

[

[

[

[

[

[

𝑞
1

𝑞
2

...
𝑞
𝑛

]

]

]

]

]

]

∈ C𝑛×1,

(63)

and 𝑎 can be rewritten as follows:

𝑎 =
[

[

𝑛

∑

𝑗=1

𝑑
𝑖
R (𝑝
𝑖
𝑞
∗

𝑖
)
]

]

2

− (

𝑛

∑

𝑖=1

𝑑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖

󵄨
󵄨
󵄨
󵄨

2

)(

𝑛

∑

𝑖=1

𝑑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑞
𝑖

󵄨
󵄨
󵄨
󵄨

2

)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑖
R (𝑝
𝑖
𝑞
∗

𝑖
) 𝑑
𝑗
R (𝑝
𝑗
𝑞
∗

𝑗
) −

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖

󵄨
󵄨
󵄨
󵄨

2

𝑑
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑖
𝑑
𝑗
[R (𝑝

𝑖
𝑞
∗

𝑖
)R (𝑝

𝑗
𝑞
∗

𝑗
) −

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖

󵄨
󵄨
󵄨
󵄨

2󵄨󵄨
󵄨
󵄨
󵄨
𝑞
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

] .

(64)

For 𝑖 = 𝑗,

𝑑
𝑖
𝑑
𝑗
[R (𝑝

𝑖
𝑞
∗

𝑖
)R (𝑝

𝑗
𝑞
∗

𝑗
) −

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖

󵄨
󵄨
󵄨
󵄨

2󵄨󵄨
󵄨
󵄨
󵄨
𝑞
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

]

= 𝑑
2

𝑖
[
󵄨
󵄨
󵄨
󵄨
R (𝑝
𝑖
𝑞
∗

𝑖
)
󵄨
󵄨
󵄨
󵄨

2

−
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
𝑞
∗

𝑖

󵄨
󵄨
󵄨
󵄨

2

] ≤ 0.

(65)
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Figure 4: Evolutions of the entropy for system (69) with initial state 𝐶(0) = [√3/2, 1/2]𝑇, when 𝑆
𝑑
(𝑇) = 0.6 and 0.5, 𝑇 = 0.01, 0.001, 0.0001,

and 0.00001.
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Figure 5: Change of the entropy with respect to 𝑆
𝑑
(0) at 𝑇 = 0.01

under different 𝑈(0) for system (69) with 𝐶(0) = [√3/2, 𝜄/2]𝑇.

For 𝑖 ̸= 𝑗,

𝑑
𝑖
𝑑
𝑗
[R (𝑝

𝑖
𝑞
∗

𝑖
)R (𝑝

𝑗
𝑞
∗

𝑗
) −

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖

󵄨
󵄨
󵄨
󵄨

2󵄨󵄨
󵄨
󵄨
󵄨
𝑞
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

]

+ 𝑑
𝑗
𝑑
𝑖
[R (𝑝

𝑗
𝑞
∗

𝑗
)R (𝑝

𝑖
𝑞
∗

𝑖
) −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑞
𝑖

󵄨
󵄨
󵄨
󵄨

2

]

= 𝑑
𝑖
𝑑
𝑗
[2R (𝑝

𝑖
𝑞
∗

𝑖
)R (𝑝

𝑗
𝑞
∗

𝑗
) −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
𝑞
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗
𝑞
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

]

≤ 𝑑
𝑖
𝑑
𝑗
[2
󵄨
󵄨
󵄨
󵄨
R (𝑝
𝑖
𝑞
∗

𝑖
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
R (𝑝
𝑗
𝑞
∗

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
𝑞
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗
𝑞
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

]

≤ 𝑑
𝑖
𝑑
𝑗
[2
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
𝑞
∗

𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗
𝑞
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
𝑞
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗
𝑞
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

]

= −𝑑
𝑖
𝑑
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
𝑞
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗
𝑞
∗

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
)

2

≤ 0.

(66)

We can conclude that 𝑎 ≤ 0.

Based on Proposition 3, we can find out under what con-
ditions the entropy cannot be reduced, which is shown in
Theorem 4.

Theorem 4. The entropy cannot be reduced in very small time
𝑇 when

𝐷R [𝐴𝐶 (0) ∘ 𝐶
∗
(0)] ≥ 0, 𝐷R [𝐵𝐶 (0) ∘ 𝐶

∗
(0)] = 0.

(67)

Proof. From (61) we know 𝑐 ≥ 0. When 𝑐 > 0, it is clear that
lim
𝑇→0

(𝑎𝑇
2
+ 𝑏𝑇+ 𝑐) > 0, which means that the entropy can

be reduced.When 𝑐 = 0 and 𝑎 = 0, lim
𝑇→0

(𝑎𝑇
2
+𝑏𝑇+𝑐) ≤ 0

is true only when 𝑏 ≤ 0. When 𝑐 = 0 and 𝑎 < 0, from Figure 1,
we can see that lim

𝑇→0
(𝑎𝑇
2
+ 𝑏𝑇 + 𝑐) ≤ 0 only holds when

𝑏 ≤ 0.
So the conditions under which the entropy can only be

reduced are 𝑐 = 0 and 𝑏 ≤ 0. From (61) we know 𝑐 = 0

implies𝐷R[𝐵𝐶(0)∘𝐶∗(0)] = 0which yields 𝑏 = −2𝐷[𝐵𝐶(0)∘
𝐵
∗
𝐶
∗
(0)]𝐷R[𝐴𝐶(0)∘𝐶∗(0)]. From𝐷R[𝐵𝐶(0)∘𝐵∗𝐶∗(0) ≥ 0,

we know that, to get 𝑏 ≤ 0, we only need𝐷R[𝐴𝐶(0)∘𝐶∗(0)] ≥
0. We can conclude the result in Theorem 4.

Theorem 4 gives the conditions under which the entropy
cannot be reduced. During practical control process, we do
not need to do the calculations in (67) at every step. This is
because if one wants to reduce the entropy when it cannot
be reduced, the selection of 𝑆

𝑑
(𝑇) must be smaller than its

lower bound, which makes (𝐷𝑁)2 − 4𝐷𝑀[𝐷𝐾 − 𝑆
𝑑
(𝑇)] < 0,

and the controller (51) will be unsolvable. Another question
is that, even when the entropy can be reduced, we cannot
reduce it below the lower bound in one time step 𝑇. In order
to reduce it below the lower bound, multistep tracking can be
adopted since Theorem 1 only holds for small change of the
probability. Although fast probability change may lead to fast
entropy decreasing, it cannot be tracked and approximated
withTheorem 1.

We can show the essence of the algorithm in Figure 2
based on two-level quantum systems. Assuming |𝑐

1
(𝑡)|
2
= 𝑝,
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Figure 6: Evolutions of the entropy under 𝑈(0) = −155 and −470 for system (69) with initial state 𝐶(0) = [√3/2, 𝜄/2]𝑇.
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Figure 7: Evolutions of the entropy and states for system (72) under controller (74).

the entropy of two-level systems becomes 𝑆 = −𝑝 ln𝑝 − (1 −
𝑝) ln(1−𝑝).The relationship between entropy and probability
can be depicted in Figure 2.

For arbitrary point𝐴, when the system goes from𝐴 to𝐴󸀠,
the probability change can be denoted as Δ𝑝 = 𝑝

𝐴
󸀠 − 𝑝
𝐴
. If

we denote the entropy at 𝐴󸀠 as 𝑆
𝐴
󸀠 and approximate it with

𝑆
𝐴
󸀠󸀠 , the approximation error 𝑒 = 𝑆

𝐴
󸀠 − S
𝐴
󸀠󸀠 should satisfy

lim
Δ𝑝→0

(𝑒/Δ𝑝) = 0. Obviously there will be some delay in
such an approximation. Hence, in Section 6.2, we will use
prediction to achieve more accurate tracking.

It should be noted that for the entropy’s maximum point
𝐵 and minimum points 𝐶 and 𝐷, our algorithm cannot be
applied. For point 𝐵, we have d𝑆/d𝑝 = 0 and 𝑆

𝐵
󸀠󸀠 = 𝑆

𝐵
,

so the entropy will not change under the approximation of

𝑆
𝐵
󸀠󸀠 . For quantum systems with 𝑛 levels, the maximum point

satisfies |𝑐
𝑖
(0)|
2
= (1/𝑛) (for all 𝑖), so we can get 𝑆

𝑑
(𝑇) =

−∑
𝑛

𝑖=1
|𝑐
𝑖
(𝑇)|
2 ln |𝑐
𝑖
(0)|
2
= −∑

𝑛

𝑖=1
|𝑐
𝑖
(𝑇)|
2 ln(1/𝑛) = ln 𝑛 ⋅

∑
𝑛

𝑖=1
|𝑐
𝑖
(𝑇)|
2

= ln 𝑛 = 𝑆
𝑑
(0), which will not change

the entropy either. For point 𝐶 we have d𝑆/d𝑝 = +∞,
lim
Δ𝑝→0

(𝑒/Δ𝑝) = −∞, and for point 𝐷 we have d𝑆/d𝑝 =

−∞, lim
Δ𝑝→0

(𝑒/Δ𝑝) = +∞, which make the algorithm
unfeasible. For three-level systems, when the entropy is at its
minimum, one of |𝑐

𝑖
(𝑡)|
2
(𝑖 = 1, 2, 3)must be 1, and the others

must be 0. Assume the vector [|𝑐
1
(𝑡)|
2
, |𝑐
2
(𝑡)|
2
, |𝑐
3
(𝑡)|
2
] goes

from [1, 0, 0] to [1 − Δ
1
− Δ
2
, Δ
1
, Δ
2
] (Δ
1
> 0, Δ

2
> 0).

Such a process is equivalent to [1, 0, 0] → [1−Δ
1
−Δ
2
, Δ
1
+

Δ
2
, 0] → [1−Δ

1
−Δ
2
, Δ
1
, Δ
2
]. If we denote the errors in each
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Figure 8: Improved control strategy with division and prediction.

change as 𝑒
1
and 𝑒
2
, we have lim

Δ 1+Δ 2→0
(𝑒
1
/2(Δ
1
+ Δ
2
)) =

lim
Δ 2→0

(𝑒
2
/2Δ
2
) = −∞, which leads to the following:

lim
Δ 1+Δ 2→0

𝑒
1
+ 𝑒
2

2 (Δ
1
+ Δ
2
)

= lim
Δ 1+Δ 2→0

[

𝑒
1

2 (Δ
1
+ Δ
2
)

+

𝑒
2

2Δ
2

Δ
2

Δ
1
+ Δ
2

]

= lim
Δ 1+Δ 2→0

𝑒
1

2 (Δ
1
+ Δ
2
)

+

Δ
2

Δ
1
+ Δ
2

lim
Δ 1+Δ 2→0

𝑒
2

2Δ
2

= −∞ +

Δ
2

Δ
1
+ Δ
2

(−∞) = −∞.

(68)

The same conclusion holds for quantum systems with more
than three levels.

6. Simulation Examples

In order to illustrate the effectiveness of our algorithm, we
present simulation examples on both two-level and three-
level quantum systems.

6.1. Simulation on a Two-Level System. Consider the system

[

̇𝑐
1
(𝑡)

̇𝑐
2
(𝑡)
] = {[

−𝜄 0

0 𝜄
] + [

0 −1

1 0
]𝑈 (𝑡)} [

𝑐
1
(𝑡)

𝑐
2
(𝑡)
] . (69)

It is easy to verify that𝐷𝑀 = −𝑇
2
[|𝑐
1
(0)|
2 ln |𝑐
2
(0)|
2
+ |𝑐
2
(0)|
2

ln |𝑐
1
(0)|
2
] > 0, so we should always use (51) to calculate𝑈(0).

It is easy to obtain the following:

𝐷R [𝐴𝐶 (0) ∘ 𝐶
∗
(0)] ≡ 0,

𝐷R [𝐵𝐶 (0) ∘ 𝐶
∗
(0)] = R [𝑐

1
(0) 𝑐
∗

2
(0)] ln

󵄨
󵄨
󵄨
󵄨
𝑐
2
(0)
󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
𝑐
1
(0)
󵄨
󵄨
󵄨
󵄨

2
.

(70)

If the entropy is not at its maximum or minimum, we have
ln(|𝑐
2
(0)|
2
/|𝑐
1
(0)|
2
) ̸= 0 or ±∞, and, from Theorem 4, we

know that the condition under which the entropy cannot be
reduced is as follows:

R [𝑐
1
(0) 𝑐
∗

2
(0)] = 0. (71)

For initial state 𝐶(0) = [√3/2, 1/2]
𝑇 which does not

satisfy (71), we have 𝑆
𝑑
(0) = 0.562. If the entropy is desired to

increase to 𝑆
𝑑
(𝑇) = 0.6 at time 𝑇 = 0.01, the controller (51)

can be calculated as 𝑈(0) = 3.875 or −89.373. Simulations
of the entropy for system (69) with initial state 𝐶(0) =

[√3/2, 1/2]
𝑇 under controller 𝑈(0) = 3.785 and −89.373 are

shown in Figure 3.
FromFigure 3we can see that both controllers can achieve

the goal. While 𝑈(0) = −89.373 can make the probability
change very fast. This does not satisfy the premise of Theo-
rem 1, thus the entropy cannot be accurately approximated.
From (69) we can see when𝑈(0) = 0, there will be no change
in the probability distribution and the entropy. Since larger
|𝑈(0)| leads to faster entropy change with oscillation, we just
choose the controller with small modulus. Hence, in (51),
when 𝐷𝑁 > 0 we choose plus; otherwise we choose minus.
For 𝑆
𝑑
(𝑇) = 0.6 and 0.5, when 𝑇 = 0.01, 0.001, 0.0001, and

0.00001, the simulations are shown in Figure 4.
We can see the entropy can be driven to its destination

at any prespecified time, which can be accomplished very
quickly in one step. When the entropy has reached its target,
from (23), we know that we can just apply 𝑈(𝑡) = 0 to
maintain the entropy unchanged for diagonal 𝐴. Here, the
change of entropy in one step cannot be very large because
Theorem 1 only holds for small change of the probability. In
Section 6.2, we will show that multiple step tracking can be
used to deal with large entropy change.

For initial state 𝐶(0) = [√3/2, 𝜄/2]𝑇, which satisfies (71),
the entropy cannot be reduced in very small time 𝑇 with
constant 𝑈(0). This can be seen in Figure 5 which shows the
change of entropy with respect to 𝑆

𝑑
(0) at 𝑇 = 0.01 under

different 𝑈(0).
From Figure 5, we can see that, no matter how large 𝑈(0)

is, the entropy at 𝑇 = 0.01 is almost always larger than 𝑆
𝑑
(0)

except when 𝑈(0) = −155 and −470. The evolutions of the
entropy under 𝑈(0) = −155 and −470 are shown in Figure 6.

From Figure 6, we can find that the entropy cannot be
reduced at the beginning, but can be reduced later, which
coincides withTheorem 4.

6.2. Simulation on aThree-Level System. Consider the follow-
ing system:

[

[

[

̇𝑐
1
(𝑡)

̇𝑐
2
(𝑡)

̇𝑐
3
(𝑡)

]

]

]

=

{
{

{
{

{

[

[

[

𝜄 −𝜄 0

−𝜄 0 0

0 0 −𝜄

]

]

]

+
[

[

[

0 0 −𝜄

0 0 0

−𝜄 0 0

]

]

]

𝑈 (𝑡)

}
}

}
}

}

[

[

[

𝑐
1
(𝑡)

𝑐
2
(𝑡)

𝑐
3
(𝑡)

]

]

]

.

(72)
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Figure 9: Evolutions of the entropy and states for system (72) under improved controller (75).

Since 𝐷𝑀 = −𝑇
2
[|𝑐
1
(0)|
2 ln |𝑐
3
(0)|
2
+ |𝑐
3
(0)|
2 ln |𝑐
1
(0)|
2
] > 0,

we should always use (51) to calculate 𝑈(0). The conditions
under which the entropy cannot be reduced are as follows:

𝐷R [𝐴𝐶 (0) ∘ 𝐶
∗
(0)] = I [𝑐

1
(0) 𝑐
∗

2
(0)] ln

󵄨
󵄨
󵄨
󵄨
𝑐
1
(0)
󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
𝑐
2
(0)
󵄨
󵄨
󵄨
󵄨

2
≥ 0,

𝐷R [𝐵𝐶 (0) ∘ 𝐶
∗
(0)] = I [𝑐

1
(0) 𝑐
∗

3
(0)] ln

󵄨
󵄨
󵄨
󵄨
𝑐
1
(0)
󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
𝑐
3
(0)
󵄨
󵄨
󵄨
󵄨

2
= 0.

(73)

Assuming 𝐶(0) = [√6/6,√3/3, √2𝜄/2]
𝑇, which does not

satisfy the conditions, we have 𝑆
𝑑
(0) = 1.011. In seven steps,

we expect that the entropy changes as follows: (a) increases
to 1.05; (b) remains unchanged; (c) increases to 1.1; (d)
remains unchanged; (e) decreases to 1.05; (f) increases to 1.1;
(g) remains unchanged. The controller can be calculated as
follows, where 1(𝑡−𝑡

0
) denotes the unit step function starting

from 𝑡
0
.

Consider the following:

𝑈 (𝑡) = 5.582 − 4.385 ⋅ 1 (𝑡 − 0.01) + 7.603 ⋅ 1 (𝑡 − 0.02)

− 3.926 ⋅ 1 (𝑡 − 0.03) − 14.667 ⋅ 1 (𝑡 − 0.04)

+ 17.137 ⋅ 1 (𝑡 − 0.05) − 1.452 ⋅ 1 (𝑡 − 0.06) .

(74)

The evolutions of the entropy and the quantum states are
shown in Figure 7.

In order to overcome the delays, we can divide one step
into halves and use predictions, which can be shown in
Figure 8.

The time interval (0.02, 0.03) is divided into two steps,
and for each step the controller is calculated separately. At
times 0.045 and 0.055 we use half step predictions which can

lead to more accurate control. The improved controller is as
follows:
𝑈 (𝑡) = 5.582 − 4.385 ⋅ 1 (𝑡 − 0.01) + 8.204 ⋅ 1 (𝑡 − 0.02)

+ 4.153 ⋅ 1 (𝑡 − 0.025) − 9.645 ⋅ 1 (𝑡 − 0.03)

− 17.717 ⋅ 1 (𝑡 − 0.04) + 30.549 ⋅ 1 (𝑡 − 0.05)

− 13.287 ⋅ 1 (𝑡 − 0.06) .

(75)
The simulations are shown in Figure 9.

7. Conclusion

This paper proposes a new quantum control method which
controls the Shannon entropy of quantum systems. Simula-
tion examples evidenced the effectiveness of the method. A
strength of our method is that it provides a direct control
algorithm for discrete quantum entropy, rather than the indi-
rect one via PDF control. Our method provides a universal
tool for entropy control, which can also contribute to clas-
sical information theory. Some immediate extensions of the
method include quantum sliding-mode control and coherent
control.The extension of the methods to the mixed state case
deserves our future research. The applications in correlation
energy and biological control are also of keen interests and
currently being pursued.
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