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Human cognition is not solitary, it is shaped by collective learning and
memory. Unlike swarms or herds, human social networks have diverse
topologies, serving diverse modes of collective cognition and behaviour.
Here, we review research that combines network structure with psychological
and neural experiments and modelling to understand how the topology
of social networks shapes collective cognition. First, we review graph-
theoretical approaches to behavioural experiments on collective memory,
belief propagation and problem solving. These results show that different
topologies of communication networks synchronize or integrate knowledge
differently, serving diverse collective goals. Second, we discuss neuroimaging
studies showing that human brains encode the topology of one’s larger social
network and show similar neural patterns to neural patterns of our friends and
community ties (e.g. when watching movies). Third, we discuss cognitive
similarities between learning social and non-social topologies, e.g. in spatial
and associative learning, as well as common brain regions involved in proces-
sing social and non-social topologies. Finally, we discuss recent machine
learning approaches to collective communication and cooperation in multi-
agent artificial networks. Combining network science with cognitive, neural
and computational approaches empowers investigating how social structures
shape collective cognition, which can in turn help design goal-directed social
network topologies.

This article is part of a discussion meeting issue ‘The emergence
of collective knowledge and cumulative culture in animals, humans and
machines’.
1. Introduction
Human cognition is not solitary. From tool use, language and mathematics to
beliefs about the world and morality, human cognition is shaped by learning
andmemory in social networks. Unlike swarms or herds, human social networks
have diverse structures comprising strong, weak, clustered and sometimes hier-
archical ties that serve different roles. Networks of humans pass and share
information in order to synchronize their collective memories, knowledge
and beliefs, or to discover and integrate diverse information and knowledge.
This review focuses on empirical and computational investigations of how the
structures of communication networks (i.e. social network topology) shape collec-
tive cognition. Specifically, we ask how social network topology interacts with
psychological, neural and computational principles of learning and memory to
synchronize collective memory and knowledge.

While a number of prominent papers and books over the past decades have
addressed the role of cooperation, and social networks on collective outcomes, a
review with the particular synthesis of social network topology with psycho-
logical and neural computation seems lacking. Thus, this review narrows the
focus to notable research on the interaction of network structures (macro
level) with psychology and cognition (micro level) in behavioural studies of col-
lective memory [1,2], collective beliefs and behaviour [3–5], collective discovery
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Figure 1. A primer on network topology. Social and non-social networks can be analysed in terms of graphs. A schematic of the network topology from a study on
collective memory [2] is displayed (a). Nodes, denoting people in a community, are depicted with human graphics. Edges, denoting direct communication between
two nodes or persons, are illustrated as lines. Clusters, bridge ties among nodes that do not have common connections in common, as well as cluster ties among
nodes that have many common ties are marked. The degree of a node, i.e. the number of its ties, is marked in green. Standard parameters that vary the structure of
graphs include randomness (b), clustering (a,c), network diameter (maximum path length) and average path length. A number of well-known graph topologies are
depicted: a graph with a grid structure, a random ring graph and a network with a clustered community structure (c).
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and cultural accumulation [6], the neuroscience of social
and non-social navigation of large networks [7,8], and the
emergence of communication in machine intelligence and
multi-agent systems [9–11].

Before returning to the focus of the review, it is noteworthy
that over the past decades diverse disciplines have investigated
different faces of collective cognition. Philosophers such as
Bratman [12–14], Davidson [15], Tuomela [16] and Gilbert
[17,18] have pioneered theories of shared agency, collective
beliefs and shared intentionality. Highlighting the importance
of collective beliefs and intentions on actions, this philosophi-
cal work bridges notions of sociality to morality and ethics.
Anthropologists have investigated the evolution of cooperation
and cumulation of culture [6,19], as have developmental
and comparative psychologists focusing on primate and
infant theory of mind, shared intentionality and cooperation
[20–24]. Also noteworthy is related research on shared inten-
tionality, reason-giving and the evolution of human culture;
see O’Madagain & Tomasello in the present special issue
[25]. Other psychologists have combinedmodelling and exper-
iments to investigate cooperation [26], the emergence of groups
based on reciprocity and transitivity [27], and the conditions
under which a pair of humans outperform the best of the
two in perceptual decisions [28]. A comprehensive review of
this literature is outside the scope of the present manuscript
and requires a larger review integrating and bridging the pre-
sent perspective with traditions in philosophy, anthropology
and decision science.

Studying the topology of human communication networks
empowers us to understand, explain, model and predict the
emergence and dynamics of collective knowledge in large
networks. Decades of seminal research by renownedmathemati-
cians, physicists, neuroscientists, computer scientists, sociologists
andeconomistshave established the scienceof complexnetworks
that are brilliantly reviewed in earlier publications [29–33].

This manuscript specifically focuses on the combination of
network topology research with the methods of computational
and cognitive sciences. A graph-theoretic understanding
enables us to study how communication networks interact
with psychological and neural computation to shape collective
cognition. Moreover, it enables us to make goal-directed pre-
dictions, and design interventions to achieve desired
collective cognitive outcomes. Such desired collective out-
comes could span from predicting and combating
misinformed beliefs about a global pandemic to facilitating
optimal structure of classrooms for learning, synchronizing
memories prior to elections, optimally connecting scientific
task forces working on rapid vaccine discovery, studies
of human collective cognition empowering researchers and
designing effective multi-agent machine intelligence.

This paper reviews recent directions of studying collective
human cognition within the scope established above and con-
cludes with a brief discussion of current and future directions
in multi-agent machine intelligence. We review how network
topology aligns collective memories (§2), collective beliefs
and behaviour (§3), cultural accumulation and collective
intelligence (§4). We then discuss how the brain’s neural
responses capture the topology of one’s social network (§5)
and then discuss common neural findings in cognition of
social and non-social topologies (§6). We close with appli-
cations in multi-agent machine learning (§7) and a
summary of the topology of social networks in humans and
machines (§8).
2. Network topology aligns collective memory
A key question in understanding collective cognition is how
the structures of communication networks (figure 1) align
collectively shared memories and beliefs. From friendship cir-
cles to large communities, shared memories often shape
group identity, which in turn facilitates collective action.
There are different definitions of collective memory in the
social and psychological literature. In this paper, collective
memory refers to the convergence of memories among the mem-
bers of a social network or community [1,2]. However, there are
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Figure 2. Studying the effect of network topology on collective memory. (a) Experimental design for measuring collective memory in a laboratory-formed com-
munication network [1,34]. Unbeknownst to the participants, we assigned a 10-person topology to each experimental session with three phases: a study phase with
an individual recall test, a conversation phase and a post-conversational individual recall test. The numbers on graph edges reflect the order in which a conversation
between those two persons occurred. (b) Equations for computing how similar the memories became as a function of conversations. Members of the network are
identified with a number, e.g. P6: person 6. (Online version in colour.)
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other notions of collective memory in the social sciences, such
as public symbols maintained by societies [34,35], e.g. war
memorial monuments, among others.

In a number of studies, Coman, Momennejad and
colleagues investigated collective memory using graph
theory, behavioural experiments, complex and temporal
network analysis, and agent-based simulations [1,2,36]. To
do so, they designed laboratory-based controlled experiments
on collective memory, during which participants were
assigned to pre-arranged communication networks in a
virtual setting. They devised novel behavioural analyses,
inspired by representational similarity analysis in cognitive
neuroscience, to measure mnemonic convergence in social
networks when individuals were not aware of the broader
topology [1,2].
Every experimental session consisted of a number of indi-
viduals (e.g. 10 or 16), each facing a computer screen and later
interacting with a pre-assigned number of other participants
virtually through a text chat window. All experiments followed
a three-phase design (figure 2): in phase 1, participants studied
the same material individually and took a memory recall test
(pre-conversational recall), in phase 2, each participant had a
series of dyadic conversations through a pop-up chat window
during which they could discuss what they remembered
from the material they had just studied. Participants did not
see who they were talking to, nor were they aware of the
larger network structure. In phase 3, each participant took a
recall test once again individually (post-conversational recall).
Having pre- and post-conversational behavioural measures of
memory recall allowed us to measure mnemonic convergence
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Figure 3. The effect of network topology on collective memory alignment. Mnemonic similarity hypotheses matrices corresponding to the clustered topology
condition and the non-clustered condition in the experiment described in figure 2 are displayed. Members of the network are identified with a number, e.g.
P6. The similarity scores range from 0 (distance to self; dark blue) to 5 (greatest degree of separation; dark red). Behavioural results show that on average, memories
aligned more after the conversations in the non-clustered network (b) compared to the clustered network (a). This finding can be explained by the hypothesis
matrices, suggesting that alignment depends on the degree of separation. Because the clustered network topology has larger degrees of separation (i.e. longer
geodesic distance or network diameter), it leads to lower convergence. The extent of this alignment depends on how many degrees of separation they are from one
another in the social network (c,d ). (Online version in colour.)
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owing to conversations, in two different topology conditions:
clustered and non-clustered topologies (figure 2). A series of
representational similarity analyses (figure 2) was designed
and conducted, inspired by similar techniques in neuroima-
ging, to compute and compare individual and collective
memory in relation to network topology.

The authors first coded the behavioural memory recall
responses from phase 1 and phase 3 as vectors of recall items.
For instance, one study had 16 recall questions [1], which
resulted in two 16-item vectors for pre- and post-conversational
recall. Each item coded 1 if the participant recalled the item
correctly, and 0 otherwise. Then mnemonic similarity (figure 2)
was computed for every pair of participants, thiswas computed
as the correlation or dot product among their recall vectors
during pre-conversational and post-conversational phases.
Mnemonic similarity measures how similarly a pair of partici-
pants recalled and forgot items. Then all pairwise similarities
were averaged to compute the mnemonic convergence of the
network, or how similarly the entire network recalled and
forgot the items (figure 2). Subtracting mnemonic similarity
before and after conversations, mnemonic alignment was com-
puted, or the extent to which two participants’ memories (both
recall and forgetting) became more similar after conversations.
Mnemonic alignments of all pairswere averaged tomeasure the
collective memory of the network.

Using the experimental paradigm described above
(figure 2), the authors studied the effect of the structure
or topology of a network on how convergent participants’
memories became after conversations, a measure of collec-
tive memory convergence [1]. Data were collected from
10-person networks, in which each member had three conver-
sations either ordered according to a clustered topology or a
non-clustered network topology. The authors measured eight
10-person networks in the clustered and eight 10-person
networks with a non-clustered topology condition (figure 2).

The hypothesis was that pairwise participants’ memories
would align according to their degree of separation, with the
most alignment in those with a direct conversation and the
least alignments with those with the further geodesic distance
(figure 3). This hypothesis was confirmed in the behavioural
measurements of alignment (figure 3). The pairwise results
had a consequence for the collective memory of the larger
network as well. Networks with clustered topologies had a
higher network diameter, or a longer path between the most
distant members of the network, than the non-clustered net-
work. The results show that the collective memory of
networks with a smaller diameter (non-clustered topology)
converged more than the networks with a clustered graph
structure or topology.

In another experiment [2], Momennejad and colleagues
showed that given a fixed communication network topology,
the temporal order in which communications unfold over
time determined the extent of memory alignment. Namely,
consistent with Granovetter’s proposal about the strength of
weak ties [37], they found that collective memories converged
more if individuals with weak or bridge ties exchanged infor-
mation first. These were individuals who had a direct tie but
did not have any ties to other individuals in common (an ana-
logy to intuit their network status would be if they were
friends who talked, but their friends weren’t friends and
didn’t talk to one another).

The studies above show that the topological structure and
temporal order of communication networks determine the
mnemonic alignment among individuals in a network, even
if they did not directly interact. In a recent computational
study [36], we combined multi-agent or agent-based simu-
lations with models of retrieval-induced forgetting from the
psychology of memory [38,39] and were able to simulate
these behavioural findings in collective memory. Together,
these behavioural and computational studies offer a quanti-
tative approach to measuring the emergence of collective
level or meso-scale phenomena from network topology and
principles of memory and forgetting.

These recent advances carve the way for theoretical and
experimental approaches to studying the ties that bind the
micro, meso and macro scales of human cognition and behav-
iour. Graph-theoretic approaches to collective experiments,
and simulation of institutions [40] with parameters based
on experiments, can help understand, predict and compare
the behaviour of different topologies of human networks.
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3. Network topology shapes beliefs and norms
Collective memories often form the foundations of shared sys-
tems of beliefs, and beliefs shape how we remember [41].
Religion, political choices and health decisions are among
key examples of how shared beliefs, and their changing
dynamics, guide individual and collective decision making.
Computational simulations have established how beliefs
spread in social networks [42]. Recent empirical evidence
suggests that collective beliefs can be synchronized according
to a social network’s topology [43].

Vlasceanu and Coman conducted a belief synchronization
version of the study described in figure 2 [1,5]. They showed
that, similar to the collective memory counterpart study [1],
the topology of social networks impacts the alignment of
beliefs. This belief alignment occurred even among members
who never directly communicated and the extent of change
in belief similarity between two individuals corresponded
to their degree of separation in the network.

The authors also studied how belief endorsement
by a public speaker affects belief alignment in 12-person
laboratory-created networks [43]. During the experiment,
individuals first evaluated how believable a set of belief
statements were and later either completed a distractor task
(control condition) or listened to a public speaker who
endorsed some of the beliefs (treatment condition). The authors
showed that the public speaker altered the mnemonic
accessibility of some beliefs, which in turn impacted and
was amplified by the networks’ conversations, leading to sub-
sequent belief synchronization. Future studies are required to
study how an individual’s network affinity with the public
speaker shapes the direction of their influence.

The present manuscript focuses on the role of social net-
work topology in collective cognition rather than behaviour
broadly defined. However, beliefs about health, education
and politics govern large-scale patterns of collective human
behaviour. Thus, it is reasonable to hypothesize that the top-
ology of communication networks shape behaviour. Centola
has provided evidence for this hypothesis in a series of semi-
nal studies, establishing a link between network topology
and collective behaviour [3,4]. They investigated the mechan-
isms by which health behaviour would spread in social
networks and identified which topologies were more condu-
cive to the adoption of health behaviour. They found that
individuals were more likely to adopt health behaviour if
they received reinforcement about that behaviour from many
close ties in the broader network. Therefore, health adoption
spreadmore effectively in clustered lattice network topologies,
compared to random networks [3]. In a second study, Centola
investigated how the composition of a community affects
the adoption of health behaviours. They discovered that
homophily between two individuals, i.e. the extent to which
their social contacts are similar to one another, increases
their dyadic-level influence on each other’s behaviour. How-
ever, the broader consequence of this pattern is that in large
clustered networks less healthy individuals are more likely to
have close ties and influence one another, reducing their prob-
ability of interactions with, and being influenced by, healthier
individuals [4].

While the present manuscript is a review of the role of net-
work topology in collective cognitionwith a focus on cognitive
neuroscience and machine learning, a series of recent papers
have addressed how topology affects health behaviour,
resource sharing and inequality, and wisdom of the crowds
(i.e. the observation that the average response of a group
better approximates ground truth than individual responses)
[34–39]. These are related, fascinating and important topics
but outside the scope of micro–macro interactions in collective
cognition here, yet a number of papers on network approaches
to changing social norms are particularly noteworthy. Banerjee
and colleagues studied the diffusion of microfinance in vil-
lages, showing that if information is first given to central
individuals (measured by their eigenvector centrality in the
social network), adoption of the information diffuses more
effectively in the community [44]. In seminal research, Paluck
and colleagues conducted anti-conflict interventions across
over 24 000 students and showed that individuals pay more
attention to ‘social referent’ network roles (influential individ-
uals) in their community and interventions are more effective
when targeted on referents, reducing conflict by 30% in
1 year [45]. This was followed by further research into
engineering social change: temporal- and network-based
improvements of norm change, nudging and attitudes to
authority and justice in factory workers [46–49].

Taken together, these studies clarify the role of network
topology in the mechanisms by which beliefs, norms and
behaviour propagate in networks, and how centralized inter-
ventions—such as collective exposure to public endorsement
and endorsement by influential members—can change
collective beliefs and norms. These findings, together with
findings on collective memory and belief formation, offer the
important potential for designing interventions to combat
misinformation (e.g. about health behaviour) or harmful polar-
ization in larger networks. Mapping network topology of
misinformation networks makes it possible to devise a
number of intervention tools that can synchronize memories
and beliefs in larger communities at times of crisis. These
tools could span from affecting the topology of communication
networks, when possible, to targeting bridge ties and isolated
clusters (information bubbles) for intervention and centralized
public speeches.
4. Network topology shapes collective
intelligence

Consider the Brooklyn bridge, your smart phone, or the
international space station. Achieving any of these complex
technologies required generations of cumulative inventions,
leading to levels of problem-solving ability that go far
beyond what is possible at the individual intelligence level.
It has been suggested that the capacity and success of cumu-
lative cultural achievements, such as complex technologies,
depend on the size and connectivity of collaborative
networks [6].

In an inventive study, Derex & Boyd [6] investigated how
the topology and temporal order of collaboration networks
lead to inventions. They studied six-person collaboration net-
works, attempting to discover three hierarchical levels of
chemical compounds in a virtual set-up. In one condition,
all six members of the network worked together simul-
taneously ( full connectivity), while in the second condition,
they worked in three teams of two and exchanged members
twice throughout the experiment ( partial connectivity). The
results suggest that participants in the partial connectivity
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condition achieved further levels of the hierarchical invention
compared to the full connectivity condition.

Thus, while full connectivity may serve the convergence of
memories and beliefs, as discussed earlier, partial connectivity
may increase cultural accumulation required for complex and
cumulative invention. These findings provide compelling sup-
port for the core thesis of the present paper: that different
social network topologies can serve different collective out-
comes. Further hypothesis-driven investigations could lead to
insight for intervention design: designing goal-directednetwork
structuresor targeted interventionsonspecificpartsofanetwork
towards a desired outcome. Examples of desired collective out-
comes span from predicting and combating misinformation
about a global pandemic to designing optimal communication
among scientific research networks for rapid vaccine discovery.

Wooley and colleagues define collective intelligence as the
above-mentioned collective’s ability to solve a diverse set of
tasks and problems beyond the ability of the most intelligent
members of the collective [50,51]. They have conducted a
number of studies investigating how the composition and
diversity of teams can enhance its measurable collective intel-
ligence and help achieve optimal goal-directed problem
solving [50,51]. They show that the social sensitivity of
team members, as measured by the social intelligence test
of detecting emotions from photographs of eyes [52], pre-
dicted the collective intelligence of the teams. However, this
measure of social sensitivity does not measure individuals’
sensitivity for encoding the broader relational topology of
the social network.

The study by Derex and Boyd discussed earlier provides
preliminary evidence for the hypothesis that network top-
ology and connectivity can impact the collective intelligence
of a community. Other studies have established collaborative
learning in social networks [53] and investigated the role of
team size and composition on complex tasks [54]. However,
as we have seen, different network topologies afford optimal
solutions towards different goals. One hypothesis for future
studies is that the collective intelligence of a collaboration network
may depend on the network’s flexibility in reorganizing its
collaborative connectivity to adapt to diverse task demands.

Another future direction is to investigate whether collec-
tive intelligence merely relies on sensitivity to social cues,
or whether it is also related to the ability of community mem-
bers to perceive the network status of others, and the broader
topology of their social network. Such a study can benefit
from the methods developed in recent neuroimaging studies
(discussed in the following section) showing that the brain
spontaneously encodes the social network status of one’s
community members.
5. Social network topology shapes neural
responses

Previous sections reviewed behavioural evidence that human
memories and beliefs become similar to one’s community
members, and the extent of this similarity tracks one’s geode-
sic distance, or degree of separation, to any other community
member. Given these behavioural findings, a hypothesis
naturally follows: social network topology should also
impact similarities in the brain signals of community mem-
bers. A recent study considered whether human brains are
sensitive to the network status of other individuals [7]. The
authors’ reason that because human social groups, unlike
herds and swarms, comprises diverse bonds and structures,
human brains might have evolved to endure the cognitive
demands of navigating complex social networks. This
means being able to track social ties and relationships that
are direct (one step away), third party or more distant (mul-
tiple steps away)—extending to an understanding of the
broader social network topology.

The study used graph-theoretic measures such as eigen-
vector centrality to analyse an academic cohort of 275
students and scanned 21 members in a functional magnetic
resonance imaging (fMRI) study. Eigenvector centrality
measures how influential a member is and how many influ-
ential members they are connected to (which is different from
degree centrality, counting how many connections a given
individual has, figure 1). During the study, each person
viewed photos of other individuals with varying degrees of
separation from themselves. This included individuals with
eigenvector centrality, as a measure of influence, and individ-
uals who were bridge ties between otherwise unconnected
members of the cohort (figure 1), as a measure of brokerage.
Neural pattern analysis revealed that while each individual
viewed photos of their cohort, their brain activated the net-
work position of the individual they were viewing.
Notably, this neural representation of the network position
of cohort members was activated spontaneously in the
brain, i.e. in the absence of an explicit goal that required
this knowledge. This is in line with the hypothesis that
human brains might have adapted to encode the topology
of social network ties beyond one’s immediate bonds [55].

A series of fMRI studies have studied similarities in the
brain activation of members of a community as they each
watched videos inside an fMRI scanner. The researchers had
mapped the graph of the social network of the individuals,
measured the network status of different members in terms
of different measures of centrality and analysed a relationship
between similarities in brain responses videos and the social
network measures of closeness. One such study [56] reported
that the neural responses of individuals during audiovisual
video viewing were more similar to neural responses of their
close community ties. The extent of this neural similarity
tracked the pair’s distance in a social network: friends with
smaller geodesic distance had more similar brain responses
while community members with more degrees of separation
showed less similar responses. Another study showed that
the community members’ brain activities while watching
videos became more similar to members of the network with
high eigenvector centrality, i.e. highly influential members,
what the authors dubbed ‘neural influence’ [57].

We have so far reviewed graph-theoretic studies of the syn-
chronizations of collective memories [1,2], behaviour and beliefs
[43] in social networks; the alignment of neural similarity among
members of a community [56,57]; and the neural encoding of the
network position of one’s community members [7]. These
studies suggest a broader human capacity for learning network
structures in social and non-social cognition.
6. Navigating social and non-social topologies:
common mechanisms?

Human social groups are larger than those of our evolution-
ary cousins, and the social network size is proposed to
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correspond to the size of the brain in primates [55] and other
mammals [58]. Unlike herds and swarms, human commu-
nities comprise social networks with diverse structures.
A number of papers in the present special issue focus on
cumulative cultural evolution and the structure of popu-
lations as the origins of moving from foraging to collective
intelligence, while others shed light on the social networks
of hunter–gatherers to understand cultural evolution (see
[59,60]; as well as [61]). While the burgeoning research on
social learning across the species points at cultural evolu-
tion and collective knowledge (see Garland et al. [62];
Gruber et al. [63]; Whiten et al. [64]; Wild et al. [65]; and
Williams & Lachlan [66] in the present special issue), this
manuscript particularly focuses on the role of network
topology on collective cognitions in humans, leaving out
the evolutionary framework. That said, it is reasonable to
hypothesize that human brains have evolved to handle the
cognitive demands of navigating complex social networks,
and that vice versa, perhaps the demand of adapting to
the growth of social networks contributed to broader
practices and cultures of learning and navigating complex
networks. While it remains unclear how neural and cultural
capacities for graph learning in social, spatial or associative
contexts have co-evolved, and which was prior, it is helpful
to consider common tools and findings across studies of
structure learning [8].

A number of behavioural, neuroimaging and compu-
tational studies on associative, statistical and representation
learning have identified the human capacity for learning
multi-step topologies and community structures of sequences
[67–69]. Both connectionist and reinforcement learning (RL)
computational modelling frameworks have offered accounts
of how the brain may generalize associative learning of
sequential structures into learning of larger structures [8].
Recent behavioural and neuroscientific research have ident-
ified the computational learning principles of social
structure learning [70] and brain networks underlying such
learning [68,71,72].

Let us consider a number of studies that paint a broader
picture of the human capacity for learning and navigating
non-social network structures. Studies have shown that stat-
istical learning of sequences underlies how humans learn
and represent graphs and networks in eight-month-old chil-
dren [73], in extracting statistics of temporal events in
associative learning of higher order temporal structures
[74], and that similar principles can be generalized spanning
to language acquisition [75,76]. Others have investigated
individual differences in learning social and non-social struc-
tures [77], and how the learning of local patterns gives rise to
learning of network topologies [78,79].

More recently, Schapiro and colleagues have shown that
humans implicitly learn the larger structure of a network as
they view a sequence of individual stimuli. Using fMRI, they
showed that this graph learning is represented in the prefrontal
cortex (PFC) andmedial temporal lobe regions of the brain [67].
This paradigm has been adopted by other researchers to
study how humans learn statistical structures with different
topologies [80]. Moreover, a series of behavioural and neuroi-
maging studies have used the RL framework, providing
evidence for learningmulti-step associative relations structures
(or successor representations) [68,69,71,81], which may
underlie how the brain learns topological structures of social
networks as well. Recent human neuroimaging supports the
idea that novel inference of social hierarchies relies on neural
mechanisms similar to those in navigation.

The similarity of social topological learning to navigating
spatial topologies, finding shortcuts and learning non-spatial
associative topologies calls for more comparative studies of
common mechanisms. Two particular brain regions involved
in social, spatial and other modes of topological learning are
the medial PFC (mPFC) and the hippocampal-entorhinal
complex [72,81–84]. Of the brain regions discussed earlier,
the mPFC differs the most between human and non-human
animals, with anterior parts of the mPFC in particular
associated with social cognition. Anterior mPFC (Brodmann
area 10) has also been implicated in representing prospective
tasks while performing a different ongoing task as well as
multitasking [85–87], analogical reasoning [88] and social
reasoning [89–91].

Notably, these studies largely draw from expertise and
diverse tools from neuroscience, mathematics, graph theory
and physics [92]. Identifying common brain networks that
underlie the human capacity for cognition of social and
non-social topologies can offer insight into understanding
collective cognition and cultural evolution. Interdisciplinary
experimentation and modelling could help elucidate the
dynamics of the coevolution of the human brain’s capacity
for learning social and non-social networks. In turn, under-
standing the neural computational capacities of human and
non-human primate brains for learning graphs and topo-
logies can inspire multi-agent architectures for collective
machine intelligence.
7. Application to collective machine intelligence
A thriving direction in contemporary machine learning
regards multi-agent learning and collaborative artificial intel-
ligence (AI). Research and innovation in these directions span
from AI-AI and AI-human interactions, including communi-
cation via natural language processing [93], to building AI
tools for enhancing human–human interactions [94]. This
journal issue includes a number of such directions, such as
experiments in artificial culture in collective social robotics
(see [95]), as well as research on embodied evolution of
social learning in swarm robotics (see [96]) and artificial evol-
ution of robot bodies and cultural learning (see [97]). Recent
advances range fromdeep RL agents that play computer games
such as project Malmo, Xbox games, and Minecraft [9,98] and
Starcraft [11,99] to multi-agent networks that evolve com-
munication-based social influence [10], interaction-grounded
learning [100] and interactive meta-learning [101]. Agent-
interaction graphs have been used to evaluate generalization
in multi-agent systems [102]. Future directions of multi-agent
machine learning can combine insights from brain networks
and human social networks to both help understand human
collective cognition, and advance collaboration and collective
machine intelligence.

A forward-looking computational direction is to compare
the emergence of different social structures dependent upon
the neural architecture of individual agents in a multi-agent
system. It is possible to envision at least two related direc-
tions. First, the emergence of optimal network topologies
tailored to fulfilling particular tasks or goals in a multi-agent
setting. The goals of such a system could vary from collabor-
ation to competition (e.g. as in Xbox games) or assisting
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humans. Second, combining principles of evolving network
architecture with multi-agent problem settings can offer
insights into the coevolution of neural architecture (in indi-
vidual agents) and the topologies of social and ecological
multi-agent networks. These directions are especially timely
given recent advances in graph learning [103].

Advances in these directions could offer theoretical
insight into the correspondence and coevolution of neural
architectures in individual brains and species with the
demands of navigating large and complex social, spatial
and environmental networks. Which structures of social net-
works emerge from multi-agent systems with different goals?
Which neural network or brain architectures can afford the
multi-agent behaviour observed in a given species? This
direction offers exciting prospects for studying how neural
networks and social networks co-evolve in biological and AI.
s.R.Soc.B
377:20200315
8. Conclusion: the topology of collective
cognition in human and machines

Human brains and cultures are embedded in large social and
ecological systems. Unlike swarms and herds, human social
networks have diverse composition and topologies. Here
we have reviewed research backing the hypothesis that
social network topology shapes collective cognition and
behaviour. We narrowed the scope predominantly to psycho-
logical and neuroscientific studies that ground this proposal
in micro–macro interactions.

The integration of these studies shows that: (i) human
memories, beliefs and behaviours synchronize with their
social ties, and with members of the community they never
directly communicate with [1–5]; (ii) human brains spon-
taneously process the network status of others in one’s
social communities, and the similarity of brain responses
while watching movie clips predict friendship ties within a
cohort [7,56]; (iii) the brain’s ability to encode the broader
network topology beyond one’s immediate ties mirrors the
brain’s ability to learn non-social topologies and cognitive
maps [104]. We reviewed evidence from the neuroscience of
learning and memory pointing at potential common mechan-
isms for learning social, spatial and non-social topologies
[8,67,77]: (iv) recent deep learning algorithms connect this lit-
erature to collective cognition in multi-agent machine
learning [10]. This diverse body of research supports the
hypothesis that the brain’s ability to acquire and navigate
topologies of complex and large neural networks might
have co-evolved with the human species’ growing network
size and diversity of social topologies. Research on social
and affective disorders could elucidate commonalities and
differences in social and non-social graph learning.

The body of research reviewed here uses diverse inter-
disciplinary methods developed in graph theory, statistics,
mathematics, physics and neuroscience for clustering and char-
acterizing community structures in complex networks
[105,106], temporal network analysis in dynamic complex sys-
tems (for instance when analysing the effect of the order of
conversations on collective memory) [2] and representational
similarity analysis for comparing multidimensional vectors
(e.g. for analysing neural patterns [84]) adapted for comparing
mnemonic convergence in behaviour, using the correlation of
multi-item memory vectors [1,34].

Graph-theoretic tools for analysing the architecture of
complex networks apply to brains and social networks
alike. Just as neural networks with different architectures
share and integrate information differently, specific structures
or topologies of social networks synchronize or integrate
knowledge in different ways. Future studies can combine
experimental and computational approaches to study the coe-
volution of neural networks capable of processing large social
network topologies, and the emergence of topologies that
serve different collective functions and outcomes.

Combining experimental and computational approaches
empowers researchers to investigate how the topology of
social networks shapes collective cognition and behaviour
and help design goal-directed social network topologies
toward desired outcomes (e.g. correcting misinformation
about a global pandemic or coordinating rapid vaccine
discovery). Comparative studies on social and non-social
graph learning across species could offer insight into the evol-
ution of neural and social mechanisms in humans, other
species and machines. Such an interdisciplinary approach
empowers researchers to design effective multi-agent machine
intelligence inspired by knowledge of human collective cogni-
tion. In turn,multi-agentmachine learningmodels of collective
intelligence can help theorize and test hypotheses about the
coevolution of complex neural architectures and complex
social networks.
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