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Abstract 

Background:  The aim was to improve upon an existing blood-based colorectal cancer (CRC) test directed to high-
risk symptomatic patients, by developing a new CRC classifier to be used with a new test embodiment. The new test 
uses a robust assay format—electrochemiluminescence immunoassays—to quantify protein concentrations. The aim 
was achieved by building and validating a CRC classifier using concentration measures from a large sample set repre-
senting a true intent-to-test (ITT) symptomatic population.

Methods:  4435 patient samples were drawn from the Endoscopy II sample set. Samples were collected at seven hos-
pitals across Denmark between 2010 and 2012 from subjects with symptoms of colorectal neoplasia. Colonoscopies 
revealed the presence or absence of CRC. 27 blood plasma proteins were selected as candidate biomarkers based on 
previous studies. Multiplexed electrochemiluminescence assays were used to measure the concentrations of these 27 
proteins in all 4435 samples. 3066 patients were randomly assigned to the Discovery set, in which machine learning 
was used to build candidate classifiers. Some classifiers were refined by allowing up to a 25% indeterminate score 
range. The classifier with the best Discovery set performance was successfully validated in the separate Validation set, 
consisting of 1336 samples.

Results:  The final classifier was a logistic regression using ten predictors: eight proteins (A1AG, CEA, CO9, DPPIV, MIF, 
PKM2, SAA, TFRC), age, and gender. In validation, the indeterminate rate of the new panel was 23.2%, sensitivity/speci-
ficity was 0.80/0.83, PPV was 36.5%, and NPV was 97.1%.

Conclusions:  The validated classifier serves as the basis of a new blood-based CRC test for symptomatic patients. 
The improved performance, resulting from robust concentration measures across a large sample set mirroring the ITT 
population, renders the new test the best available for this population. Results from a test using this classifier can help 
assess symptomatic patients’ CRC risk, increase their colonoscopy compliance, and manage next steps in their care.
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Background
Colorectal cancer (CRC) is a broadly occurring and lethal 
cancer, with approximately 1.4 million new cases and 
700,000 deaths yearly [1]. CRC outcome dramatically 
improves with early detection followed by curative resec-
tion [2–4]; thus CRC screening is recommended for all 
U.S. patients over 50 years of age [5, 6]. The gold stand-
ard screening test is colonoscopy, with some stool-based 
tests also having good performance [7, 8]. However, com-
pliance with CRC screening recommendations is low; 
by some measures only 40% of the population for which 
screening is recommended will undergo testing [9].

A low-burden CRC screening test, such as a blood-
based test, has been widely sought. However, it has 
proven difficult to find blood-based CRC signal with per-
formance matching that of colonoscopy or of stool-based 
tests across average risk patients. Blood-based CRC sig-
nal may be stronger in patients with more advanced 
disease, such as those with symptoms of colorectal neo-
plasia. If so, the appearance of symptoms would offer 
an opportunity to provide low-burden CRC testing with 
higher performance. Interest in a low-burden CRC test 
for symptomatic patients has also come from the clini-
cal community. By itself, the increased CRC prevalence 
in the symptomatic population (10.9% in a Danish symp-
tomatic cohort [10], as compared to 0.5–0.7% in the aver-
age risk population [7, 9]) would seem sufficient incentive 
for patients to follow clinicians’ recommendations to 
have colonoscopies. However, the compliance rate in the 
symptomatic population is estimated to be only 63.6% 
(unpublished observations). A low-burden CRC test for 
this population would highlight patient risk stratifica-
tion, resulting in increased personalized incentive and 
increased colonoscopy compliance [11, 12].

Given the attractiveness of a low-burden CRC test 
for symptomatic patients, several groups have focused 
efforts here [10, 11, 13, 14]. The highest performing test, 
and the only validated test to date, was a blood-based test 
developed earlier in our laboratory [10, 14] using a sam-
ple set mirroring the composition of the intent-to-test 
(ITT) symptomatic population [14]. The specific symp-
toms present in this population (abnormal bowel habits, 
abdominal pain, rectal bleeding, unexplained weight loss, 
meteorism, anemia, and/or palpable mass) indicated a 
likelihood of increased CRC risk, which was borne out 
by the study colonoscopy results; hence we term these 
patients “high risk.” The positive predictive value (PPV) of 
this test was 31%, meaning that 31% of the patients with 
positive test results had CRC uncovered during colonos-
copies. This was a dramatic improvement over the posi-
tive CRC rate from asymptomatic screening colonoscopy 
alone (0.5–0.7%, [7, 9]) and over the positive CRC rate 
within the symptomatic population without additional 

stratification (10.9%, [10]). The strong performance of 
this earlier test demonstrated that a low-burden test for 
symptomatic patients provides information that may dra-
matically improve colonoscopy compliance among these 
high risk patients—a positive result would indicate much 
more certainty about the usefulness of further testing.

In the present paper, we report the development of a 
new blood-based CRC test. The new test is directed to 
the ITT population of symptomatic patients, and was 
developed using a much larger sample set (4435 vs 922 
patient samples) and employing an assay format with 
more robust analytic performance: electrochemilumines-
cence antibody-based assays. These assays offer greater 
dynamic ranges and higher sensitivities when compared 
to the ELISA format used in the earlier test [15]. The 
new test’s validated classifier algorithm, developed using 
feature selection and machine learning applied to con-
centration measures of 27 proteins in the 4435 patient 
sample set, has significantly better specificity, resulting 
in a higher PPV. The new test offers a low-burden, high 
quality, and high performance CRC risk assessment to 
clinicians serving patients presenting with CRC symp-
toms. Results can be used to manage these patients’ 
choices about further CRC testing.

Methods
Patient samples
Patient samples were drawn from a high quality clini-
cal sample set, Endoscopy II, described previously 
[10]. Briefly, samples were collected at seven hospitals 
across Denmark between 2010 and 2012. Samples were 
obtained from 4698 subjects presenting with symptoms 
of colorectal neoplasia (abnormal bowel habits, abdomi-
nal pain, rectal bleeding, unexplained weight loss, mete-
orism, anemia, and/or palpable mass) and scheduled for 
first-time colonoscopies. The colonoscopies revealed the 
presence or absence of CRC and/or polyps, with CRC 
staged according to the UICC TNM system [16].

Each Endoscopy II patient was placed in one of eight 
diagnostic groups based on colonoscopy results and 
comorbidities: colon cancer (all stages), rectal cancer 
(all stages), colon adenoma, rectal adenoma, no comor-
bidities and no CRC or polyps (“no comorbidity-no 
finding” group), comorbidities present and no CRC or 
polyps (“comorbidity-no finding” group), other cancer(s), 
or other colonoscopy findings (“other findings”) [10]. 
“Comorbidity” refers to Crohn’s disease, colitis, divertic-
ulitis, acute chronic inflammation, diabetes, rheumatoid 
arthritis, cardiovascular diseases, cirrhotic liver diseases, 
obstructive lung diseases, and/or  restrictive lung dis-
eases. The entire sample set represented the composi-
tion of a target population of patients at high risk of CRC 
because of their symptomology.
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A total of 4435 Endoscopy II samples was used in the 
current study. These were selected from the total of 4698 
samples based on available sample volume. The propor-
tions of diagnostic groups in the study reflected those of 
the high-risk population represented by the entire sample 
set. Table  1 presents the study samples’ characteristics 
under the column entitled “Endo II.”

Candidate biomarkers
Twenty-seven blood plasma proteins were selected as 
candidate biomarkers for this study. These markers were 
selected based on (1) their performance in a previous 
study wherein 187 CRC-related proteins were assessed 
for CRC signal in a high-multiplex, targeted-mass spec-
trometry discovery and validation study [17], (2) addi-
tional literature review identifying TFF3 and TFRC as 
new candidates [18, 19], (3) commercial availability of 
high quality antibodies for those proteins identified as 
promising CRC biomarkers, and 4) the successful devel-
opment of multiplexed electrochemiluminescence assays. 
Table 2 lists the 27 proteins measured across five multi-
plexed panels. The commercially available antibody pairs 
selected to measure each of the 27 proteins did not dis-
tinguish between different isoforms of the proteins.

Assays
Multiplexed electrochemiluminescence immunoassays 
(Meso Scale Discovery, Rockville, MD) were used to 
assess the concentrations of each of the 27 proteins in all 
4435 samples of the study.

Custom assay development
A feasibility study was conducted to develop multi-
plexed immunoassays on the electrochemiluminescence 
platform for proteins uncovered in previous CRC bio-
marker studies [10, 17] and candidate CRC-related bio-
marker proteins identified from literature searches [18, 
19]. During the feasibility study, extensive screening of 
commercially available antibodies and standards was 
performed. The antibodies, standards, and diluents for 
each assay were selected based on pre-established ana-
lytical performance criteria related to the affinity and 
specificity for the target protein. These criteria were 
assessed by experiments exploring linearity of sample 
matrix dilution, calibrator spike and recovery, and anti-
body-target dissociation rates. Assays that failed to meet 
the criteria were deemed unreliable and were excluded 
from further development. Of the proteins identified in 
previous biomarker studies [10, 17], alpha-Amylase 2b 
(AMY2B), Delta(3,5)-delta(2,4)-dienoyl-CoA isomerase 

Table 1  Study subject characteristics for Endoscopy II over-
all, and for the current study subsets

Endo II CRC ITT discovery 
set

CRC ITT validation 
set

All Control Disease Control Disease

Total 4698 2759 340 1189 147

Clinic number: #

31 605 340 53 135 26

32 299 171 13 81 9

33 966 579 71 249 21

34 300 190 18 65 12

35 957 564 72 240 34

36 858 510 48 248 17

37 713 405 65 171 28

Age: years

Mean 63.5 62.7 69.7 62.9 70.1

Standard 
deviation

12.6 12.6 10.6 12.7 10.7

Median 64.3 63.6 69.5 63.3 71.5

Minimum 18.1 20.1 37.5 18.1 23.6

Maximum 96.0 96.0 94.8 93.3 89.1

Gender: # (%)

Female 2455 (52.3) 1473 (53.4) 144 (42.4) 650 (54.7) 55 (37.4)

Male 2243 (47.7) 1286 (46.6) 196 (57.6) 539 (45.3) 92 (62.6)

BMI: kg/m2

Mean 25.6 25.6 25.5 25.5 26.2

Standard 
deviation

4.6 4.7 4.7 4.5 3.9

Median 25.1 25.1 24.8 25.0 25.7

Minimum 11.7 13.0 15.8 11.7 16.9

Maximum 50.5 50.2 47.1 50.5 39.1

CRC stage: # (%)

I 101 (19.8) 0 (0) 74 (21.8) 0 (0) 25 (17.0)

II 163 (31.9) 0 (0) 105 (31.0) 0 (0) 50 (34.0)

III 139 (27.2) 0 (0) 87 (25.7) 0 (0) 45 (30.6)

IV 108 (21.1) 0 (0) 73 (21.5) 0 (0) 27 (18.4)

Diagnosis: # (%)

Colon cancer 319 (6.8) 0 (0) 211 (62.1) 0 (0) 92 (62.6)

Rectal cancer 193 (4.1) 0 (0) 129 (37.9) 0 (0) 55 (37.4)

Adenoma 
colon

515 (11.0) 340 (12.3) 0 (0) 148 (12.4) 0 (0)

Adenoma 
rectum

174 (3.7) 117 (4.2) 0 (0) 51 (4.3) 0 (0)

No comor-
bidity-no 
finding

1164 (24.8) 763 (27.7) 0 (0) 334 (28.1) 0 (0)

Comorbidity-
no finding

814 (17.3) 534 (19.4) 0 (0) 229 (19.3) 0 (0)

Other cancer 177 (3.8) 119 (4.3) 0 (0) 50 (4.2) 0 (0)

Other finding 1342 (28.6) 886 (32.1) 0 (0) 377 (31.7) 0 (0)
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mitochondrial (ECH1), Ferritin light chain (FRIL), Oste-
opontin (OSTP), Selenium-binding protein 1 (SBP1), 
and Spondin-2 (SPON2) were excluded from final assay 
development on the electrochemiluminescence platform 
due to either failure to meet the feasibility performance 
criteria or the lack of high quality commercially available 
antibodies.

Following identification of a reliable antibody source 
and demonstration of analytical performance, assays were 
further developed and optimized for the 27 candidate 
biomarkers (Table 2). During development, the dynamic 
range and linearity of each assay were established using 
the intended biological matrix, human plasma. The assay 
workflow for five multiplexed panels (with 3–8 analytes 

Table 2  Protein targets across the five multiplexed panels, showing allowable ranges of analytical parameters

Observed lower and upper limits of quantitation (LLoQ and ULoQ) are listed as concentrations of diluted samples

Panel Protein Abbreviation Dilution 
factor

Duplicate CV 
max (%)

Hill slope 
min

Hill slope 
max

LLoQ  
(pg/mL)

ULoQ (pg/mL)

1 Alpha-1-acid glyco-
protein

A1AG 300,000 20 0.9 1.1 12.21 50,000

1 Alpha-1 antitrypsin A1AT 300,000 20 0.9 1.1 73.24 300,000

1 Apolipoprotein A-I APOA1 300,000 20 0.9 1.1 244.14 1,000,000

1 Complement 3 CO3 300,000 20 0.9 1.1 610.35 2,500,000

1 Haptoglobin HPT 300,000 20 0.9 1.1 488.28 2,000,000

2 Alpha-antichymot-
rypsin

AACT 5000 20 0.6 0.8 1220.7 5,000,000

2 Carbonic anhydrase 1 CAH1 5000 20 0.9 1.1 2.44 10,000

2 Clusterin CLUS 5000 20 0.8 1.2 244.14 1,000,000

2 Complement 9 CO9 5000 20 0.9 1.2 24.41 100,000

2 C-reactive protein CRP 5000 20 0.9 1.1 12.21 50,000

2 Dipeptidyl peptidase 
IV

DPPIV 5000 20 0.9 1.1 2.44 10,000

2 Serum amyloid A SAA 5000 20 0.9 1.1 12.21 50,000

2 Transferrin receptor 
protein

TFRC 5000 20 0.9 1.1 0.49 2000

3 Protein S100-A8/-A9 CALP 100 20 1.1 1.6 48.83 200,000

3 Cathepsin D CATD 100 20 0.9 1.1 19.53 80,000

3 Growth differentiation 
factor 15

GDF15 100 20 0.9 1.1 0.12 500

3 Gelsolin GELS 100 20 0.85 1.1 488.28 2,000,000

3 Prolyl endopeptidase 
FAP

SEPR 100 20 0.85 1.15 2.44 10,000

3 Tissue metalloprotein-
ase inhibitor 1

TIMP1 100 20 1.3 1.5 12.21 50,000

4 Annexin A1 ANXA1 4 20 0.9 1.1 12.21 50,000

4 Carcinoembryonic 
antigen-related cell 
adhesion molecule 
5

CEA 4 20 0.9 1.1 24.41 100,000

4 Glycine-tRNA ligase GARS 4 20 0.9 1.1 122.07 500,000

4 Macrophage migra-
tion inhibitory 
factor

MIF 4 20 0.9 1.1 14.65 60,000

4 Trefoil factor 3 TFF3 4 20 0.9 1.1 0.49 2000

5 Pyruvate kinase 
isozyme M2

PKM2 4 20 0.9 1.2 7812.5 2,000,000

5 Peroxiredoxin-1 PRDX1 4 20 0.9 1.1 12.21 50,000

5 P-selectin glycopro-
tein ligand 1

PSGL 4 20 0.9 1.1 12.21 50,000
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per panel) encompassing the 27 analytes was transferred 
to automated liquid handling systems. Automation of the 
multiplexed assay workflow facilitated high-throughput 
sample processing and ensured maximal accuracy and 
precision over the course of the study.

Five multiplexed assay panels
Each assay panel was run in 96-well plates. Standard 
curves (seven standards and a blank), process quality 
controls (PQCs, from pooled human plasma samples, 
BioreclamationIVT, Westbury, NY), and patient sam-
ples were tested in duplicate on each plate. A single run 
required 110  μl of plasma to test all 27 analytes in five 
multiplexed panels. A single lot of all assay materials 
(antibodies, standards, plates and diluents) was used to 
minimize variation across the study. Standard prepara-
tions and sample dilutions were performed on a Tecan 
Freedom EVO (Tecan, Männedorf, Switzerland). Follow-
ing plating of the standards and samples on the Tecan 
Freedom EVO, the reagent additions and wash steps 
were performed on a BioTek EL406 Washer Dispenser 
(BioTek, Winooski, VT). The levels of electrochemilumi-
nescent units, corresponding to analyte concentration, 
were measured on a QuickPlex SQ 120 Imager (Meso 
Scale Discovery, Gaithersburg, MD) using MSD Discov-
ery Workbench software with 4 parameter logistic curve 
fitting and 1/y2 weighting. The test assays are listed in 
Table 2, which also gives the panel compositions, sample 
dilutions, maximum allowable duplicate CVs, minimum 
and maximum allowable Hill slopes, and observed lower 
and upper limits of quantitation (LLoQ and ULoQ). 
Acceptance criteria were established in accordance with 
FDA guidance on bioanalytical method validation [20]. 
The acceptance criteria for assay plates included stand-
ard curve quality (Hill slope within limits, R2  ≥  0.95), 
PQC analyte concentrations (within pre-established 
ranges), and PQC duplicate CVs (below CV maxima). 
Sample measures from plates passing acceptance criteria 
were accepted if their duplicate CVs were below the CV 
maxima.

The decision to use the electrochemiluminescence 
platform was driven by the advantages of this format. 
Customized development of assays for the protein tar-
gets enabled selection of new antibodies, standards, 
and diluents that provided maximum specificity and 
selectivity in a multiplexed format. The electrochemi-
luminescence gave excellent sensitivity for each assay, 
typically a 3–4 log dynamic range. Multiplexing allowed 
for simultaneous measurement of 3–8  analytes from a 
single reaction volume. Also, the electrochemilumi-
nescence format typically required 50% of the plasma 
volume and shorter assay times relative to other immu-
noassay platforms.

Classifier construction and statistical analysis
Study design
The study goals were to uncover a panel of biomarkers 
(including plasma protein concentrations and possibly 
demographic features) and a CRC classifier model, such 
that the biomarkers’ values would serve as predictors in 
the classifier algorithm to distinguish CRC (all stages) 
from non-CRC patients in the high-risk ITT popula-
tion. This goal was approached using a standard machine 
learning study design: biomarker panels and classifier 
models were developed in a Discovery set. The combined 
panel and algorithm with the most promising perfor-
mance at differentiating CRC from non-CRC was then 
tested in a separate Validation set.

Both the Discovery and Validation sets were built to 
represent the ITT population of symptomatic patients 
in the Endoscopy II study. For both sets, samples were 
selected at random across the eight diagnostic groups 
so that the proportions of different diagnostic groups 
matched those in the entire Endoscopy II sample set (see 
Table 1, columns entitled “CRC ITT Discovery Set” and 
“CRC ITT Validation Set”). To further ensure that the 
Discovery and Validation sets represented the ITT popu-
lation, no attempt was made to artificially balance patient 
characteristics across disease and control classes. Thus 
patient characteristics such as age and gender, which are 
known to be correlated with CRC [e.g. 5, 6], were allowed 
to vary naturally between the classes.

The Discovery set consisted of 3099 samples, while the 
Validation set consisted of 1336 samples. The Discovery 
and Validation sets were completely independent, with 
no overlap of samples between the two sets.

Classifier discovery and validation
Biomarker panels and classifier algorithms were explored 
extensively in the Discovery set. Classifiers were built to 
distinguish CRC patients (all stages pooled) from non-
CRC patients, with no filtering of the non-CRC groups; 
thus they were built to distinguish CRC of any stage in 
the true ITT population. The performance target was 
sensitivity/specificity of at least 0.80/0.80.

We employed machine learning approaches covering a 
diverse set of methods for both predictor selection and 
classifier modeling. In machine learning studies for which 
domain knowledge reveals a clear and well-established 
mechanism driving relationships between predictors and 
outcome classes, the selection of machine learning meth-
ods can be straightforward. For example, linear feature 
selection and classifier models will perform well when 
a weighted combination of predictors has a straightfor-
ward relation to the outcome classes. However, if several 
different linear relations have been observed conditional 
on the status of a subset of predictors, or if more complex 
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if–then processes best describe the relations between 
predictors and classes, then decision trees are likely a 
better option. On the other hand, when domain knowl-
edge is either lacking or reveals that diverse and com-
plex mechanisms drive relationships between predictors 
and outcome classes, it is best to explore a wide range of 
machine learning approaches. This is the case with the 
biology of cancer. In this study, we therefore utilized a 
wide range of machine learning methods.

To achieve this, a grid search was used to examine many 
combinations of data type, data pre-treatment, predictor 
number, feature selection algorithm, and classifier algo-
rithm. Data types included protein concentrations as well 
as protein concentration ratios; age and gender were also 
included, with gender represented as a binary numeri-
cal variable. Data pre-treatment options included log2-
transformation of concentrations, and/or concentration 
standardization (zero mean, unit variance). All possible 
concentration ratios were added as individual predictors 
to some classifier builds, with the ratios undergoing the 
same data pre-treatments. Classifiers were built using 
2–29 predictors. Feature selection algorithms included 
Elastic Net, Linear Correlation, Rank Correlation, Infor-
mation Gain, Gain Ratio, Random Forest Accuracy, and 
Random Forest Impurity. Classifier algorithms included 
Logistic Regression, Elastic Network Regression, Sup-
port Vector Machines, Boosting, Random Forests, and 
K Nearest Neighbor models; in addition, a variety of 
parameters was investigated for each algorithm. For each 
combination of data type and feature selection algorithm, 
the classifier grid explored every possible combination of 
data pre-treatments, predictor numbers, classifier algo-
rithms, and classifier algorithm parameters. For each 
combination, a strict ten-fold cross-validation procedure 
was repeated ten times. Performance was calculated for 
each replicate as the performance seen in the combined 
results from the ten folds’ hold-out test sets, and then 
summarized as the median across replicates. Classifier 
performances were compared across all builds to select 
those with the highest cross-validation AUCs in the Dis-
covery set. These classifier candidates were then filtered 
based on predictor count to select the single model with 
the fewest protein predictors; this was the top candidate 
model.

Next the model was refined to improve performance in 
the target ITT population represented by the full Discov-
ery set. Specifically, Indeterminate score ranges enabling 
15, 20, or 25% Indeterminate rates were explored. (Some 
clinical diagnostic tests employ an Indeterminate score 
range [e.g. 21]. Patients with scores in this range would 
not receive a model call.) Optimal Indeterminate score 
ranges were found by applying the model to measures 

from all Discovery set samples, then examining all pos-
sible Indeterminate score ranges that removed 15, 20, 
or 25% of the samples. For each range specification, the 
Indeterminate score range that gave the maximum speci-
ficity with sensitivity above 0.80 was selected. Indeter-
minate specifications and ranges that enabled the target 
performance were then selected. Considerations of com-
bined performance and acceptable Indeterminate speci-
fications led to selection of one particular range. The 
classifier model and Indeterminate range were locked 
at this point, marking the end of the classifier discovery 
process.

The locked model, along with the Indeterminate range, 
was then applied directly to the separate Validation set. 
Validation was considered successful if the classifier per-
formance in the Validation set was (1) statistically indis-
tinguishable from that observed in the Discovery set and/
or (2) above the performance sensitivity/specificity target 
of 0.80/0.80.

Software and statistical tests
All analyses were performed using the R programming 
language running in Unix and OSX environments [22]. 
The grid search code was developed in-house, and run 
parallelized across multiple compute servers. Most fea-
ture selection algorithms were drawn from the FSelector 
package [23]; some were constructed using the random-
Forest [24] or glmnet [25] packages. Classifier algorithms 
were drawn from the randomForest [24], glmnet [25], 
e1071 [26], kknn [27], and mboost [28] packages. The 
ROCR and pROC packages were used to calculate model 
performance and to statistically compare performances 
[29, 30]. DeLong’s test was used to compare AUCs from 
ROCs [31]. Fisher’s exact test was used to analyze contin-
gency tables [32].

Results
Our classifier discovery procedure yielded nine CRC 
versus non-CRC classifiers with median cross-validation 
AUCs of 0.84 or higher. Four of these classifiers were 
dropped from consideration because they included one 
or both of two assays for which continued availability 
of reagents was uncertain (GARS and CALP). Of the 
remaining five classifiers, the one with the fewest protein 
predictors was selected as the top candidate. This model’s 
algorithm was a logistic regression using eight protein 
concentrations (log2 transformed, unscaled, selected 
using penalized regression [GLMNet]-based ranking), 
age, and gender as predictors of CRC status. The eight 
proteins were A1AG, CEA, CO9, DPPIV, MIF, PKM2, 
SAA, and TFRC. An Indeterminate score range remov-
ing 25% of the Discovery set samples was selected on the 
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basis of performance and market acceptability. In the 
Discovery set, application of this Indeterminate range 
yielded an AUC of 0.89 and a sensitivity/specificity point 
of 0.80/0.87. The model, along with the Indeterminate 
score range, was locked at this point.

The locked model was then applied to the Validation 
set. There were 310 Validation set samples with scores 
in the Indeterminate range (23.2%, 95% confidence 
interval 21.0–25.6%). There was no significant differ-
ence between the counts of CRC and non-CRC patients 
in these Indeterminate samples as compared to the full 
ITT population (Fisher’s test, p = 0.549). Figure 1 shows 
the Validation set ROC. The Validation set ROC was not 
statistically distinguishable from the Discovery set ROC 
(DeLong’s test on the ROC AUCs, p = 0.503). The Valida-
tion AUC was 0.86 (95% confidence interval 0.82–0.90). 
A performance point of sensitivity/specificity 0.80/0.83 
was selected as that meeting our target performance of 
0.80/0.80 or better. Figure  1 also shows the Validation 
set ROCs and AUCs for each of the individual predic-
tors alone (outside of the classification model). The clear 
segregation of the individual predictors’ ROCs from the 
classifier model ROC demonstrates that (1) the model is 
not overly dependent on any one predictor, and (2) it is 
the model’s algorithmic combination of predictors into a 
single score that gives it improved discriminatory power 
over single markers.

Table 3 is a confusion matrix showing results from the 
Validation set. Table  4 offers a summary of the model’s 
final performance parameters. With a 10.9% CRC preva-
lence in the symptomatic population [10], the positive 
predictive value (PPV) was 36.5% and the negative pre-
dictive value (NPV) was 97.1%.

Early and late stage CRC
Ideally, a CRC test would detect early stage CRC so that 
interventions can be offered before the cancer progresses. 
The final model presented here was built to distinguish 
CRC of any stage from non-CRC—no special models 
were built to distinguish either early or late stage CRC 
separately. However, since CRC signal may be stronger in 
more advanced stages, the model could have been driven 
primarily by signal in the patients with later stage CRC 
lesions. If that were the case, the model’s sensitivity to 
early and late stage CRCs would differ. To explore this 
possibility, the final model’s sensitivity to early (stages I–
II) and late (stages III–IV) stage CRC is shown in Table 5. 
Sensitivities for early and late stages were not signifi-
cantly different (binomial test p = 0.1115), and there was 
no significant association between cancer stage and call 
correctness (Fisher’s test, p =  0.338); thus there was no 
evidence of different classification performance for early 
and late stage CRC.

Discussion
Comparison to an earlier mass spectrometry CRC panel 
from our laboratory
Earlier work from our laboratory used targeted-mass 
spectrometry to explore CRC signal in plasma samples 
[17]. That study uncovered a set of candidate CRC bio-
markers of which 15, from 13 proteins, were combined 
in a classifier to predict CRC in asymptomatic patients. 
In translating these early mass spectrometry discoveries 
into a viable clinical test, commercial considerations (see 
below) dictated the choice of immunoassays using com-
mercially available antibodies. Because of the variable 
affinity and specificity of commercial antibodies, there 
was no assurance that the exact 13 protein panel outlined 
in the targeted-mass spectrometry study would translate 
successfully to immunoassays. In addition, the ITT group 
of symptomatic patients differed from the asymptomatic 
patients used in the mass spectrometry study. Therefore, 
to ensure that the final test would work well using immu-
noassays in the ITT population, additional development 
and studies were undertaken.

In developing the electrochemiluminescence assays of 
the current study, high quality antibodies and calibra-
tors were identified for seven of the 13 proteins from 
the targeted-mass spectrometry study—A1AG, A1AT, 
CLUS, CO9, GELS, SEPR, and TIMP1. For the remain-
ing six proteins—AMY2B, ECH1, FRIL, OSTP, SBP1, and 
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SPON2—successful electrochemiluminescence immu-
noassays were not developed. Since the 13 proteins had 
been a subset of those carrying CRC signal in the mass 
spectrometry study, it was reasonable to expect that a 
new immunoassay-based panel with good performance 
could be found by drawing from a broader set of the bio-
marker candidates uncovered in the mass spectrometry 
study. Therefore, we set out to assess the 27 biomarker 
candidates of the current study—25 that translated suc-
cessfully from mass spectrometry to electrochemilu-
minescence assays, and two new proteins—aiming to 
uncover a novel panel and develop a new classifier that 
functioned well in the ITT population.

Hence, because of both the change in assay format and 
the new patient population, the panel composition and 
classifier algorithm are different from those presented in 
the earlier mass spectrometry study.

Comparison to an earlier immunoassay CRC panel from our 
laboratory
After our original targeted-mass spectrometry study in 
CRC patients [17], our first immunoassay test for the 
CRC-symptomatic population was developed using 

ELISA assays [14]. Specifically, we uncovered an eight 
protein ELISA panel that, when combined with age, dis-
criminated CRC from non-CRC with lower specificity 
and lower PPV than the new biomarker panel presented 
here. The ELISA CRC panel differed from the new panel 
presented here in both protein composition and assay 
technology (ELISA vs electrochemiluminescense assays).

In order to understand what drives the new panel’s 
improved performance, it’s useful to consider the CRC 
signal carried by each of the individual proteins meas-
ured during development of both immunoassay pan-
els. These data are presented in Table  6 for the three 
proteins that appear in both panels, and in Fig.  2 for 
the 22 proteins that were assessed in both studies. Fig-
ure  2 demonstrates that most of the univariate AUCs 
obtained with the electrochemiluminescence assays 
exceeded those obtained with the ELISAs. Six of the 
proteins used in the new panel (black dots) were among 
this majority, while two had lower univariate AUCs than 
measured with ELISAs. Among the three proteins in 
common across the two panels (circled), two have higher 
AUCs and one has a lower AUC in the electrochemilu-
minescence assays. Based on these observations, higher 
univariate AUCs likely drive much of the improved per-
formance in the new panel. This effect may result from 
the increased dynamic ranges and higher sensitivities of 
the electrochemiluminescense assays. In addition, the use 
of a much larger dataset in the current study (4435 com-
pared to 922 in the ELISA study) decreased the impact of 
chance in patient selection, giving us a more robust study 
and a model that better captures CRC signal in the ITT 
population.

Does the classifier structure reveal anything about cancer 
biology?
While the primary aim of this study was the development 
and validation of a clinically useful blood-based CRC 
test for symptomatic patients, it’s interesting to consider 
whether the final panel composition or the nature of the 
final classifier algorithm reveal anything about cancer 

Table 3  Confusion matrix from the validation set

Model call Total

Non-CRC CRC

Patient status

Non-CRC 758 159 917

CRC 22 87 109

Total 780 246 1026

Table 4  The final model’s performance parameters

Sensitivity 0.80

Specificity 0.83

Positive predictive value (PPV) 36.5%

Negative predictive value (NPV) 97.1%

Table 5  The final model’s CRC sensitivities for  early 
and late stage cancer

CRC stage Incorrect call Correct call Sensitivity

I–II 12 36 0.75

III–IV 10 51 0.84

Total 22 87 0.80

Fisher’s test p value 0.338

Table 6  Comparison of  univariate CRC AUCs for  the three 
proteins appearing in both the ELISA panel [14] and in the 
new electrochemiluminescense panel

AUCs were calculated for the CRC versus non-CRC discrimination across each 
study’s full Discovery set (Indeterminate samples were not removed)

Protein AUC, ELISA  
measures

AUC, electrochemi-
luminescence assay 
measures

CEA 0.702 0.725

CO9 0.706 0.742

MIF 0.558 0.493
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biology. Our view is that the panel and classifier are sug-
gestive, but that evaluation of these suggestions is outside 
this study’s scope.

Of the eight protein biomarkers in the new panel, CEA 
and TFRC are recognized as being involved in gastro-
intestinal cancers [33]. The remaining six proteins—
A1AG, C09, DPPIV, MIF, PKM and SAA—are known 
to have multiple biological roles including involvement 
in immune system pathways and as acute-phase pro-
teins whose plasma concentrations increase (positive 
acute-phase proteins) or decrease (negative acute-phase 
proteins) in response to inflammation [34–38]. Beyond 
recognizing these known biological functions, the stud-
ies described here do not provide sufficient evidence 
to hypothesize a mechanism of interaction or connec-
tion between these eight proteins identified as CRC 
predictors.

Our classifier discovery process examined panels and 
classifiers built using a wide range of feature selection 
and classifier algorithms, employing a grid approach. We 
chose this grid approach in part because of the diversity 
and complexity of cancer biology. The final classifier was 
a logistic regression, using features selected via penalized 
regression (GLMNet). What, if anything, does this suggest 
about the detectability of cancer using blood-based tests?

Figure  3 presents a heatmap illustrating the AUCs 
obtained for a range of feature selection and all 
classifier algorithms used in the study. The linear 

classifiers—Logistic Regression and GLMNet—combined 
with the linear feature selection approach (GLMNet) 
gave the highest performances. These algorithms operate 
on linear combinations of weighted predictor values, with 
the outcome class related in a straightforward way to the 
resulting value (CRC if above some value, otherwise non-
CRC). The success of these linear approaches over those 
that may model more complex mechanisms (e.g. Ran-
dom Forest) indicates that, regardless of complexity at 
the cellular level and possible diversity across patients, 
the pooling of proteins in the bloodstream offers a sim-
plified opportunity for CRC detection. This observation 
suggests two possibilities: (1) CRC detectability in the 
blood is dominated by one or more linear mechanisms 
that mask weaker and possibly more complex and diverse 
mechanisms, and/or (2) CRC detectability in the blood 
may be driven only partially by cancer biology per se, 
and partially by the body’s response to having cancer—
for example, an inflammatory or other immune system 
response. As noted above, evaluation of such suggestions 
is outside the scope of this study.

Conclusions
The work presented here builds upon growing interest in 
understanding the patient population directed to colo-
noscopies. By focusing on CRC risk stratification within 
symptomatic patients, the expectation is that the colo-
noscopy compliance of patients with the apparent high-
est need can be increased. Other groups [11, 13] have 
also approached the development of tests for sympto-
matic patients, though none have yet validated their tests 
and the tests’ proposed uses have varied. Our view is 
that CRC tests for symptomatic patients are most help-
ful when directed to patients who resist colonoscopies 
despite the presence of symptoms.

The new CRC test presented here also builds upon 
our earlier work focused on detecting CRC in the symp-
tomatic population. Our initial selection of candidate 
CRC biomarkers was based on a targeted-mass spec-
trometry study of samples from asymptomatic patients 
[17]; that work demonstrated detection of CRC signal in 
plasma, and uncovered a list of candidate CRC proteins. 
In subsequently developing a clinical test, we decided 
to transition from a mass spectrometry platform to an 
immunoassay platform because of the faster processing 
time (hours vs days), faster test development time, and 
the clinical laboratory personnel’s familiarity with the 
techniques; these considerations made immunoassays a 
more commercially viable option. This decision was con-
sistent with others’ choices for clinical assay development 
following mass spectrometry-based discovery programs 
[39, 40]. We also chose to direct our new test to the CRC-
symptomatic population. Given these two choices—a 
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change in assay format and the development of a test for 
the CRC-symptomatic population—a fresh study was 
required to identify the top biomarkers for final clini-
cal development. Next, in our first study focused on the 
symptomatic population, we measured 28 of the CRC 
candidate proteins with ELISA assays using a case/con-
trol design balanced for age and gender [10], yielding an 
eight protein panel with age- and gender-independent 
CRC signal in the symptomatic population. We then per-
formed a new study in which we augmented and refined 
this eight protein ELISA-based panel into a viable clinical 
test with clinically useful performance in the ITT popula-
tion [14]. In the current study, we returned to the original 
list of candidate CRC proteins from our targeted-mass 
spectrometry studies but chose the multiplexed electro-
chemiluminescence immunoassay platform; this new 
platform provided a significantly shorter testing time 
when compared to standard targeted mass spectrometry 

methods, and increased sensitivity and dynamic range 
when compared to ELISAs. Additionally, we brought a 
different subset of the proteins into the study. We also 
increased the data set for classifier builds by almost five-
fold, from 922 to 4435 samples. In the current study we 
discovered and validated a new CRC classifier with sig-
nificantly improved performance as compared to prior 
results from our and others’ efforts.

This new classifier offers the best validated perfor-
mance of any blood-based test to clarify CRC risk in 
symptomatic patients. Results from a test based on this 
model could serve as evidence in assessing symptomatic 
patients’ CRC risk and in managing next steps in their 
care. The results would be particularly useful in guiding 
the choices of symptomatic patients who resist recom-
mended screening procedures; a positive result on the 
new test would indicate increased certainty about the 
usefulness of definitive CRC screening.
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