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Objective: Tests requiring central auditory processing, such as speech perception-in-
noise, are simple, time efficient, and correlate with cognitive processing. These tests
may be useful for tracking brain function. Doing this effectively requires information on
which tests correlate with overall cognitive function and specific cognitive domains. This
study evaluated the relationship between selected central auditory focused tests and
cognitive domains in a cohort of normal hearing adults living with HIV and HIV– controls.
The long-term aim is determining the relationships between auditory processing and
neurocognitive domains and applying this to analyzing cognitive function in HIV and
other neurocognitive disorders longitudinally.

Method: Subjects were recruited from an ongoing study in Dar es Salaam, Tanzania.
Central auditory measures included the Gap Detection Test (Gap), Hearing in Noise Test
(HINT), and Triple Digit Test (TDT). Cognitive measures included variables from the Test
of Variables of Attention (TOVA), Cogstate neurocognitive battery, and Kiswahili Montreal
Cognitive Assessment (MoCA). The measures represented three cognitive domains:
processing speed, learning, and working memory. Bootstrap resampling was used to
calculate the mean and standard deviation of the proportion of variance explained by the
individual central auditory tests for each cognitive measure. The association of cognitive
measures with central auditory variables taking HIV status and age into account was
determined using regression models.

Results: Hearing in Noise Tests and TDT were significantly associated with Cogstate
learning and working memory tests. Gap was not significantly associated with any
cognitive measure with age in the model. TDT explained the largest mean proportion
of variance and had the strongest relationship to the MoCA and Cogstate tasks. With
age in the model, HIV status did not affect the relationship between central auditory tests
and cognitive measures. Age was strongly associated with multiple cognitive tests.
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Conclusion: Central auditory tests were associated with measures of learning and
working memory. Compared to the other central auditory tests, TDT was most strongly
related to cognitive function. These findings expand on the association between auditory
processing and cognitive domains seen in other studies and support evaluating these
tests for tracking brain health in HIV and other neurocognitive disorders.

Keywords: HIV, cognition, central auditory processing, attention, auditory disease, cognitive processing speed,
Africa South of the Sahara

INTRODUCTION

Central auditory function, reflected in tests of speech perception
in background noise, correlates with cognition (Watson, 1991;
Hallgren et al., 2001; Anderson and Kraus, 2010; Hoover et al.,
2017; Panza et al., 2018; Danielsson et al., 2019; Humes, 2020,
2021), including cognitive dysfunction due to mild cognitive
impairment (MCI), Alzheimer’s disease (Gates et al., 1996;
Idrizbegovic et al., 2011), and HIV (Zhan et al., 2017b; Buckey
et al., 2019; White-Schwoch et al., 2020; Niemczak et al.,
2021). This suggests central auditory tests might be useful for
tracking cognitive dysfunction in populations with disordered
neuro-cognitive processing. Yet, the relationship between central
auditory function and cognition is multifactorial and questions
remain regarding the correlation of central auditory tests with
specific cognitive domains (i.e., processing speed, working
memory, etc.). The ability to perceive, understand, and respond
to a conversational partner in background noise encompasses a
variety of neurocognitive domains (Gates et al., 1996; Anderson
et al., 2013). While conversing in a noisy environment may seem
like a simple, common task, detecting quick acoustic changes
in an auditory stream and understanding the content, requires
fast and accurate processing in the auditory processing pathway–
including higher-level cognitive processing. The correlation
between central auditory function and cognition suggests that
auditory information is not only processed by the cochlea
and auditory pathway, but also by other associative cortical
areas (Harris et al., 2012; Palmer and Musiek, 2014; Sardone
et al., 2019; Song et al., 2020). Our previous work has shown
a relationship between central auditory test performance and
cognitive performance, which suggested that central auditory
tests might be useful for tracking cognitive performance in people
living with HIV (PLWH) (Maro et al., 2014; Zhan et al., 2018;
Buckey et al., 2019; Niemczak et al., 2021). The goal of this
study was to evaluate the relationship between central auditory
tests and neurocognitive domains in adults living with HIV
and HIV-negative (HIV–) controls. Specifically, we examined
how three central auditory tests relate to the specific cognitive
domains of processing speed, learning, and working memory.
The aim was to provide focused results on specific relationships
of auditory processing and distinct neurocognitive domains to
inform multifactorial longitudinal analyses in HIV and other
neurocognitive disorders.

The worldwide prevalence of HIV/AIDS is approximately
37.9 million, with sub-Saharan African countries accounting for
two thirds of the global HIV burden (Prevention, February 5,
Centers for Disease Control and Prevention, 2020). Advances

in understanding HIV replication, tracking immunologic
progression, and using combination antiretroviral therapy
(cART), have resulted in reduced viral loads and a drastic
reduction in HIV mortality (Saylor et al., 2016). While rates
of asymptomatic and mild neurocognitive dysfunction remain
stable, cART has resulted in a significant decline in HIV-
related dementia (Saylor et al., 2016). Despite this reduction
in the severest forms of cognitive impairment, neurocognitive
dysfunction persists in a subset of PLWH, even among those
consistently taking cART and those with suppressed viral loads
(Heaton et al., 2015). Identifying, tracking, and potentially
predicting the development of neurocognitive dysfunction in this
population would provide crucial benefits for PLWH. Identifying
biomarkers for brain health in PLWH is important for reducing
mortality, morbidity, and disease progression (Saylor et al.,
2016). Cognitive impairment can lower treatment adherence
and quality of life (Ettenhofer et al., 2010). Variability in how
neurocognitive dysfunction presents in HIV relates to the diffuse
nature of the disease’s impact upon the central nervous system
(Zhan et al., 2017a). Per recommendations from the National
Institute of Neurological Diseases and Stroke, comprehensive
neuropsychological assessment is considered the gold standard
in assessing and monitoring neurocognition in PLWH (Antinori
et al., 2007). This form of assessment covers a variety of
cognitive domains, both broad and specific, providing an
understanding of global function and particular domain-based
skills (e.g., language, attention, memory). Neuropsychological
assessment, however, is costly, time consuming, and requires
specialized training for interpretation. It is also sensitive to
education and cultural background. Access to such evaluations
in resource limited settings, where the burden of HIV and other
neurocognitive diseases tends to be significantly higher than in
developed countries, is not always feasible. Additionally, finding
culturally and linguistically appropriately normed measures is
challenging (Robertson et al., 2009). Central auditory focused
tests offer an attractive option in these settings because the
tests are easy to explain, unlikely to be sensitive to education or
cultural background, and can be repeated over time.

People living with HIV have differences in brain regions
and functions necessary for auditory processing including gray
matter atrophy, axonal injury, loss of axonal density, and
diffuse white matter abnormalities in the internal capsule,
thalamus, and corpus collosum (Zhan et al., 2017a; Kuhn
et al., 2018). The auditory system provides a useful tool for
assessing brain function because processing auditory information
is neurologically demanding. Most people are familiar with tests
of peripheral hearing (e.g., a threshold audiogram), but centrally
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focused auditory tests involve much more than just assessing the
quietest tone an individual can detect. After the cochlea converts
sound waves into nerve signals the brain must quickly perform
a series of complex functions to determine the meaning of the
content. Speech perception, particularly interpreting speech in
noise, engages several cortical and subcortical centers (Kotz and
Schwartze, 2010; Specht, 2014). This involves neural pathways
throughout the brainstem and into the cortex that integrate with
high-level linguistic and cognitive systems, such as processing
speed and working memory (Rudner and Lunner, 2014; Pichora-
Fuller et al., 2016). Previous studies have shown that more
complex auditory tasks relate to cognition beyond peripheral
hearing sensitivity (Danielsson et al., 2019). A recent study by
Danielsson et al. found associations between auditory processing
tasks of temporal-order identification and gap detection with
semantic long-term memory and working memory. Auditory
thresholds had no significant effect on any of the cognitive
measures. What makes central auditory focused tests so appealing
is that they are relatively short (a gap detection test takes 5 min),
easy to explain (the hearing-in-noise test and triple digit task
involve identifying words or numbers in background noise),
can be repeated, and do not require trained administrators.
This is particularly important for deploying these tests in the
developing world where normative cognitive data often do not
exist, and education levels are variable. These measures would be
a major advance for following PLWH in the developing world.
Further understanding the relationship of central auditory tests
with specific neurocognitive domains could also provide detailed
knowledge for targeted longitudinal analyses to better assess,
track, and potentially predict neurodegeneration in those with
HIV and other neurocognitive diseases.

Our group has shown that PLWH with normal peripheral
hearing are more likely to report trouble understanding speech in
noise compared to controls (Maro et al., 2014; Zhan et al., 2017b).
These studies suggest worse performance on measures of speech-
in-noise identification may reflect damage to the central nervous
system resulting in cognitive impairment (Buckey et al., 2019).
Previous studies have shown a relationship between cognition
and auditory processing ability such as speech perception in
noise (Pichora-Fuller et al., 1995; Wong et al., 2009; Zekveld
et al., 2011), auditory temporal ordering (Szymaszek et al.,
2009; Danielsson et al., 2019; Humes, 2020;2021), and gap
detection testing (Harris et al., 2010). In our previous work,
we have shown a significant relationship between the ability to
understand speech in noise and cognitive status in PLWH (Zhan
et al., 2017b). Also, using fMRI we have shown activation in
frontal areas during a challenging speech-in-noise task (Song
et al., 2020) showing that challenging speech-in-noise tasks
involve areas beyond the auditory cortex. In addition, a growing
body of literature suggests central auditory processing deficits
in PLWH on self-report, neurophysiological, and audiological
measures (White-Schwoch et al., 2020; Niemczak et al., 2021).
The relationship between measures of auditory processing
and cognition likely relates to the similarities in specific
neurocognitive domains used for advanced processes of auditory
perception and higher-order cognition (Danielsson et al., 2019).
The goal of this study was to examine a selection of central

auditory tests and their relationship to specific cognitive domains
to help select and inform which tests might be most sensitive
in a longitudinal study to help detect cognitive changes over
time. To do this, we focused on tests we believed had a
strong central auditory component. We deliberately included
individuals who had normal peripheral auditory function (i.e.,
normal audiograms) and selected tests that involve temporal
processing and speech perception in noise. We hypothesized
that central auditory tests would be associated with cognitive
function in three domains of processing speed, learning, and
working memory in PLWH. By using cognitive measures with
various neurocognitive domains (speed of processing, learning,
working memory), this analysis would also examine the specific
domains of cognition that most strongly relate to central auditory
performance. If central auditory tests are related to certain
aspects of cognitive function, these measures might also provide
a quantitative, time efficient, and repeatable measure of cognitive
function in the developing world. In addition, once these
relationships are identified, longitudinal analyses could be used
to develop a predictive auditory screening tool related to multiple
domains of cognitive function.

MATERIALS AND METHODS

Study Design and Participants
This prospective cohort study design was derived from a
longitudinal study of HIV-infected adults (all taking cART) in
Dar es Salaam, Tanzania. At the time of data collection for this
analysis, we had gathered auditory and cognitive information
from 259 HIV+ (mean 40.9 years) to 76 HIV– (mean 32.3 years)
individuals from the larger study database. See Table 1 for a
complete review of sample demographics.

Procedures
The institutional review boards of both Dartmouth College and
the Muhimbili University of Health and Allied Sciences approved
this study’s research protocol. All research was completed in

TABLE 1 | Summary of study demographics between HIV groups.

HIV+(n = 259) HIV–(n = 76) P-value

Age (mean, SD) 40.9 (12.0) 32.3 (10.6) <0.001

Gender (n, %) Male 74 (29%) 31 (40%) -

Female 185 (71%) 39 (60%) -

Years of education (mean, SD) 8.92 (2.61) 10.3 (2.71) <0.001

Pure tone
average (dB
HL mean, SD)

Right 7.33 (4.86) 4.82 (5.50) 0.001

Left 6.48 (5.09) 4.74 (5.49) 0.002

CD4 counts (mean, SD) 681.6 (318.2) 787.1 (212.1) <0.001

Lowest CD4 counts (mean, SD) 406.7 (205.8) 659.9 (210.0) <0.001

Mean and standard deviation (SD) of each demographic variable for HIV groups.
P-values were calculated using the Mann-Whitney U-tests due to differences
in distribution of groups, which were found to be significant across all tests
(all ≤0.002).
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accordance with the Helsinki Declaration. All participants were
obligated to provide written informed consent. Participants
consisted of PLWH and HIV– adults who were tested at the
Infectious Disease Center in Dar es Salaam, Tanzania. To ensure
accuracy of analysis and control for variables that could affect
central auditory and cognitive function, we used a series of
data selection techniques. Individuals were excluded if they had
abnormal hearing sensitivity (>25 dB HL from 0.5 to 4 kHz) or
abnormal middle ear function. Individuals were also excluded if
they had a positive history of ear drainage, concussion, significant
noise or chemical exposure, neurological disease, mental illness,
ototoxic antibiotics (e.g., gentamycin), or chemotherapy. This
selection technique resulted in 385 individuals, but only 335
individuals with complete central auditory variables (i.e., no
missing auditory data) were selected for the study. We wanted
every subject to have completed all the central auditory focused
tests. The demographics of this sample population are provided
in Table 1. To reduce the variation from using a single
measurement from a single experimental session (cross-sectional
sample), we used the mean from multiple visits over time. To do
this, we plotted each subject’s cognitive and central auditory tests
over time and identified outliers by plotting a regression line to
the data and removing values that were >2 standardized residuals
from the regression line. After removing outliers, we took the
average of each subject’s test scores over time to create one data
point for each subject.

Audiological testing was performed using a hearing
assessment system built by the Creare, LLC. Creare’s wireless
noise attenuating headset (CWNAH) has the device speakers
mounted in highly noise attenuating ear cups. The attenuation
provided by this headset is better than any currently available
commercial hearing test device as measured by an independent
laboratory according to the relevant ANSI standards (Meinke
et al., 2017). Before starting the audiological evaluation, patients
had an otoscopic exam and cerumen was removed as needed.
All subjects completed a health history questionnaire that asked
about health conditions that might affect their hearing or central
nervous system (e.g., head trauma, other central nervous system
infection). To verify normal middle ear status, tympanometry
at 226 Hz was performed on both ears using a Madsen Otoflex
100 (GN Otometrics, Denmark). Individuals with abnormal
tympanograms (Type B or C) were referred for treatment and
subsequent reevaluation.

Hearing thresholds were measured at frequencies 500, 1000,
2000, and 4000 Hz using a Békésy-like tracking procedure as
described previously (Maro et al., 2014). Thresholds of 25 dB HL
or better for each ear across the aforementioned frequencies were
considered normal. Pure tone averages (PTA) were calculated
by taking the mean of all measured frequencies. Measures of
central auditory processing included gap detection, speech-in-
noise, and digits-in-noise testing. The Kiswahili language version
of the Hearing in Noise Test (HINT) and the Kiswahili Triple
Digit Test (TDT) were used to assess speech perception in noise.
The HINT was administered in three test conditions: Noise Front,
Noise Right, and Noise Left. In each HINT test, a different list of
20 sentences was presented in random order in the presence of
the masking noise spectrally matched to the long-term average of

the target material. The presentation level of the noise remained
fixed at 65 dB (A-weighting), and the test instrument adjusted
the level of each sentence adaptively depending on whether
the test administrator indicated that the previous sentence was
repeated correctly. The presentation level of the sentence was
reduced if the previous sentence was repeated correctly and
increased if the previous sentence was repeated incorrectly. This
adaptive procedure was used to determine the presentation level
of each sentence in the list. The average presentation level of
all sentences after the first four sentences defined the speech
reception threshold (SRT) for the test condition expressed as a
signal to noise ratio (SNR). A composite SNR of all three noise
conditions was calculated and used as the primary variable of
interest for the HINT.

In the TDT, recordings of natural productions of three-digit
triplets such as 3-5-9 (spoken as “tatu-tano-tisa” in Kiswahili)
were used as target stimuli (Kiswahili numbers below 10 have the
same number of syllables). All digit triplets were produced and
recorded by a male speaker in a soundproof booth. Digit triplet
recognition was tested in the presence of competing Schroeder-
phase masking noise. The test included 30 total presentations
of pseudorandom digit triplets with 6 practice presentations.
Presentations were presented in pairs of positive and negative
phase maskers. Each pair was presented at the same SNR. The
ordering of the masker was randomized for each pair. The test
started at a 0-dB initial SNR with the masker fixed at 75 dB
SPL. SNRs were then adjusted after each presentation or pair of
presentations by varying the target level. 2.0 dB SPL was added
to the target level for each incorrect digit and 2.0 dB SPL was
subtracted for each correct digit from the previous positive-phase
presentation. A speech reception threshold was calculated as the
SNR of the last 7 positive-phase presentations, which was used as
the primary variable of interest. Completing one list of 30-digit
triplets took 3-6 min.

The Gap Detection Test (GAP) determines a participant’s
ability to identify short gaps in noise by pushing a button when
they first identify a break in noise. The details of the gap detection
test have been published previously (Maro et al., 2014). We
implemented an adaptive gap detection algorithm using a single
staircase. Gaps occur randomly in the middle portion of 4.5 s of
white noise delivered at 65 dB SPL. No gaps were presented in
the first or last second. If the subject misidentified 2 gaps, in a
row or 3 gaps overall, the staircase “reversed,” and the gap length
increased. In this way, the staircase algorithm converged to the
subject’s gap threshold. The test started at a gap length of 20 m
sec and continued until the subject completed 10 reversals or
a total of 120 presentations. From these gap tests a plot of the
percentage of time a gap was correctly detected vs. gap length
was produced. This curve can be fit using the Hill equation to
calculate the gap length where 50% of the gaps were detected
correctly (Grigoryan et al., 2013). These values were used in the
analysis. The subjects received training in the gap test with both
a training video and a screen that provided both auditory and
visual feedback. The operator presented gaps to the subject until
the subject comprehended the task.

The Kiswahili version of the Montreal Cognitive Assessment
(MoCA) was used as a screening measure of cognitive
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function. The MoCA has been used in diverse populations and
has demonstrated reliability and validity with the Tanzanian
population (Vissoci et al., 2019). This measure assesses short-
term and long-term memory recall, visual spatial abilities,
executive functioning, attention, concentration, and working
memory. The maximum score achievable is 30 points and a
correction was implemented based on years of education.

Computerized neurocognitive assessments were conducted
using the Cogstate and Test of Variables of Attention (TOVA). All
cognitive assessments utilized visual stimuli, not auditory stimuli,
to test neurocognitive function (apart from the instructions).
The Cogstate1 is comprised of multiple tests assessing a variety
of domains. The Cogstate battery, was chosen because it uses
culturally neutral stimuli (e.g., playing cards) to ensure that the
assessment is not limited by a participant’s level of education.
Card games are popular in Tanzania, so the playing card approach
was familiar to the cohort. The Cogstate tasks are computer-
based and designed for repeated administration. The Cogstate
battery has been used to assess cognitive function in patients
with HIV and has been shown to correlate well with standard
neuropsychological test batteries (Cysique et al., 2006; Overton
et al., 2011; Bloch et al., 2016; Kamminga et al., 2017). In addition,
the Cogstate includes tasks known to be sensitive to cognitive
domains affected in adults (Hammers et al., 2011, 2012; Bloch
et al., 2016; Boivin et al., 2016). We chose outcomes measures of
working memory and learning from the Cogstate to include in
our analysis. The Test of Variables of Attention (TOVA. Version
8.0) was also administered to all subjects as it has been used
with sub-Saharan African populations across a wide range of

1www.Cogstate.com

studies (Bangirana et al., 2015; Boivin et al., 2019). The TOVA
has several advantages because it uses visual stimuli, measures
response times precisely (±1 m sec), is language- and culture-
free, and has a history of use in resource-challenged areas (Ruel
et al., 2012). Table 2 has a list of the measures, their cognitive
domains, and the outcome variables used in our analyses.

Statistical Analysis
Data were analyzed and plotted using MATLAB R© 2020b.
As stated above, a set of cognitive outcome variables were
determined a priori based on the sensitivity of specific domains,
their correlation to standard neuropsychological test batteries,
and cognitive domains likely to be affected by HIV (see Table 2).
We first tested simple group mean differences using non-
parametric procedure (Mann-Whitney U-test). A bootstrapping
method was used to examine the relationship of central auditory
tests to cognitive measures. This resampling technique was
used to estimate the mean and standard deviation of the
proportion of variance (R2) and overall significance (p-Value)
of the linear relationship between each central auditory test and
cognitive measure. We randomly sampled ∼60% of the cohort
(200 individuals) 5000 times for each central auditory/cognitive
relationship. To examine the effects of age and HIV, we
used general linear models to assess the association between
central auditory tests and cognitive measures with age and HIV
included in the model [model specification - (Cognitivemeasure∼
Gap + HINT + TDT + HIV status + Age)]. Previous studies
have shown a strong relationship between age, auditory tests,
and cognitive measures (see Humes et al., 2012 for review). This
analysis method resulted in 7 models, one for each cognitive
measure. To adjust for multiple comparisons, we used an α level

TABLE 2 | Descriptions of cognitive measures.

Cognitive measure Domain assessed Test description Outcome measure

MoCA

Kiswahili MoCA Neurocognitive Screening Screens short- and long-term memory
recall, visual spatial abilities, executive

functioning, attention, concentration, and
working memory.

A subject is able to obtain a total of 30 points.
Higher scores represent better performance.

TOVA

Response Time (RT) Attention, processing speed (RT-ms) Correct response time mean. Measures
quickness of response time in milliseconds.

The mean response time of the correct responses.
Lower = better.

Ex-Gaussian µ (ExGµ) Attention, processing speed (ExGµ-ms) The mean response time (in milliseconds) of
the correct responses, modeled using the

Ex-Gaussian distribution.

This score takes into account the skew in
distribution of reaction time scores. Lower = better.

Cogstate

One Card Learning (OCL) Visual leaning accuracy* (OCL-acc) Accuracy of performance; arcsine square
root proportion correct.

Accuracy is the primary outcome for OCL. Higher
scores = better.

Visual learning speed (OCL-lmn) Speed of performance; mean of the log10

transformed reaction times for correct
responses.

Speed of processing is the secondary outcome
measure for OCL. Lower score = better

One Back Test (ONB) Working memory accuracy (ONB-acc) Accuracy of performance; arcsine square
root proportion correct.

Accuracy is the secondary outcome for ONB.
Higher scores = better.

Working memory speed* (ONB-lmn) Speed of performance; transformed
reaction times for correct responses.

Speed of processing is the primary measure for
ONB. Lower score = better

All cognitive measures, the domain they assess, a description of the test, and the outcome measures are listed for the entire study. MoCA, Montreal Cognitive Assessment;
TOVA, Test of Variables of Attention. ∗ Indicates the primary variable of interest for Cogstate subtest.
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of <0.005. For all model analyses, a variance inflation factor was
calculated to assess collinearity among the predictor variables
(Gap, HINT, and TDT). All variance inflation factors were <1.8
indicating low levels of collinearity between predictor variables.
This provided an alternative way to examine the sampling
distribution of proportion of variance and overall significance.

RESULTS

Overall Mean HIV+ and HIV– Group
Comparisons
Overall demographic differences between groups showed that
HIV + individuals were older, less educated, and had pure
tone averages that were higher than the HIV– group. See
Table 2 for demographic differences. Mean differences between
central auditory and cognitive measures also revealed significant
HIV group differences. See Table 3 for mean and standard
deviations of cognitive and central auditory processing outcome
variables. All central auditory variables revealed highly significant
differences between HIV groups (p ≤ 0.012). MoCA, TOVA,
and Cogstate also revealed significant differences between groups
(p ≤ 0.037). Importantly, these differences do not show the
association between auditory and cognitive variables.

Relationship of Specific Central Auditory
Tests to Cognitive Measures
To evaluate the relationship of central auditory variables to
specific cognitive domains, we used a bootstrapping method to
assess the relationship between each individual auditory variable
and each cognitive measure. The most significant results were the
relationships of the TDT to the MoCA, OCL-lmn, and ONB-lmn
(all mean p < 0.001) with mean R2 values of 0.142, 0.113, and
0.120, respectively (Table 4). All central auditory focused tests
were significantly related to the MoCA, but the TDT relationship
was much stronger than for either the HINT or Gap and was
the only significant measure when multiple comparisons were

considered. The Gap test was significantly related to the TOVA
measures, but neither the HINT nor TDT were related to the
TOVA. The strongest results were for the TDT with the OCL
and ONB speed of processing measures. The HINT was only
weakly related to these measures. Interestingly, the HINT was
significantly related to the OCL and ONB accuracy measures,
while the TDT and Gap were not.

Association of Cognitive Measures to
Central Auditory Measures Including Age
and HIV Status
We evaluated the association of cognitive test domains to central
auditory tests, including age and HIV status in the model.
Overall, we found significant associations between multiple
cognitive and central auditory test variables. Table 5 shows
the results of all linear regression models. MoCA scores were
significantly associated with the TDT (p < 0.001), but not with
any other variable. TOVA response time (RT) and ex-gaussian
µ (ExGµ) were significantly associated with age (p < 0.001)
but no central auditory/cognitive relationship was found to
be significant. Cogstate OCL accuracy (OCL-acc) was only
significantly associated with HINT (p = 0.004), while the speed
of learning (OCL-lmn) was significantly associated with age
(p< 0.001) and TDT (p< 0.001). Cogstate ONB accuracy (ONB-
acc) was significantly associated with HINT (p = 0.003), while
working memory speed (ONB-lmn) was significantly associated
with age (p = 0.001) and TDT (p = 0.002). Together, these results
suggest that: (1) Gap was not significantly related to any of
the cognitive measures independent of age; (2) The HINT was
significantly related to OCL-acc and ONB-acc, and (3) The TDT
showed the strongest associations with significant relationships
to the MoCA, OCL-lmn, and ONB-lmn. Age also showed strong
associations with TOVA response time, ExGµ, OCL-lmn, and
ONB-lmn. R2 values were also strongest for the OCL-lmn (0.253)
and ONB-lmn (0.257) models. Surprisingly, HIV status was not
significant in any model and age was not significantly related to
the MoCA. Figure 1. shows plots of OCL-lmn and ONB-lmn for

TABLE 3 | Mean central auditory and cognitive performance differences between HIV groups.

Mean performance scores

Measure Subtest HIV + (SD) HIV– (SD) P-value

Central auditory processing Gap Detection Test (GAP - ms) 3.65 (1.37) 3.00 (1.18) <0.001

Hearing in Noise Test (HINT - dB SNR) –10.7 (0.99) –11.1 (1.01) 0.012

Triple Digit Test (TDT - dB SNR) –18.1 (4.70) –20.1 (4.63) <0.001

MoCA Total Score (# correct) 26.6 (2.86) 27.5 (2.30) 0.012

TOVA Reaction Time (RT - ms) 395.1 (62.9) 364.7 (63.2) <0.001

Ex-Gaussian µ (ExGµ - ms) 324.7 (59.0) 296.1 (51.5) <0.001

Cogstate *One Card Learning – accuracy (OCL-acc) 0.94 (0.10) 0.96 (0.10) 0.013

One Card Learning – speed of processing (OCL-lmn) 3.17 (0.11) 3.10 (0.09) <0.001

*One Back Test – speed of processing (ONB-lmn) 3.08 (0.10) 3.01 (0.09) <0.001

One Back Test – accuracy (ONB-acc) 1.07 (0.20) 1.12 (0.17) 0.037

Mean and standard deviation (SD) are displayed for HIV + and HIV– groups. Significant differences were found on all central auditory variables and cognitive measures.
P-values were calculated using Mann-Whitney U-tests (non-parametric) due to differences in distribution between HIV groups. *Indicates the primary outcome measures
for Cogstate subtest. Each measure is displayed in raw score units along with the applicable abbreviation in italic.

Frontiers in Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 696513

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-696513 September 30, 2021 Time: 10:38 # 7

Niemczak et al. Central Auditory Tests and Neurocognitive Domains

TABLE 4 | Bootstrap results.

Bootstrap results

Cognitive variable Response variable Predictor variable Mean R2 Std. R2 Mean p-Value Std. p-Value

MoCA Total score Gap 0.036 0.016 0.033 0.056

HINT 0.042 0.022 0.034 0.072

TDT 0.142 0.028 <0.001 <0.001

TOVA Response time Gap 0.039 0.017 0.021 0.043

HINT 0.012 0.004 0.498 0.205

TDT 0.019 0.010 0.158 0.169

ExGµ Gap 0.030 0.016 0.045 0.076

HINT 0.002 0.004 0.582 0.260

TDT 0.011 0.008 0.234 0.196

Cogstate OCL-acc* Gap 0.011 0.009 0.271 0.023

HINT 0.037 0.017 0.035 0.073

TDT 0.018 0.010 0.132 0.144

OCL-lmn Gap 0.029 0.017 0.056 0.089

HINT 0.038 0.018 0.024 0.048

TDT 0.113 0.025 <0.001 0.001

ONB-acc Gap 0.011 0.009 0.254 0.232

HINT 0.096 0.018 0.012 0.032

TDT 0.032 0.017 0.045 0.076

ONB-lmn* Gap 0.027 0.014 0.061 0.093

HINT 0.032 0.017 0.044 0.079

TDT 0.120 0.022 <0.001 <0.001

The results of resampling between individual central auditory and cognitive measures are displayed below. 200 random samples of the 335 subject cohort were chosen
over 5000 iterations to calculate the mean and standard deviation (Std.) R2 and p-Value. The relationship of TDT and MoCA, OCL-lmn, and ONB-lmn showed the largest
R2 with mean p-Values below 0.001. *Indicates the primary outcome measures for Cogstate subtest. The colored values indicate significant of p < 0.005.

the TDT. The graphs show a significant positive trend for the
entire cohort and for the HIV + group to perform slightly worse
on both measures.

DISCUSSION

The findings of the current study support and build upon
previous work in understanding how central auditory measures
and cognition are associated. The results showed that central
auditory tests were significantly associated with cognitive abilities
across areas of learning and working memory on the Cogstate,
but not response time as measured by the TOVA. The HINT
and TDT showed the strongest associations with learning and
working memory on the Cogstate. Specifically, the TDT showed
the strongest relationship to OCL-lmn and ONB-lmn in the
linear models and with the bootstrapping resampling method.
Surprisingly, HIV status was not significantly associated with any
cognitive measure. These findings support the idea that central
auditory tests assess cognitive functions related to the domains of
learning and working memory. Longitudinal results are needed to
determine whether central auditory focused tests could be used
to track cognitive function over time in patients with particular
conditions that affect the central nervous system, such as HIV
and other neurocognitive diseases.

With speech-in-noise measures, we found that subjects who
performed better on HINT and TDT also performed better

on OCL and ONB tasks related to learning and working
memory. Speech perception in noise has been linked to multiple
cognitive functions (i.e., executive and attentive functions)
(Anderson and Kraus, 2010; Anderson et al., 2013; Moore et al.,
2014). The rationale for this link is based on the complex
acoustic processing necessary to perceive word representations
and phonemes accurately, extract the meaning of the message
within background noise successfully, and remember the message
from beginning to end to respond correctly. This process
requires cognitive-linguistic abilities, including working memory
to attend to and recall what is being said (Craik, 2007; Anderson
and Kraus, 2010; Rönnberg et al., 2013). Success in the learning
domain, as evidenced by OCL tasks, also requires recruitment
of complex neural networks across a broad range of cortical
and subcortical areas (Koziol and Budding, 2009; Du Plessis
et al., 2017). Recently, using fMRI we found increased activation
in the right superior and middle frontal gyrus during speech
perception in noise in a cohort of normal hearing Mandarin
listeners (Song et al., 2020). These two frontal sub-regions are
relevant for tone perception, phonological working memory, and
orientation of attention (Husain et al., 2006; Japee et al., 2015).
Therefore, this provides evidence that speech-in-noise tests are
tapping into areas of the brain also associated with tests such as
the ONB and OCL.

The strongest relationships were seen with the TDT. The TDT
is a closed set task (numbers 1-9) with no spatial adjustment
and uses Schroder-phase masking noise (positive Schroder-phase
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TABLE 5 | Linear regression results.

Linear regression results

Cognitive
variable

Response
variable

Predictor
variable

Beta Std. Err. t-Stat p-Value R2

MoCA Total score HIV 0.060 0.387 0.156 0.876 0.177

Age −0.025 0.014 −1.769 0.078

TDT −0.173 0.036 −4.780 <0.001

HINT −0.310 0.151 −2.052 0.041

Gap −0.174 0.118 −1.478 0.140

TOVA Response
time

HIV −11.168 8.771 −1.273 0.204 0.145

Age 1.629 0.323 5.049 <0.001

TDT −0.171 0.814 −0.210 0.834

HINT −3.052 3.513 −0.869 0.386

Gap 3.239 2.729 1.187 0.236

ExGµ HIV −9.722 7.741 −1.256 0.210 0.198

Age 1.982 0.284 6.984 <0.001

TDT −0.661 0.718 −0.921 0.358

HINT −2.589 3.073 −0.842 0.400

Gap 0.466 2.397 0.195 0.084

Cogstate OCL-acc* HIV 0.008 0.014 0.579 0.563 0.069

Age 0.000 0.001 −0.853 0.394

TDT −0.001 0.001 −0.634 0.526

HINT −0.016 0.006 −2.792 0.004

Gap −0.004 0.004 −0.806 0.421

OCL-lmn HIV −0.015 0.015 −0.976 0.330 0.253

Age 0.003 0.001 5.813 <0.001

TDT 0.005 0.001 3.358 0.001

HINT 0.011 0.006 1.757 0.080

Gap −0.001 0.005 −0.265 0.791

ONB-acc HIV 0.005 0.026 0.187 0.852 0.097

Age −0.002 0.001 −2.132 0.034

TDT −0.003 0.002 −1.258 0.209

HINT −0.030 0.010 −2.870 0.003

Gap −0.003 0.008 −0.341 0.733

ONB-lmn* HIV −0.019 0.013 −1.489 0.137 0.257

Age 0.003 0.000 6.076 0.001

TDT 0.004 0.001 3.109 0.002

HINT 0.006 0.005 1.255 0.211

Gap −0.002 0.004 −0.472 0.637

Results display the association between central auditory and cognitive measures
as well as HIV status and age. Models show decreased performance on central
auditory tests are significantly associated with degraded cognitive measures (Model
specification: Cognitive measure∼ HIV status + Age + TDT + HINT + Gap).
Significant values are highlighted in gray. *Indicates the primary outcome measures
for Cogstate subtest. T-stat was calculated by dividing the Beta (coefficient) by
the standard error.

noise is used to calculate the SNR). TDT yielded the largest R2

values and lowest p-Values and showed the strongest associations
to OCL-lmn, ONB-lmn, and MoCA. One possible reason for
these findings is the global cognitive nature of both the TDT
and -lmn/MoCA measures. The OCL and ONB-lmn measures
are the mean of the log10 transformed reaction times for correct
responses to tasks related to playing cards. The -lmn measures
could be interpreted as combination of accuracy, speed, and

memory. This is similar to the findings of Humes et al. (2013)
and others, who showed the importance of global sensory-
processing performance to global cognitive function (Humes
et al., 2013; Humes, 2015; Deal et al., 2016; Glick and Sharma,
2020). The working memory components of the ONB and OCL
tasks could also be related to auditory working memory, which
has been shown to be an important component of language
comprehension, even in the absence of background noise
(Daneman and Merikle, 1996; Wingfield and Tun, 2007). The
addition of background noise in the TDT may reduce auditory
working memory capacity, resulting in the decreased ability to
rehearse and recall a target, further compromising the perception
of the signal already degraded by noise (Pichora-Fuller et al.,
1995; Parbery-Clark et al., 2011). Age effects were also observed
on ONB-lmn and OCL-lmn measures. The degree of age-related
function on working memory has shown to be dependent of task
difficult with larger age effects with higher cognitive demands
(Salthouse and Meinz, 1995; Nilsson, 2003; Danielsson et al.,
2019). The association of TDT to MoCA also provides evidence
for a global hypothesis. The MoCA is a popular screening test
for cognitive impairment that covers key cognitive domains
including episodic memory, language, attention, orientation,
visuospatial ability and executive functions (Nasreddine et al.,
2005). In those with mild cognitive impairment speech-in-noise
processing may increase the recruitment of neural networks
involved in memory, attention, and learning to compensate
for this dysfunction (Iliadou et al., 2017; Jalaei et al., 2019).
Another hypothesized reason for the association between TDT
and cognitive measures is the cross-cultural simplicity. While the
Gap does not require any linguistic interpretation and the HINT
sentences have been translated accurately into Swahili, the TDT
provides a simple closed-set speech-in-noise task with minimal
cultural or educational influences.

A surprising finding was that although both the HINT and
TDT are speech-in-noise tasks, the TDT showed much stronger
relationships with cognitive test results. Also, the unique pattern
of the HINT relating to accuracy, and TDT relating to speed
of working memory and visual learning on the ONB and OCL
tasks was unexpected. Both the HINT and TDT are speech-in-
noise tasks that use a SNR metric as the outcome variable. But
the HINT is a composite score of three spatial orientations of
the speaker and background noise. The HINT also uses speech-
shaped noise to the long-term average of the presented sentences.
Also, the HINT requires repeating back entire sentences, where
the overall meaning of the sentence can provide some context to
help the subject repeat it correctly. The TDT, however, requires
remembering three unrelated numbers. The reasons for the
differences between the tests are not clear, but does show that not
all measures including speech in noise are the same.

Overall, our findings support the study of central auditory tests
for measuring function on neurocognitive domains of learning
and working memory regardless of HIV status. In the current
study, we did not find strong evidence for HIV affecting the
association between central auditory performance and cognitive
measures. We hypothesized that PLWH would show differences
in auditory processing due the diffuse effect of HIV on the
central nervous system such as gray matter atrophy, diffuse
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FIGURE 1 | Relationship of OCL-lmn and ONB-lmn with TDT for HIV– and HIV + individuals. Panels show the relationship of OCL-lmn (left) and ONB-lmn (right) for
HIV– (blue squares) and HI + (red circles). Lines indicate a least-squares fit for HIV– (blue dotted line), HIV + (red dotted line), and the overall cohort (black solid line).
OCL-lmn is the mean of the log10 transformed reaction times for correct responses during the One Card Learning task. This task was to quickly and accurately
recognize if a playing card has been presented before throughout the duration test. Lower scores equate to better performance. ONB-lmn is also the log10

transformed reaction times for the One Back Test using playing cards. Results show significant positive relationships between TDT and OCL-lmn and ONB-lmn.

white matter abnormalities in the internal capsule, thalamus,
and corpus collosum, axonal injury, and loss of axonal density
(Kuhn et al., 2018). We did find overall mean differences between
HIV groups (Table 3), and differences in distribution of the
scatter points for HIV– vs. HIV + individuals (Figure 1), but no
significant difference in the relationship between central auditory
and cognitive measures when age was in the model. These
findings could be because many PLWH are performing to similar
levels of those without the disease due to modern antiretroviral
therapy. Additionally, it may be that only a subset of those with
HIV show a difference in the relationship of central auditory
tests and cognitive measures and this is not apparent in the
overall measures. The CD4 levels of our cohort are consistent
with HIV + individuals with well-controlled HIV on cART
indicating that HIV was mostly well-controlled in this group.
Also, it may be that although there were more PLWH with
cognitive difficulties, the relationship between cognition and the
central auditory variables is not different from what occurs due
to aging. Our results support that age is a significant factor in
the auditory-cognitive relationship. PLWH may be experiencing
“accelerated aging” and may just be at a higher point on the
curve relating cognition to central auditory test performance.
Longitudinal analysis of this relationship is warranted to better
assess this “accelerated aging” hypothesis. Regardless, if deficits in
auditory function precede cognitive decline and ultimately brain
health, early detection of cognitive deficits may be possible by
evaluating aspects of central auditory processing.

We found central auditory tests were significantly associated
with learning and working memory on the Cogstate, but not
response time on the TOVA. The results are interesting because,
except for providing instructions in performing the tests, none of
the cognitive tests used in the study have an auditory component
for their execution. By examining temporal acuity in an auditory

gap detection paradigm, we found that age was significantly
related to TOVA response time and Ex-Gaussian Mu with older
adults having poorer response time compared to young adults.
These observed age effects are consistent with previous studies
that have suggested that age-related differences in complex
measures of auditory temporal processing may be explained, in
part, by age-related deficits in processing speed and attention
(Snell, 1997; Humes et al., 2009, 2012; Harris et al., 2010; Humes,
2021). Age has a large effect on cognitive speed, which declines
earlier and at a higher rate than memory (Salthouse, 2009).
Humes et al. (2009) found a significant correlation between
auditory and visual gap detection that was associated with
general cognitive function, but not with processing speed on
the Wechsler Adult Intelligence Scale (WAIS-III) in older adults
(60-88 years). While there was a difference in age between
cohorts and we used the TOVA instead of the WAIS-III, our
results support previous findings that show gap detection is
not related to processing speed when age is included in the
model. Continuing to study gap detection and processing speed is
important because they have been linked to age related changes in
speech recognition, especially in acoustically complex conditions
(Snell, 1997; Palmer and Musiek, 2014). But with the TOVA
used in this study, we cannot endorse a significant relationship
between processing speed and gap detection accounting for age
in our experimental cohort.

The central auditory relationships to cognition are particularly
important because central auditory tests can be easy to
administer and do not require extensive training. Measures
of central auditory processing are easy to train people on
how to use, not complicated to administer, and not restricted
to English. This makes them particularly appealing for use
in resource-limited settings, such as developing nations. In
contrast, cognitive tests can be challenging to train people
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how to use, are resource-intensive (e.g., materials), are often
sensitive to education, and have typically been created for
Western cultures. These are all barriers to their use in resource-
limited, international settings. Most central auditory tests can be
completed faster than traditional full cognitive test batteries (NIH
toolbox takes approximately 2 h to complete) and some take less
time than a cognitive screening test (10 min for the MoCA). The
entire central auditory test battery (GAP, HINT, and TDT) used
in this study took approximately 15 min, while the TOVA alone
took over 20 min. These factors provide compelling arguments
for exploring the use of central auditory tests to track cognitive
performance in resource limited settings.

This study has some limitations. Previous work has
demonstrated that age is an independent predictor of cognitive
performance and speech in noise ability in HIV + adults (Zhan
et al., 2017b). Processing speed is one of the strongest predictors
of performance across cognitive tasks in adults (Salthouse
and Ferrer-Caja, 2003) and age-related changes in processing
speed are well established (Verhaeghen and Salthouse, 1997)
and supported in this study. While age-related changes were
not the focus of the current study, their influence on the
auditory/cognitive relationship cannot be ignored. We observed
an age effect on both TOVA measures, OCL-lmn, and ONB-lmn.
Interestingly, all of these measures have a speed of processing
component. Yet, even with age effects included in the model,
central auditory tests were still significantly associated with
cognitive function on the Cogstate.

Regarding gap detection testing and cognitive speed of
processing, we only used gap detection thresholds as our primary
outcome variable. There may be additional data within the
test that were not fully utilized in this study. For example,
measuring response time at the gap detection thresholds or
even plotting a curve to each individual’s gap detection test
from 0% correct at short gaps to 100% at longer gaps. Further
development of these methods may produce a more sensitive test
in detecting cognitive decline in HIV or other population with
neurocognitive decline. Another limitation is that the present
study does not address whether central auditory tests can be
used to predict or track cognitive function in individuals over
time. Examining the relationship between cognition and central
auditory measures and whether this affected by HIV requires
a longitudinal study. Instead, this study was focused on what
cognitive domains were most strongly related to central auditory
tests in this mixed cohort of normal hearing individuals that
spanned a large age range. Result from this study do not
prove causal relations, but only significant associations between
central auditory and cognitive measures. Also, our test battery
was limited in its scope. With a different set of cognitive tests
(and additional domains), relationships might have been more
robust. In addition, exploring the relationship of central auditory
processing and cognition within HIV-infected individuals should
be completed in populations outside of sub-Saharan Africa. This
will allow for a better understanding of the generalizability of our
findings. Further analysis of longitudinal CD4 count history may
also provide a continuous metric of infection severity, which may
be more predictive of cognitive dysfunction. With modern cART,
lower CD4 counts have been exceedingly rare in our cohort and

the general health of all subjects is consistent with well-managed
HIV infection. Further longitudinal analysis of those who develop
lower CD4 counts (e.g., <200 cell/µl) warranted. Examination
of central auditory processing over time in HIV + individuals is
also needed, as such work might provide further insight into the
concept of accelerated aging in the brain in HIV-infected persons,
and whether this responds to interventions.

CONCLUSION

The overall results from the study suggest central auditory
focused tests are positively related to cognitive function in our
cohort, particularly in the areas of learning and working memory.
The Gap test was not related to any cognitive measure with
age in the model, while the HINT and TDT were related to
learning and working memory. TDT scores were also found
to be significantly related to the MoCA. We did not find any
evidence of a HIV effect on the association of central auditory
and cognitive measures. With longitudinal confirmation, central
auditory tests, specifically speech-in-noise tests such as the TDT
could provide an easy-to-use, quick method for assessing and
potentially predicting cognitive dysfunction in those with HIV
and other related cognitive deficits.
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