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Abstract: A mild and selective C(sp’)—H aerobic oxidation
enabled by decatungstate photocatalysis has been developed.
The reaction can be significantly improved in a microflow
reactor enabling the safe use of oxygen and enhanced
irradiation of the reaction mixture. Our method allows for
the oxidation of both activated and unactivated C—H bonds (30
examples). The ability to selectively oxidize natural scaffolds,
such as (—)-ambroxide, pregnenolone acetate, (4)-sclareolide,
and artemisinin, exemplifies the utility of this new method.

An essential part of modern synthetic chemistry is the
development of catalytic methods for C—H bond functional-
ization only at specific sites within a molecule. In recent years,
the field has witnessed great progress with regard to metal-
catalyzed distal carbon—carbon bond-forming reactions.!!
Typically, directing groups are used to navigate the metal to
the appropriate position to facilitate C—H bond cleavage.”

In contrast, analogous C—H oxidation processes appear to
be far more complicated and are only available to a limited
extent, making it a challenging field in which further
improvements are highly desired.”! Promising results have
been obtained using catalytic systems based on iron,
palladium,™ cobalt,! manganese,” or iridium (Scheme 1a).!
Also, biocatalytic approaches have been reported that enable
C—H oxidation processes with high substrate specificity and
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Scheme 1. a) Transition-metal-catalyzed C(sp*)—H oxidation strategies.
b) Electrochemical C(sp®)—H oxidation. c) Our strategy for selective
C(sp®)—H aerobic oxidation enabled by decatungstate photocatalysis in
flow.

chemoselectivity.”! Unfortunately, most—if not all—of these
strategies suffer from scope limitations, the use of high
loadings of expensive and complex catalysts, and the need for
tailored strong oxidants, for example, methyl(trifluorome-
thyl)dioxirane (TFDO).'"l Furthermore, in order to enhance
the selectivity of these procedures, directing groups are
generally needed to steer the metal to the desired locus of
action.

Another approach to enable C—H bond oxidation is
through hydrogen-atom transfer (HAT), which can be
promoted either thermally,""! photochemically," or electro-
chemically (Scheme 1b).P4"! Following this strategy, hydro-
gen atoms can be abstracted to produce highly reactive
radical species, which are subsequently trapped in a wide
variety of synthetically useful transformations. This synthetic
pathway can be considered appealing, since the transforma-
tion is promoted by the use of photons or electrons as
traceless reagents, thus simplifying the catalytic systems
involved and reducing the environmental impact of the
transformation itself.!">!*!

Among the different reported photocatalysts, decatung-
state (DT) has proved to be a versatile and inexpensive HAT
catalyst which can readily perform hydrogen abstraction on
C(sp*)—H fragments upon activation by irradiation with near-
ultraviolet light.""! This strategy allowed for the construction
of numerous C—C,[" C—Si,") C—N,"" and C—F!"® bonds.['**!’]
Intrigued by these seminal reports, we wondered if DT
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catalysis could be used to effect selective C(sp*)—H aerobic
oxidation. Even though the DT-catalyzed direct oxidation of
aliphatic compounds has been explored in the past from
a theoretical point of view,'*“*2!l no synthetically useful
methodology was developed so far. We recognized that
oxygen as a green oxidant would be needed to highlight the
sustainable nature of our methodology. However, direct use
of the simple, green, and effective oxidant molecular oxygen
is discouraged because of its associated safety hazards and
limited solubility in organic solvents, which often leads to
mass-transfer limitations. In the past few years, continuous-
flow microreactor technology has been hailed as an enabling
technology to overcome such limitations, as well as providing
means to scale operationally complex transformations, for
example, multiphase reactions,”” hazardous processes,”! and
photochemical transformations,”” among others.” As de-
scribed below, we present a simple, selective, and synthetically
useful decatungstate-photocatalytic aerobic oxidation of
C(sp®)—H bonds using continuous-flow technology to over-
come mass- and photon-transfer limitations and safety
hazards (Scheme 1c¢).

As a model system, we selected cyclohexane as a substrate
containing unactivated C(sp*)—H bonds and used tetrabutyl-
ammonium decatungstate (TBADT) as the HAT photocata-
lyst and oxygen as the oxidant (Table 1). Initial reaction
optimization was carried out in a cylindrical batch reactor,
which allows maximization of the gas-liquid interfacial area
and irradiation surface in batch.’™! The reaction mixture was
subjected to irradiation generated by a solar simulator. A
mixture of cyclohexanone and cyclohexanol was obtained in
37% overall yield when the reaction was carried out in
acetonitrile (Table 1, entry 1). Other solvent systems proved
less effective, partially because of the limited solubility of
TBADT (Table 1, entry 2; see Table S4 in the Supporting
Information). By adding an acid to the reaction mixture, the
reaction rate could be significantly enhanced, and the
selectivity towards cyclohexanone was increased (Table 1,

Table 1: Reaction optimization of the C(sp®)—H oxidation enabled by
decatungstate photocatalysis in batch.”!

air o) ! OH |

O TBADT Gj : @ ‘

+ |

solvent

solar simulator, RT, 4 h ! !

1 2a P26
Entry TBADT Solvent Yield [96]"!
(mol %) 2a 2b
1 2 CH,CN 23 14
2 2 acetone/H,0 (4:1) 13 9
3 2 CH,CN/1™m HCI (1:7) 42 1
4 2 CH;CN/1™m HCI (2.5:1) 53 6
5 2 CH;CN/1m H,SO, (2.5:1) 42 1
6 0.5 CH,CN/1m HCI (2.5:1) 36 6
7 5 CH;CN/1™m HCl (2.5:1) 47 4
8 0 CH,CN/1m HCl (2.5:1 0 0
9id 2 CH;CN/1m HCI (2.5:1) 61 7

[a] Reaction conditions: 1.0 mmol of cyclohexane, 7 mL of solvent, 4 h.
[b] The yield was determined by GC-MS with an internal standard.
[c] Reaction time: 6 h.
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entries 3-5).%1 A survey of different acids (see Tables S2 and
S3) revealed that hydrochloric acid was optimal for the
desired transformation. In contrast, the addition of a base
completely inhibited the oxidation process, most likely owing
to the instability of the decatungstate ion under basic
conditions.” The use of 2 mol % of TBADT appeared to be
optimal in terms of catalyst loading (Table 1, entries 4, 6, and
7). No reaction occurred in the absence of TBADT (Table 1,
entry 8), thus confirming the photocatalytic nature of our
transformation. Finally, increasing the reaction time from 4 to
6 h improved the reaction conversion (Table 1, entry 9).
Despite the promising results obtained in batch, full
conversion could not be reached. We surmised that the
hampered diffusion of oxygen into the liquid reaction mixture
and the limited light penetration were causing the lower
efficiency of the batch reactor.””) Furthermore, the scaling
photochemical reaction conditions is known to be very
challenging in batch. Hence, we constructed a continuous-
flow photomicroreactor consisting of a 750 um inner-diameter
PFA capillary and LED irradiation.” The liquid reagents
were infused using a syringe pump and merged with an
oxygen stream delivered by a mass flow controller (MFC).
This setup resulted in the formation of a segmented flow
regime, in which ideal mixing occurs through Taylor recircu-
lation patterns (see Table 2).?) The choice of the appropriate
light source is crucial (Table 2, entries 1-3), as optimal results
were obtained with 365 nm LEDs, which matched the
absorption characteristics of TBADT. Interestingly, higher

Table 2: Reaction optimization of the C(sp’)—H oxidation enabled by
decatungstate photocatalysis in flow.

MFC

PFA microreactor
750 um ID, 5 mL

," N 7
g @365nmLED D

Taylor recirculation

-
O, bubble /

Entry® t, [min] V, [mL] Yield [%]!
2a 2b
1 15 3 0 0
2 15 3 31 5
3 15 3 49 9
4l 15 3 44 10
5 35 3 67 3
6 45 5 73 7
71 45 5 81 9

[a] Reaction conditions: 1.0 mmol of cyclohexane, 2 mol % of TBADT,
365 nm LEDs as the light source, CH;CN/1m HCl (2.5:1, 7 mL). [b] The
yield was determined by GC-MS with hexafluorobenzene as an internal
standard. [c] 450 nm LEDs were used as the light source. [d] 400 nm
LEDs were used as the light source. [e] A back-pressure regulator

(5.2 bar) was used. [f] The reaction was carried out with 5 mol % of
TBADT.
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oxygen pressures did not lead to an increase in performance,
thus suggesting an optimal oxygen concentration in the liquid
phase at atmospheric pressure (Table 2, entry 4; see also
Table S8). Longer residence times up to 45 min resulted in
excellent yields (Table 2, entries S and 6). A further improve-
ment was observed when the catalyst loading was increased to
5 mol %, with the formation of the target product in 90 %
combined yield (Table 2, entry 7).

Having established optimal flow conditions, we next set
out to evaluate the scope of the photocatalytic C(sp®)—H
oxidation for the conversion of substrates containing acti-
vated sp’-hybridized carbon atoms into the corresponding
ketones (Scheme 2). Our method enabled the selective
oxidation of allylic positions in good yield (product 3,
70%), as well as benzylic positions (products 4-11). Interest-
ingly, tolyl C—H bonds were left untouched in the presence of
longer aliphatic chains (product 4), thus highlighting the mild
nature of this oxidation method.”™” Tetrahydronaphthalene
could be oxidized, yielding the targeted product 1-tetralone
(5a) along with the overoxidized product naphthoquinone
(5b; 91% yield, 1:1 selectivity). A higher selectivity for 1-
tetralone (5a) could be obtained in the absence of hydro-
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chloric acid, as the rate of overoxidation is reduced. Another
interesting selective oxidation was observed at benzylic
positions in the presence of pyridine moieties (products 10
and 11).["" Such distal oxidation patterns can be explained by
the electron-poor nature of pyridines.™** Also, a-alkoxy C—H
bonds were oxidized effectively (products 12 and 13). When
Boc-protected pyrrolidine was subjected to our reaction
conditions, selective oxidation occurred at the a-C—H bond
(Shono-type oxidation) in moderate yield (product 14,23 % ).
Other heterocycles were tolerated as well, such as alkyl-
substituted benzofuran derivatives (product 15, 69 %). The
capacity of this method to selectively modify natural scaffolds
was demonstrated by the selective oxidation of (—)-ambr-
oxide and pregnenolone acetate in synthetically useful yields
(products 16 and 17).

Having established a broadly applicable oxidation proto-
col for activated carbon atoms, we turned our attention to
applying this method to the selective oxidation of unactivated
C(sp*)—H bonds. Smaller cycloalkanes, such as cyclopentane,
could be oxidized in low yields (product 18, 35 %), whereas
larger cycloalkanes were converted into the corresponding
ketones in excellent yield (products 2a, 82 % and 19,79 %). In

H H Oz, TBADT (2-5mol%) o
_—
R™ 'R 365 nm LEDs R™+"R'

CH3CN /1M HCI (2.5:1)
RT, 45 min

continuous flow

Activated C-H bonds

b o “‘# 00 00 O

3, 70%@ 4,43% 5,91% (a:b 1:1)

5, 84% (ab101)[b1

6, 47%

7, 50%

8, 87%

9, 54%

10, 66% 11,86%P 12, 71% 13,41%P1 14, 23%[ 15, 69% 16, 43%! 17, 57%M
Unactivated C-H bonds
o 2 o i
& O ‘ ) AOGN
Ph t-Bu mo COOMe
18, 35% 2a, 82% 19, 79%!@ 20, 65% (y:5 5:1) 21, 51% (y:5 2:1)9 22, 67%! 23, 52% 24, 49% (C2:C1 1.1:1)ll
0 o Me_Me I\él)e e
. Me o
©)k/1( | S * Me 4&0 7
Pz V]
N Mé Me [0)
25, 42% 26, 56% 27, 66% 28, 63% (a:p 1:1)(°! 29, 44% (C2:C1 4.8:1)9 30, 55%[°°

59%, 5 mmol scalel®®!

Scheme 2. Scope of the C(sp®)—H oxidation enabled by decatungstate photocatalysis in flow. The oxidation site is indicated in gray and with an
asterisk, unless otherwise noted. [a] The yield was determined by GC. [b] The reaction was carried out in the absence of 1M HCl. [c] The reaction
was carried out with CH;CN/dichloromethane (2.5:1) as the solvent. [d] The reaction was carried out with a residence time of 1.5 h. Boc =tert-
butoxycarbonyl.
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substituted cyclohexanes, both distal positions y and & were
successfully oxidized, with a preference for the vy position
(products 20 and 21). Ester and ketone functional groups on
the cyclohexane ring were well tolerated (products 22 and 23).
Interestingly, the only observed oxidation product for cyclo-
hexanone was 1,4-cyclohexanedione (22, 67 % ) resulting from
oxidation at the § position.”” In the case of trans-decalin,
both the 2- and the 1-position were oxidized in a 1.1:1 ratio
(product 24, 49%). Distal C—H bonds were selectively
oxidized when the benzylic position was either unavailable
(product 25, 42%) or deactivated (product 26, 56%).
Biologically active compounds, such as eucalyptol (product
27,66 %) and (1R)-(+)-camphor (product 28, 63 % ) were also
successfully oxidized. In the case of eucalyptol, the less
sterically hindered position was selectively targeted, which
can probably be attributed to the large size of the tungstate
cluster.®! Another proof of this steric-hindrance-driven
selectivity was observed in the oxidation of (+4)-sclareolide,
in which the oxidation occurred preferentially at the C2
position (product 29, 44 %).°¢3?) Finally, the utility of our
oxidation protocol was convincingly demonstrated by the
scalable oxidation of another complex compound, artemisi-
nin, to its natural derivative artemisitone-9 (30) in good yield
(59 %, 5 mmol scale).

In conclusion, a photochemical C(sp*)—H oxidation
method was successfully developed. The method relies on
the use of molecular oxygen as a green and sustainable
oxidant and inexpensive and commercially available TBADT
as the photocatalyst. In order to accelerate the reaction, an
operationally simple continuous-flow setup was designed,
making this transformation safe and readily scalable. The
method enabled the C—H oxidation of both activated and
unactivated aliphatic bonds (30 examples). These examples
include natural scaffolds, such as (—)-ambroxide, pregneno-
lone acetate, (+)-sclareolide, and artemisinin, thus exempli-
fying the efficacy of this method.
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