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Abstract

Transcriptome-wide association studies (TWAS) have recently been employed as an approach that 

can draw upon the advantages of genome-wide association studies (GWAS) and gene expression 

studies to identify genes associated with complex traits. Unlike standard GWAS, summary level 

data suffices for TWAS and offers improved statistical power. Two popular TWAS methods 

include either (a) imputing the cis genetic component of gene expression from smaller sized 

studies (using multi-SNP prediction or MP) into much larger effective sample sizes afforded by 

GWAS –- TWAS-MP or (b) using summary-based Mendelian randomization –- TWAS-SMR. 

Although these methods have been effective at detecting functional variants, it remains unclear 

how extensive variability in the genetic architecture of complex traits and diseases impacts TWAS 

results. Our goal was to investigate the different scenarios under which these methods yielded 

enough power to detect significant expression-trait associations. In this study, we conducted 

extensive simulations based on 6000 randomly chosen, unrelated Caucasian males from 

Geisinger’s MyCode population to compare the power to detect cis expression-trait associations 

(within 500 kb of a gene) using the above-described approaches. To test TWAS across varying 

genetic backgrounds we simulated gene expression and phenotype using different quantitative trait 

loci per gene and cis-expression /trait heritability under genetic models that differentiate the effect 

of causality from that of pleiotropy. For each gene, on a training set ranging from 100 to 1000 

individuals, we either (a) estimated regression coefficients with gene expression as the response 

using five different methods: LASSO, elastic net, Bayesian LASSO, Bayesian spike-slab, and 

Bayesian ridge regression or (b) performed eQTL analysis. We then sampled with replacement 

50,000, 150,000, and 300,000 individuals respectively from the testing set of the remaining 5000 

individuals and conducted GWAS on each set. Subsequently, we integrated the GWAS summary 

statistics derived from the testing set with the weights (or eQTLs) derived from the training set to 

identify expression-trait associations using (a) TWAS-MP (b) TWAS-SMR (c) eQTL-based 

GWAS, or (d) standalone GWAS. Finally, we examined the power to detect functionally relevant 

genes using the different approaches under the considered simulation scenarios. In general, we 

observed great similarities among TWAS-MP methods although the Bayesian methods resulted in 

improved power in comparison to LASSO and elastic net as the trait architecture grew more 

complex while training sample sizes and expression heritability remained small. Finally, we 

observed high power under causality but very low to moderate power under pleiotropy.
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1. Introduction

Genome-wide association studies (GWAS) have discovered a large number of variants 

associated with a host of complex traits and diseases1. However, these GWAS-significant 

variants explain a very limited proportion of the overall trait heritability, a phenomenon that 

is widely referred to as “missing heritability”2. Moreover, traditional GWAS have also 

largely ignored the relationship that exists between genetic variants, DNA functional 

elements (e.g. gene expression/protein levels) and complex traits and diseases. eQTL studies 

can help identify the extent of influence that a variant can have on gene expression. 

However, the extent to which this variant can modulate gene expression to also influence 

complex traits and diseases remains a topic of great interest in the genetics and public health 

community.

One way to address this question is to conduct studies in which both gene expression and 

trait measurements are available on the same set of individuals. However, such studies are 

extremely limited in number and are hampered by small sample sizes owing to the costs 

involved in data collection. Alternatively, one could combine the features of eQTL studies 

and GWAS (performed on different populations) to illuminate gene-trait relationships using 

a transcriptome-wide association study (TWAS). Such a study exploits the relationship 

between a genetic variant and gene expression as well as the large sample sizes afforded by 

GWAS to help identify novel gene-trait associations in a powerful manner.

Many “flavors” of TWAS have been published already3–8. These approaches include 

determining whether GWAS-significant variants are also enriched for eQTLs3,4, detecting 

co-localization of expression signals at known GWAS loci7, performing Mendelian 

Randomization using summary-statistics for gene expression-genotype and genotype-

phenotype associations9, and performing multi-SNP prediction (MP) analysis that can more 

explicitly model linkage disequilibrium (LD) when causal variants are not genotyped5,8. 

Additionally, TWAS-MP methods also use different regression models to “impute” cis-gene 

expression into much larger GWAS datasets; for instance, Gusev et al.5 use the best linear 

unbiased predictor (BLUP) while PrediXcan8 applies elastic net regression to achieve the 

same goal.

The type of data required by each of these approaches is also different; for instance, some 

methods require individual-level genotype and phenotype as well as gene expression data 

[e.g. TWAS-MP (elastic net) in PrediXcan8], while others only need summary-level data at 

one or both levels (e.g. TWAS-MP (elastic net) in MetaXcan10, TWAS-MP (BLUP)8, 

summary-based Mendelian Randomization or TWAS-SMR9, and COLOC7). At the expense 

of introducing some bias, summary-based approaches can vastly improve computation 

efficiency. Some approaches also attempt to incorporate distinctions between different kinds 

of genetic models in their model assumptions. For instance, while TWAS-MP assumes either 

direct/indirect causality (when expression mediates between genotyped/non-genotyped SNP 
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and trait) or pleiotropy (when the genetic variant has direct and independent effects on gene 

expression as well as the phenotype), TWAS-SMR distinguishes pleiotropy from linkage (in 

effect, when two causal variants that are in LD with each other independently influence 

either gene expression or phenotype) using a post-hoc method called heterogeneity in 

dependent instruments (HEIDI)9.

Thus far, no study has compared the power (to detect gene-trait associations) of these 

methods under a range of complex genetic architectures. In this study, we compare the 

statistical power afforded by TWAS-MP and TWAS-SMR in hitherto unexplored scenarios. 

This work can help us recognize genetic patterns underlying complex trait variation. We 

consider two different genetic models: causality and pleiotropy (as described above). We 

also investigate the influence on power of trait heritability, expression heritability, number of 

quantitative trait loci (QTL), sample size for training the imputation algorithm (relevant to 

TWAS-MP methods) and finally, the GWAS sample sizes. We compare different variable 

selection and shrinkage-based methods that can perform TWAS-MP (e.g. BLUP/Bayesian 

Ridge Regression, Bayesian LASSO, Bayesian spike-slab, elastic net and LASSO) to 

TWAS-SMR, GWAS, and eQTL-based GWAS (eGWAS). We have integrated Bayesian 

LASSO with TWAS for the first time in this study. Under the assumption of causality, 

TWAS-MP methods yielded the highest (and consistently identical) power under different 

simulation scenarios while TWAS-SMR, eGWAS and GWAS yielded consistently lower 

power. For TWAS-MP, Bayesian methods were at least as powerful as elastic net and 

LASSO, and surpassed their power as trait complexity increased, expression heritability 

remained low, and training sample size was small. Interestingly, we observed that traditional 

GWAS resulted in higher power than TWAS under the assumption of pleiotropy, although 

there was a massive overall loss in power from before.

2. Methods

In this section, we describe the data structure and quality control procedures, the simulation 

pipeline (modified from Gusev et al.5) as well as the statistical methods employed for 

calculating the power of detecting gene-trait associations.

2.1. Genotype Data

Individuals included in this simulation study came from a patient cohort in the MyCode® 

Community Health Initiative of Geisinger Health System11. We used participants that were 

genotyped using the Illumina Human Omni Express plus exome beadchip in the DiscovEHR 

study (a collaboration between Geisinger Health System and Regeneron Genetics Center). 

The genetic data was imputed using the Haplotype Reference Consortium panel and the 

dataset contained 60,000 individuals and approximately 600K variants after some initial 

quality control measures. For this analysis, we removed any related samples (up to 1st 

cousins) as well as those that did not pass a sample call rate filter of 90%. We filtered 

variants that did not pass a genotype call rate filter of 99% and a minor allele frequency filter 

of 1% (so as to restrict ourselves to common variants only). We finally selected at random 

6000 males of European American ancestry to ensure as much homogeneity in the 

population as possible.
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2.2. Simulation pipeline

2.2.1. Simulating gene expression—We started with 6000 randomly chosen unrelated 

European American males from the MyCode® population. We then sampled 100 genes at 

random from across the genome, each of length between 100 and 200 SNPs, as annotated 

using Biofilter12. We selected the region 100 kb upstream and downstream of each chosen 

gene. We chose 5 different seeds per gene, giving us a total of 500 replications in the power 

simulation.

In each replication, we divided the total sample size into two sets: training (100, 250, 500, 

1000 individuals each) and testing (5000 individuals). In each training set, we first simulated 

gene expression under an additive genetic model at each of four levels of causal variants per 

gene (number of QTL = 5%, 10%, 25% and 50%) as well as three levels of cis-expression 

heritability ( , 17% and 30%). The  levels were chosen based on their 

published distributions for significant (i.e.  by likelihood ratio test) cis-eQTLs in 

three different SNP-expression cohorts5.

Let the sample size be represented by n, the number of SNPs by p and the number of QTL 

by m. The model to simulate gene expression can be expressed as follows:

(1)

where E is the n×1 vector of standardized gene expression values for the n individuals in the 

training set, β is the m×1 vector of marker effects for the m QTL in the gene and is drawn 

from a normal distribution with mean zero and variance , X is the n×m matrix of 

genotypes and ε is the vector of the normally distributed errors with mean zero and variance 

.

2.2.2. Simulating phenotype—We simulated the phenotype in the testing set (5000 

individuals) under eight different levels of trait heritability per gene (h2 = 0%, 0.005%, 

0.001%, 0.025%, 0.05%, 0.1%, 0.5%, 1%), wherein h2 = 0 corresponded to the null model. 

In the testing set, two genetic models were used to simulate the phenotype: causality (when 

expression mediates the relationship between SNP and phenotype) and pleiotropy (when 

gene expression and phenotype independently share the same causal variant). Phenotypes 

using either genetic model were simulated under an additive genetic model as follows:

(1) Causality

(2)

where Y is the 5000×1 vector of the standardized response for the 5000 individuals in the 

testing set, E is the 5000×1 vector of gene expression values for testing set, b1 is transcript 

effect drawn with zero mean and variance h2, and ε1 is vector of the normally distributed 

errors with mean zero and variance 1−h2.

Veturi and Ritchie Page 4

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1) Pleiotropy

(3)

where Y is the 5000×1 vector of the standardized response for the 5000 individuals in the 

testing set, X is the 5000×m matrix of genotypes (same as those used to simulate gene 

expression), b2 is the m×1 vector of marker effects drawn from a normal distribution with 

mean zero and variance h2, and ε2 is vector of the normally distributed errors with mean 

zero and variance 1−h2.

To reach precision corresponding to a large-sized GWAS, we repeated the phenotype 

generation with different environmental noise terms: 10 iterations resulted in a GWAS 

sample size of 50,000, 30 iterations resulted a GWAS sample size of 150,000 and 60 

iterations resulted in a GWAS sample size of 300,000.

2.2.3. Power analysis—The following were the null and alternative hypotheses in this 

study:

H0: There is no association between gene and phenotype; i.e.  or h2 = 0

H1: There is a non-zero association between gene and phenotype; i.e.  and 

h2 > 0

In this study, we only considered the h2 = 0 scenario as our null model. We first conducted 

eQTL analysis on the training set to identify the p×1 vector of z-scores (ZeQTL) by 

regressing gene expression on the p SNPs in the chosen gene. Subsequently, we obtained p-

values corresponding to expression-trait associations from 8 different models:

1 GWAS: For each GWAS set (50K, 150K, or 300K individuals), we conducted 

meta-analysis across the smaller sets to obtain a p×1 vector of z-scores (ZGWAS) 

and corresponding p-values for all SNP-trait associations. The gene was 

considered to be detected if at least one SNP in the gene had a p-value < 5E-8.

2 eGWAS: In this eQTL-based GWAS, we used the GWAS p-value of the single 

most significant SNP from eQTL analysis. The gene was considered to be 

detected if this p-value < 0.05/15,000 (where 15,000 corresponds to the number 

of genes across the genome).

3 TWAS-MP: This approach involves imputation of expression-trait association 

statistics directly into GWAS summary statistics and involves three different 

steps:

Obtaining weights: The first step here was to obtain estimated coefficients (weights 

obtained on regressing gene expression on SNPs) on the training set using five different 

penalized regression/Bayesian regularization approaches; elastic net, LASSO, Bayesian 

ridge regression (BRR), Bayesian LASSO (BL) and Bayesian spike slab or BayesC (BC). 

LASSO and elastic net are penalized regression methods that differ in the choice of the 

penalty function; LASSO13 uses the L1 norm as the penalty function whereas elastic net14 
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uses the weighted average of the L1 and L2 norms. While both methods perform a 

combination of variable selection and shrinkage on marker effects, elastic net also accounts 

for correlated predictors better than LASSO. BRR, BL and BC are Bayesian shrinkage 

estimators that use a Gaussian prior, thick-tailed (double-exponential) prior and spike-slab 

(point-of-mass at zero and Gaussian slab) prior, respectively, for marker effects. BRR and 

BL perform homogeneous and differential shrinkage respectively, whereas BC performs a 

combination of variable selection and homogeneous shrinkage on marker effects15. The 

weights W for LASSO and elastic net were obtained using the glmnet16 package in R while 

those for BRR, BL and BC were obtained using the BGLR17 package in R.

Accounting for LD: Irrespective of the training sample size used to obtain weights, the 

covariance matrix among all the chosen SNPs in the gene Σ was obtained using the full 

training set of 1000 individuals. This is reasonable because, [i] in practice, publicly available 

human genotype data (e.g. 1000 genomes data18) can be used for this purpose and [ii] we 

wanted to keep the influence of LD consistent between training sets.

Imputing the weights into GWAS: TWAS was conducted by imputing the weights W 
obtained using each of the five above-described penalized/Bayesian regularized regression 

approaches into the GWAS summary statistics. The single imputed z-score (normally 

distributed with zero mean and unit variance) of cis-genetic effect on the phenotype can be 

obtained as follows:

(4)

Similar to eGWAS, the gene was considered to be detected if its p-value < 0.05/15,000.

4 TWAS-SMR: For the given gene, we obtained the TWAS-SMR-based z-score by 

combining the z-score of the single most significant SNP from eQTL analysis 

(zeQTL = min (ZeQTL)) with the z-score of the corresponding SNP from GWAS 

(zeGWAS), which can be expressed as follows:

(5)

Similar to eGWAS and TWAS-MP, the gene was considered to be detected if its 

p-value < 0.05/15,000.

The entire procedure was repeated 500 times and power was calculated as the fraction of 

instances where the given gene was detected. A summarized version of the power analysis 

pipeline is given in Figure 1. All models were fit using the 3.2.1 version of software R.

3. Results

We observed that the power of detecting an expression-trait association varied not only with 

the genetic architecture of the trait but also with the sample size. Let’s first consider the 
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genetic model corresponding to causality (Figure 2). Broadly, power was observed to 

increase with: (1) the sample size used for training the TWAS imputation algorithm and for 

eQTL analyses, (2) the sample size used to conduct GWAS meta-analysis, (3) the trait 

heritability as well as (4) the expression heritability. We observed that GWAS sample size 

had a bigger effect on power than the training sample size (we only considered realistic 

GWAS and training sample sizes).

Across all cases, we observed that a trait heritability of less than 0.001% resulted in low to 

zero power, irrespective of the considered sample sizes. For a GWAS sample size as large as 

150,000 individuals, trait heritability less than 0.025% yielded low to zero power across all 

methods (even when the expression heritability was as high as 30%). In addition, eGWAS 

and TWAS-SMR did significantly worse than all other considered methods, except when 

trait heritability, expression heritability and GWAS sample size were very high (~ 1%, ~30% 

and >=150,000, respectively).

TWAS-SMR achieved peak performance and offered power comparable to eGWAS and 

GWAS (across all levels of trait heritability) when the expression heritability, training 

sample size and GWAS sample sizes were all at their highest levels (30%, 1000 and 300,000 

respectively). However, its performance was still worse than that of eGWAS and GWAS, 

especially when expression heritability was low. Although eGWAS’s performance was also 

poor under low expression heritability, it made up for this loss as GWAS sample size 

increased. As expected, power afforded by GWAS was unaffected by expression heritability 

and training sample size; it increased only with trait heritability and GWAS sample size. 

Interestingly, GWAS resulted in marked improvement in power over all other methods when 

expression heritability, number of QTL, and training sample sizes were at their lowest levels 

and GWAS sample size was high (see first subplot column under top right main plot panel in 

Figure 2; GWAS is in dark green).

TWAS-MP always resulted in the highest power, except when expression heritability and 

training sample sizes were at their lowest (Figure 2). For instance, given an expression 

heritability of 17% and a trait heritability of 0.1%, moderate sample sizes for training and 

GWAS (250 and 150,000 respectively) were sufficient to achieve >=75% power using any of 

the TWAS imputation methods. Also, genes with average to high expression heritability 

were found to have very high power of detecting a significant gene-trait association even 

when GWAS and training sample sizes were low; the power ranged from approximately 0% 

at  to approximately 100% at  for a gene that had a trait heritability of greater 

than 0.5% (see top- and left-most panel in Figure 2). In general, the TWAS-MP methods 

yielded almost identical power. However, Bayesian methods performed better than LASSO 

and elastic net when the expression heritability was low to moderate (5%–17%), number of 

QTL was high (>=25%) and training sample size was low to moderate (<=500) (Figure 2). 

In particular, when the expression heritability is low (5%), BL achieved a maximum 

improvement in power (~ 17%–18%) as compared to the elastic net and LASSO under a trait 

heritability of at least 0.5% and using a GWAS sample size of 150K (Table 1).

Under pleiotropy, GWAS always resulted in the best power among all the other methods 

considered (Figure 4) and the trend was consistent across training and GWAS sample sizes 
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as well as levels of expression heritability (data not shown). Accordingly, the power peaked 

when number of causal variants was small. Interestingly, even with a trait heritability as high 

as 1%, we could only achieve a maximum power of approximately 40% with GWAS.

4. Discussion

TWAS have been introduced as a way to combine SNP-expression information and GWAS 

to identify genes whose expression levels are associated with a trait. A recent study has 

applied TWAS to over 30 different complex human traits to identify functional signatures in 

pleiotropic traits19. However, the scenarios under which different flavors of TWAS can 

achieve improved power as compared to eQTL-based GWAS and GWAS have not yet been 

explored. In this study, we examine the influence of complex genetic architectures and 

sample size on power afforded by different TWAS-based approaches (five TWAS-MP 

methods and TWAS-SMR), eGWAS and GWAS. We vary several simulation parameters 

including the number of QTL, the training sample size, the GWAS sample size, the trait 

heritability and the expression heritability under two genetic models (causality and 

pleiotropy) and examine the influence of each on power.

4.1 Training sample size

Training sample size is important since eQTL studies are typically limited in sample size. 

The NIH Common Fund project called Genotype Tissue Expression Project (GTEx20) is 

assembling a database of SNP-expression associations spanning 43 different tissues. 

However, for any given tissue, the sample size is fairly low, ranging from approximately 77 

(small intestine terminal ileum) to 161 (muscle skeletal). Other currently available SNP-

expression studies are also limited in size, e.g. the Netherlands Twin Register (1,247 

peripheral blood samples), the Metabolic Syndrome in Men study (563 adipose 

samples21–23), the Genetic European Variation in Health and Disease (460 lymphoblastoid 

cell lines8,24), Depression Genes and Network (922 whole blood samples25), and Braineac 

(130 individuals with brain region samples26). Accordingly, we explored training sample 

sizes ranging from 100 to 1,000 in this study. Under the assumption of causality, we see that 

even a sample size as small as 100 is sufficient to achieve 100% power for a gene with 

moderate expression heritability (17%) as long as the GWAS sample size is at least 150,000. 

Training sample size was not observed to have a marked influence under pleiotropy (Figure 

4).

4.2 GWAS sample size

GWAS sample sizes have been increasing over the years using meta-analyses across multiple 

cohorts and a multitude of common variants have been detected for a host of complex traits 

and diseases. We observe that GWAS sample size plays a crucial role in also detecting gene-

trait associations, especially under the assumption of causality. A high GWAS sample size 

can help detect genes with low expression heritability (and moderate to high trait 

heritability) even when the training sample size is small, especially under the assumption of 

causality (Figure 2).
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4.3. Number of QTL

We chose genes with of sizes between 100 and 200 SNPs and included the region 500 kb 

upstream and downstream of the gene into our analyses to investigate the impact of the 

number of causal variants as well as the extent of LD between markers and causal variants 

on statistical power. It is known that these factors affect the prediction accuracy of a trait in 

whole-genome regression based studies27,28. Under the assumption of causality (Figures 2 

and 3), the number of QTL had a noticeable impact on power obtained using eGWAS, 

GWAS, and TWAS-SMR while that obtained from TWAS-MP was not significantly 

affected. This is understandable given that eQTL-guided GWAS, GWAS and TWAS-SMR 

only choose the top-most significant SNP/eQTL in the gene and lose a considerable portion 

of the genetic signal when the number of QTL forms a large proportion of the gene. This 

behavior, albeit muted, was also observed under pleiotropy (Figure 4).

4.4. Expression heritability

Few studies have thus far shed light on the average heritability of gene expression across 

different cohorts and tissues. This parameter refers to the proportion of variation in gene 

expression that can be explained by genotype. Under the genetic model of causality (Figures 

2 and 3) we observe that expression heritability has a profound influence on power, 

especially when training sample size and GWAS sample sizes are moderate to low (e.g. top 

left-most panel in Figure 2). Under the genetic model of pleiotropy, expression heritability 

only has a slight influence on TWAS-MP but no effect on the other methods (eGWAS, 

GWAS and TWAS-SMR), irrespective of training and GWAS sample sizes (data not shown). 

This intuitive result confirms that even a gene with very high expression heritability is not 

likely to have high power to detect a gene-trait association when gene expression does not 

mediate between the SNP and the phenotype.

4.5. Trait heritability

Complex traits have widely varying heritability measures ranging from ~80–90% for 

height29 to between 30%–70% for lipid traits30. We chose an upper limit of 1%, which 

would correspond to a large-effect gene that explains almost 1% of the overall trait 

heritability. Under causality, we observed that TWAS-MP methods were powerful in 

detecting genes even with moderate trait heritability (17%) as long as the sample sizes were 

high (Figures 2 and 3). Under pleiotropy, we observed that a gene needed to have very high 

trait heritability (>1%) to be detected with moderate power (<40%) at best (Figure 4).

4.6. Genetic model

We only considered two genetic models in this study. The power obtained under pleiotropy 

was significantly lower than that obtained under causality, which demonstrates the 

weaknesses of TWAS methods when genes operate under non-causal genetic models 

(Figures 3–4).

4.7. Statistical model

In general, all TWAS-MP methods (LASSO, elastic net, BC, BRR, and BL) performed 

uniformly well and achieved high power under the assumption of causality. However, in 
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particular, Bayesian methods performed better than LASSO and elastic net as the trait 

architecture grew more complex, expression heritability remained low and training sample 

sizes were small (Figure 2 and Table 1). This shows that LASSO and elastic net are more 

conducive for variable selection than BL, BRR, and BC and their performance worsens as a 

greater number of predictors in the model carry genetic signal. On the other hand, TWAS-

SMR did much worse than TWAS-MP under all considered simulation scenarios. As 

expected, eGWAS, GWAS and TWAS-SMR had better power when the number of QTL was 

small although their performance still lagged behind that of TWAS-MP methods. As 

expression mediated weakly between SNP and trait, performance of TWAS worsened and 

assuming no mediation at all (pleiotropy), GWAS performed better than TWAS-MP, TWAS-

SMR and eGWAS (which had uniformly poor power).

A limitation of this work is that our GWAS “meta-analysis” only comprised Caucasian 

males, which is likely to have resulted in a sample with far more homogeneous LD patterns 

than what can be expected in reality. Also, our meta-analysis (sampling with replacement) is 

likely to have resulted in inflated power due to sample relatedness. We will exploit more 

heterogeneous GWAS samples in the future and will also conduct type I error experiments to 

ensure type I error is well controlled. Also, we assumed that all causal variants were 

included in our model whereas in reality we might only have SNPs tagged to the causal 

variants. Finally, it is a worthwhile future exercise to compare power of TWAS-MP to 

TWAS-SMR when both eQTL and GWAS data have summary-level data.

In conclusion, we have presented a comprehensive power analysis for detecting gene-trait 

associations under a range of complex genetic architectures using approaches based on 

individual-level and/or summary-level data. In future, these methods could also be applied to 

integrate GWAS with other kinds of “omic” information aside from gene expression (e.g. 

metabolomics, methylation). This is a starting step to better understand methods that can 

illuminate genetic patterns and functional mechanisms underlying complex trait variation in 

a powerful yet computationally efficient manner.
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Figure 1. Simulation pipeline per gene for power analysis
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Figure 2. Power distributions under causality (full)
Power (y-axis) across trait heritability (x-axis) under varying levels of expression heritability 

(in blue—subplot columns), no. of QTL (in red—subplot rows), training sample size (main 

plot rows) and GWAS sample size (main plot columns). Each plot represents power from 8 

different models; TWAS-MP (LASSO, elastic net, BL, BC, BRR), TWAS-SMR, eGWAS, 

and GWAS. Enlarged views of this plot can help identify differences between methods. 

Relevant differences between TWAS-MP methods can be seen in Figure 2.
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Figure 3. Power distributions under causality (reduced)
Power (y-axis) across trait heritability (x-axis) under varying levels of training sample sizes 

(in blue-columns) and no. of QTL (in red-rows), at GWAS sample size of 50K and 

expression heritability of 17%. Each plot represents power from 8 different models; TWAS-

MP (LASSO, ENet, BL, BC, BRR), TWAS-SMR, eGWAS, and GWAS.
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Figure 4. Power distributions under pleiotropy (reduced)
Power (y-axis) across trait heritability (x-axis) under varying levels of training sample sizes 

(in blue-columns) and no. of QTL (in red-rows), at GWAS sample size of 50K and 

expression heritability of 17%. Each plot represents power from 8 different models; TWAS-

MP (LASSO, ENet, BL, BC, BRR), TWAS-SMR, eGWAS, and GWAS.
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