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Myelomeningocele (MMC) is the most common congenital defect of the central nervous
system and results in devastating and lifelong disability. In MMC, the initial failure of
neural tube closure early in gestation is followed by a progressive prenatal injury to the
exposed spinal cord, which contributes to the deterioration of neurological function in
fetuses. Prenatal strategies to control the spinal cord injury offer an appealing therapeutic
approach to improve neurological function, although the definitive pathophysiological
mechanisms of injury remain to be fully elucidated. A better understanding of these
mechanisms at the cellular and molecular level is of paramount importance for the
development of targeted prenatal MMC therapies to minimize or eliminate the effects
of the injury and improve neurological function. In this review article, we discuss the
pathological development of MMC with a focus on in utero injury to the exposed spinal
cord. We emphasize the need for a better understanding of the causative factors in MMC
spinal cord injury, pathophysiological alterations associated with the injury, and cellular
and molecular mechanisms by which these alterations are induced.
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GENERAL CHARACTERISTICS AND PATHOLOGY OF MMC

Myelomeningocele (MMC), the most common and severe form of spina bifida, is a complex
congenital defect that results from incomplete neural tube closure (Copp et al., 2003). The defect
is characterized by protrusion of the spinal cord and meninges through a pathological opening
in the overlying vertebrae and skin leading to progressive injury to the exposed spinal cord
associated with devastating and lifelong disabilities (Kaufman, 2004). In humans, the MMC defect
is typically found in the lumbosacral region (Borgstedt-Bakke et al., 2017; Farmer et al., 2018). The
non-neurulated placode-like spinal cord is exposed on the dorsal aspect of a cystic sac containing
cerebrospinal fluid bordered by the pial and dural membranes (Figure 1; Hutchins et al., 1996).

In addition to spinal cord injury, MMC predisposes the fetus to hindbrain herniation and
the development of Arnold-Chiari II malformation, with consequent hydrocephalus requiring
ventriculoperitoneal shunt placement (Kaufman, 2004). Patients living with MMC experience
substantial and life-long deficits, including reduced or absent motor and sensory function
in the lower extremities, musculoskeletal deformities, bowel and bladder dysfunction, and
cognitive disabilities (Hunt, 1990; Dias and McLone, 1993; Hunt and Poulton, 1995; Tomlinson
and Sugarman, 1995; Hunt and Oakeshott, 2003). Moreover, many patients affected by MMC
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FIGURE 1 | Schematic drawing of the transverse spinal cord at the level of the myelomeningocele (MMC) lesion. The non-neurulated spinal cord is visible on the
dorsal aspect of a fluid-filled sac containing cerebrospinal fluid. The cystic sac is formed dorsally by the pia and ventrally by the dura. The edges of the pia are fused
to the epidermis and superficial dermis while the dura is fused to the deeper dermal layers. The vertebral arch of the spinal column is incompletely formed.

develop secondary complications, such as urinary tract
infections, chronic renal disease, ventriculoperitoneal shunt
failure, and various skin injuries (e.g., pressure ulcers in those
who are non-ambulatory; Verhoef et al., 2004; Dicianno
and Wilson, 2010). Affected individuals often require
multidisciplinary medical services to optimize functional
outcomes and lifelong caregiver support. Ultimately, MMC not
only diminishes the quality of life but results in social, emotional,
and financial burden on the afflicted families and the health care
system (Bowman et al., 2001; Centers for Disease Control and
Prevention (CDC), 2007; Sandler, 2010; Radcliff et al., 2012).

While the exact etiology of MMC remains poorly understood,
the development of MMC is likely the result of both
environmental factors and genetic aberrations (Alles and Sulik,
1990; Mitchell et al., 2004; Kibar et al., 2007; Ornoy, 2009). It
is generally accepted that inadequate intake of natural folate
or folic acid is associated with an increased risk of neural
tube defects, including MMC (Botto et al., 1999; Imbard et al.,
2013). Therefore, folate intake, either from dietary supplements
or fortified food, is recommended for every reproductive age
woman (Viswanathan et al., 2017). Although these strategies have
helped to decrease the number of neural tube defects, with some
variability between countries or ethnic groups (Heseker et al.,
2009; Williams et al., 2015), MMC still affects approximately 3
per 10,000 live births in the United States (Parker et al., 2010;

Canfield et al., 2014). Overall, neural tube defects remain among
the most common major congenital abnormalities in humans
and constitute a substantial public health problem (Oakley, 2010;
Parker et al., 2010; Osterhues et al., 2013; Moldenhauer, 2014).

SPINAL CORD INJURY IN MMC

A ‘‘two-hit hypothesis’’ has been proposed to explain the
pathogenesis of spinal cord injury and neurological sequelae
in MMC (Heffez et al., 1990; Meuli et al., 1995a; Hutchins
et al., 1996). The defect in neurulation, which results in
incomplete closure of the developing neural tube during early
gestation, represents the first hit. This leads to spinal cord
malformation (non-neurulation) and its subsequent protrusion
through the pathological opening in the overlying vertebrae,
musculature, and skin. The chronic exposure of the unprotected
spinal cord to the hostile intrauterine environment throughout
gestation represents the second hit. This results in an
acquired injury to the exposed segment of the non-neurulated
spinal cord.

Compelling clinical and experimental evidence indicates that
the neurological deficits associated with MMC are not caused
entirely by the primary defect of neurulation but are exacerbated
by in utero spinal cord injury (Heffez et al., 1990; Meuli et al.,
1995b; Sival et al., 1997; Stiefel et al., 2007). Histopathological
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data from human specimens reveal that the exposed part
of the non-neurulated spinal cord is histologically intact in
early gestation, however, progressive damage showing signs of
degeneration, abrasion, and erosion—sometimes leading to an
almost complete loss of neural tissue in the dorsal region—is
found by late gestational age (Hutchins et al., 1996; Meuli et al.,
1997). Also, sonographic reports of human fetuses with MMC
show progressive loss of lower extremity movements, suggesting
that prolonged and ongoing exposure to the intrauterine
environment is associated with the functional loss (Korenromp
et al., 1986; Sival et al., 1997). Experimental data obtained from
various animal models of MMC further support the hypothesis
that exposure of the MMC spinal cord to the intrauterine
environment leads to chronic injury and deterioration of neural
function. Studies of mouse genetic models show that in fetuses
affected by MMC, spinal cord tissue taken from early gestational
time points has no overt evidence of trauma or degeneration
and the spinal cord cytoarchitecture, including sensory and
motor projections, appear to be well-preserved (Selçuki et al.,
2001; Stiefel and Meuli, 2007; Stiefel et al., 2007). As gestation
proceeds, there is increasing damage to the exposed spinal cord
which coincides with a gradual loss of neurological function
(Stiefel et al., 2007). Other experimental data using a retinoic
acid-induced model of MMC in fetal rats also demonstrate
the structural deterioration of the exposed spinal cord with
advancing gestational age, associated with a loss of functional
capacity that is present earlier in pregnancy (Danzer et al.,
2011). Furthermore, evidence from rat, pig, rabbit, and sheep
models in which MMC is surgically created shows that direct
exposure of the normal spinal cord to the intrauterine milieu
leads to MMC-like lesions and functional loss similar to that
observed in human MMC. The spinal cord destruction observed
during pregnancy is progressive, with later gestational age fetuses
exhibiting more severe damage than those examined at earlier
time points (Heffez et al., 1990, 1993; Meuli et al., 1995a,b, 1996;
Housley et al., 2000).

In addition to the described structural and functional
evidence, injury to the exposed MMC spinal cord is also
demonstrated through the examination of astrogliosis.
Astrogliosis is a common feature of CNS injury and is
associated with increased glial fibrillary acidic protein (GFAP)
immunoreactivity (Buffo et al., 2008; Robel et al., 2011; Yu
et al., 2012). In studies using a genetic mouse model of MMC,
an enhancement in astrocyte density is observed in sections
of the spinal cord taken from the MMC lesion site of late
gestational age fetuses (Reis et al., 2007). In separate studies,
using a retinoic acid-induced rat model of MMC, Danzer
et al. (2011) showed that injury upregulates the number of
GFAP-expressing cells in the dorsal spinal cord as gestation
proceeds. Increased GFAP staining and other markers of
inflammatory infiltrate were also identified in resected human
postnatal placode tissue (George and Cummings, 2003; Kowitzke
et al., 2016). Pathophysiology of spinal cord injury in MMC
was also evaluated using transcriptomic analysis of human
amniotic fluid samples that showed differentially regulated
genes commonly associated with inflammation and neuronal
development (Tarui et al., 2017). Taken together, these studies

support the hypothesis that in utero spinal cord injury by way
of ongoing pathophysiological changes is an antecedent to
loss of neurological function. However, cellular and molecular
mechanisms underlying the formation of astrocytosis as well as
other pathophysiological derangements that parallel the injury
have not yet been entirely defined.

MULTIFACTORIAL ETIOLOGY OF SPINAL
CORD INJURY

While the mechanisms underlying prenatal injury to the exposed
spinal cord remain to be fully elucidated, human and animal
studies indicate that the intrauterine environment contributes
substantially to spinal cord damage in MMC. It was postulated
that chemical and/or mechanical insults to the unprotected
fetal spinal cord abnormally exposed to the amniotic fluid
and the uterine wall are involved in the progressive in utero
damage (Heffez et al., 1990, 1993; Meuli et al., 1995a,b).
Toxic injury caused by components of the amniotic fluid
may constitute one of the contributing mechanisms. The
presence of fetal urine and meconium were indicated as
possible factors for the toxicity of late gestational amniotic
fluid (Heffez et al., 1990; Meuli et al., 1995a; Correia-Pinto
et al., 2002). In the in vitro assessment of amniotic fluid,
toxicity has been primarily based on the assay for lactate
dehydrogenase efflux in organotypic rat spinal cord cultures
following treatment with human amniotic fluid. Despite that
higher activity of this enzyme is detected after treatment of
cultures with late gestational amniotic fluid, this study showed
no confirmatory evidence of tissue damage (Drewek et al.,
1997). Other in vitro experiments evaluating the toxicity of
α-amylase, a component of meconium, indicate that survival
of neuroepithelial cells isolated from rat embryos appears to
decrease when this digestive enzyme is added to cell culture.
However, the actual concentration and activity of α-amylase
in the MMC amniotic fluid were not established (Sasso et al.,
2020). Interestingly, several recent studies have identified a
multitude of live astrocytes and neural stem cells within the
AF with amniotic fluid of MMC fetuses, indicating little,
if any, neurotoxicity (Pennington et al., 2013, 2015; Turner
et al., 2013; Zieba et al., 2017). Also, studies using fetal lambs
reported that MMC promoted mesenchymal stem/progenitor
cell phenotypes and proliferation in the amniotic fluid (Ceccarelli
et al., 2015), suggesting that amniotic fluid in MMC may be
growth permissive.

As mentioned above, another postulated mechanism
contributing to spinal cord damage inMMC includes mechanical
trauma to the herniated spinal cord (Heffez et al., 1990, 1993;
Meuli et al., 1995a,b). This mechanism may be more relevant in
the later stages of gestation when the volume of amniotic fluid
naturally begins to decline. Without protection by the amniotic
fluid, there may be higher abrasive stress and shear forces exerted
by the uterine wall onto the exposed neural tissue. Pathological
specimens of human MMC do demonstrate signs of abrasion
and loss of neural tissue almost exclusively in the dorsal spinal
cord at the site of MMC defect, supporting the involvement
of mechanical trauma in neural injury (Hutchins et al., 1996;
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Meuli et al., 1997; Sutton et al., 2001). Dorsal displacement of
the spinal cord and the emergence of neural stem cells within
the amniotic fluid during the development of rat MMC fetuses
is also consistent with the contribution of mechanical trauma
to neural damage (Danzer et al., 2011; Zieba et al., 2017). Our
recent studies show that these pathological changes coincide
with decreased levels of hyaluronic acid and lower amniotic fluid
viscosity of late gestational age rat MMC fetuses (Zieba et al.,
2019). We hypothesized that decreased viscosity of amniotic
fluid surrounding MMC fetuses causes reduced lubrication
between the exposed spinal cord and amniotic sac, further
increasing abrasive or shearing stress on the exposed spinal
cord (Zieba et al., 2019). Recently, Oliver et al. (2020) suggested
that hydrostatic forces exerted on the exposed neural placode
and nerve roots by cerebrospinal fluid may cause additional
neurologic injury in MMC through a stretching or traction
mechanism. Altogether, these data emphasize the multifactorial
etiology of prenatal spinal cord injury and the need for a deeper
understanding of the causative factors and pathophysiology of
injury in MMC-afflicted fetuses.

POSTNATAL AND PRENATAL REPAIR FOR
MMC

Traditionally, the spinal cord defect in MMC has been
surgically closed soon after birth. Early postnatal repair may
reduce infection or trauma to the spinal cord but affected
neonates will still require life-long support, rehabilitation, or
institutional care (Akalan, 2011; Perin et al., 2008; Roach et al.,
2011). Mounting clinical and experimental evidence showing
neurological deterioration and progressive damage to the open
spinal cord during gestation provided the rationale for exploring
prenatal surgical repair strategies (Korenromp et al., 1986; Heffez
et al., 1990; Meuli et al., 1995b, 1997; Hutchins et al., 1996;
Sival et al., 1997; Stiefel et al., 2007). This idea was further
supported by animal studies demonstrating that in utero repair of
surgically created MMC defects improved functional outcomes,
including motor and sensory function, and prevented hindbrain
herniation (Heffez et al., 1993; Meuli et al., 1995a, 1996;
Paek et al., 2000). With the improvement of prenatal surgical
techniques and prenatal detection of neural tube defects, in utero
open repair of MMC lesions in humans has become a viable
strategy to minimize spinal cord trauma and lessen neurological
decline before birth (Adzick, 2012). A multicenter randomized
prospective trial comparing outcomes of in utero fetal repair with
postnatal surgical repair ofMMCdefects demonstrated a reduced
number of children with hindbrain herniation, decreased need
for cerebrospinal fluid shunting, as well as an increase in
the ability to walk independently at 30 months of age in the
prenatal surgery group (Adzick et al., 2011; Simpson and Greene,
2011). There were, however, considerable maternal and fetal
risks, such as increased incidence of chorioamniotic membrane
separation, spontaneous rupture of amniotic membranes, and
preterm delivery in the prenatal surgery group (Adzick et al.,
2011; Simpson and Greene, 2011; Johnson et al., 2016). Analysis
of the full cohort data of 30-month outcomes did validate
in utero open surgical repair as a treatment option for fetuses

with MMC (Farmer et al., 2018). Follow-up cohort studies of
school-age children showed improvement in mobility and fewer
surgeries related to shunt placement or revision in those children
who underwent prenatal surgery for MMC over those in the
postnatal surgery group (Houtrow et al., 2020). While in utero
open surgical MMC repair is neither a cure nor free of risk,
prenatal repair is more effective than postnatal repair and is
now a treatment option for patients who meet inclusion criteria
(Adzick et al., 2011;Meuli andMoehrlen, 2014;Moise et al., 2016;
Moldenhauer and Flake, 2019; Danzer et al., 2020).

In addition to open fetal surgery for MMC repair, minimally
invasive fetoscopic surgery and closure techniques are currently
being optimized. These less invasive approaches may reduce the
maternal or fetal risk associated with open repair and can be
applied earlier in gestation (Belfort et al., 2017; Joyeux et al.,
2018). Despite these advances, closure of the MMC defect alone
may not be sufficient to repair or prevent spinal cord damage
in MMC, hence, additional strategies are necessary to promote
functional recovery (Blumenfeld and Belfort, 2018).

Tissue engineering has recently emerged in experimental
studies as a potential therapeutic approach to further improve
outcomes of prenatal MMC repair (Watanabe et al., 2010,
2011, 2015, 2016; Dionigi et al., 2015a,b; Feng et al., 2016;
Mazzone et al., 2016). Studies attempting to protect the spinal
cord from intrauterine trauma by using tissue scaffolds, with
or without stem cells, or intraamniotic delivery of stem cells
demonstrate variable, but some improvement in outcome
measures (Watanabe et al., 2010, 2011, 2015, 2016; Dionigi
et al., 2015a,b; Feng et al., 2016). Continuing advances in
our understanding of the pathological development of MMC
defects, as well as the cellular and molecular mechanisms
underlying the pathophysiology of spinal cord injury, are needed
to develop novel treatment approaches so that we may more
effectively intervene.

PERSPECTIVE

MMC is a devastating congenital defect that results from
incomplete neural tube closure early in gestation followed
by exposure of the affected spinal cord segment to the
intrauterine environment. It is well established that this leads
to prenatal spinal injury associated with deterioration of neural
function (Korenromp et al., 1986; Hutchins et al., 1996; Meuli
et al., 1997; Sival et al., 1997; Stiefel et al., 2007). Although
the defect in neural tube closure is currently irreversible,
eliminating or minimizing prenatal injury to the persistently
exposed spinal cord is a promising therapeutic approach
to improve neurological outcomes. Therefore, MMC studies
have focused on optimizing closure of the MMC defect to
protect the spinal cord from ongoing intrauterine trauma
using surgical and/or tissue engineering approaches (Watanabe
et al., 2015; Botelho et al., 2017; Danzer et al., 2020; Lazow
and Fauza, 2020). To further improve neurological outcomes,
development of targeted prenatal therapies must be an essential
direction of MMC research. However, this requires a better
understanding of pathophysiological mechanisms underlying the
spinal cord injury.
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Prior experimental and clinical MMC studies demonstrate
the susceptibility of the exposed spinal cord to mechanical
and/or chemical trauma within the intrauterine environment
(Heffez et al., 1990, 1993; Meuli et al., 1995a,b, 1997; Hutchins
et al., 1996). While in utero damage to the exposed spinal
cord is well established, factors that trigger and/or contribute
to the progression of the injury are not fully understood.
Due to the dynamic nature of fetal development and in utero
environment, these factors may also vary at different stages of
gestation. Further investigation of contributory elements and
more mechanistic studies are necessary to further elucidate the
mechanisms of injury.

Identification of pathological alterations that parallel the
injury in the unprotected segment of the developing MMC
spinal cord is particularly important for pathophysiological
understanding. This includes, but is not limited to, a full
comprehension of the cellular and molecular mechanisms
leading to the formation of astrocytosis observed at the MMC
lesion site. In addition to architectural disruption, abnormal
accumulation of astrocytes within the injured spinal cord
tissue could be detrimental to spinal cord development in
MMC fetuses.

Additionally, abnormalities in the development of neurons
and their innervation patterns in MMC would greatly
compromise the recovery. To date, very few studies have
examined changes in the neural development of the spinal
cord at the MMC site (Keller-Peck and Mullen, 1997; George
and Cummings, 2003; Reis et al., 2007). Disruption of normal
dorsoventral patterning due to the MMC lesion could lead to
changes in numbers and distribution of developing neurons
that establish vital local circuits involved in sensory and motor
functions. As a systematic analysis of spinal cord development is
not possible in human tissue, MMC experimental models could
fill this gap and greatly influence future therapies.

CONCLUSIONS

While innovative in utero surgical techniques exemplify the
substantial progress which has been made in the diagnosis
and treatment of MMC, continued advancement in the field
of MMC repair requires a deeper understanding of the
pathophysiology of spinal cord injury. By elucidating the
cellular and molecular mechanisms of neurological disfunction
in MMC, we can devise targeted therapies to further improve
clinical outcomes. Future research may also lead to the
development of biomarkers that can detect the presence and
progression of fetal spinal cord injury in pregnancies affected
by MMC. Such biomarkers could aid in the timing of prenatal
intervention, likely a significant factor influencing neurological
outcome. Ultimately, there remains a substantial need for
novel strategies that can aid in the detection and management
of MMC.
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