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Abstract: Mutations in PITX2 cause Axenfeld–Rieger syndrome, with congenital glaucoma as an
ocular feature. The egl1 mouse strain carries a chemically induced Pitx2 mutation and develops
early-onset glaucoma. In this study, we characterized the glaucomatous features in egl1 mice. The
eyes of egl1 and C57BL/6J control mice were assessed by slit lamp examination, total aqueous
humor outflow facility, intraocular pressure (IOP) measurement, pattern electroretinography (PERG)
recording, and histologic and immunohistochemistry assessment beginning at 3 weeks and up to
12 months of age. The egl1 mice developed elevated IOP as early as 4 weeks old. The IOP elevation
was variable and asymmetric within and between the animals. The aqueous humor outflow facility
was significantly reduced in 12-month-old animals. PERG detected a decreased response at 2 weeks
after the development of IOP elevation. Retinal ganglion cell (RGC) loss was detected after 8 weeks
of IOP elevation. Slit lamp and histologic evaluation revealed corneal opacity, iridocorneal adhesions
(anterior synechiae), and ciliary body atrophy in egl1 mice. Immunohistochemistry assessment
demonstrated glial cell activation and RGC axonal injury in response to IOP elevation. These results
show that the eyes of egl1 mice exhibit anterior segment dysgenesis and early-onset glaucoma. The
egl1 mouse strain may represent a useful model for the study of congenital glaucoma.

Keywords: glaucoma; Pitx2; mouse model

1. Introduction

Glaucoma is a multifactorial optic neuropathy characterized by retinal ganglion cell
(RGC) loss, which accompanies optic nerve axonal injury. The disease leads to irreversible
blindness if left untreated. Elevated intraocular pressure (IOP) is a major risk factor
for glaucoma development and progression [1]. Congenital glaucoma, a major cause of
childhood blindness, is a severe form of glaucoma that occurs in children from birth to the
age of 3 years (infantile glaucoma) or after 3 years of age (juvenile glaucoma). According
to the American Academy of Ophthalmology, congenital glaucoma is diagnosed only
in 25% of babies who manifest the condition at birth and may occur in as many as 1 in
10,000 live births [2,3]. The increase in IOP in congenital glaucoma is due to developmental
abnormalities in the anterior chamber angle, including trabeculodysgenesis, which leads to
increased aqueous humor outflow resistance and thus elevated IOP [4,5]. Despite extensive
research on congenital glaucoma, the molecular and cellular pathological events that occur
are still unclear.

Genetic studies have been conducted to identify genes associated with congenital
glaucoma. Research has shown that mutations in certain genes, such as PITX2, FOXC1,
PAX6, and CYP1B1, are associated with congenital glaucoma [6–11]. Among these genes,
extensive work has been carried out to identify the functions of PITX2. PITX2 is involved
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in the Nodal/Sonic Hedgehog pathway, which determines the polarity and asymmetrical
expression during the early development of the mesoderm derived organs as well as the
eye, tooth, and umbilicus [12–14]. PITX2 produces three isoforms (PITX2a, PITX2b, and
PITX2c), which consist of similar bicoid-like homeodomain 2 (HD) transcription factors
that play an important role in fetal and embryonic development. Missense mutations, or
heterozygous defects of the PITX2 gene in the HD region, cause DNA binding impairment,
thereby altering the transactivation of transcription factors, which can lead to ocular deficits
by gain or loss of function [15–17]. The expression of PITX2 is higher in the anterior segment
than in either the retina or the sclera during the first 9.5 weeks of intrauterine development.
PITX2 expression is further increased in the iridocorneal complex during week 18 [18].
Intragenic deletions and decreased mRNA expression of PITX2 have been observed in
patients with Axenfeld–Rieger syndrome affected by advanced glaucoma [7,19,20]. Using
transcription activator-like effector nuclease (TALEN)-mediated genome editing, studies
on the zebrafish for the generation of pitx2−/− lines have also revealed the importance of
pitx2 in ocular development. Transcriptome studies have identified the molecular changes
associated with disease pathology [21]. Similarly, other studies on zebrafish and mouse
models have also shown that, as in Axenfeld–Rieger syndrome, Pitx2 mutations can lead to
abnormalities in the development of the anterior segment of the eye as well as protuberant
umbilicus, dental hypoplasia, and facial dysmorphism [22–24].

Certain mouse strains develop spontaneous glaucoma at a young age. These strains
are valuable tools for studying the mechanisms of early-onset glaucoma in humans. A
recent study described that mice heterozygous for the Pitx2 deletion (Pitx2+/−) modeled
the major ocular features of Axenfeld–Rieger syndrome and associated glaucoma [25]. In
addition, a mouse strain homozygous for the Pitx2 mutation named the egl1 strain has been
established in an N-ethyl-N-nitrosourea chemical mutagenesis screening program [26,27].
On the basis of the whole-exome sequencing results of the egl1 strain, Pitx2 p.R115L knock-
in mice were further generated using CRISPR/Cas9 technology and characterized for a
glaucomatous phenotype [26]. The establishment of these models provides a powerful
tool to explore mechanisms of glaucoma pathogenesis. Each mouse strain is unique in its
development, genotype, and genetic background. The egl1 mouse strain is commercially
available as an early-onset glaucoma mouse model. However, the characterization of this
strain has yet to be completed.

In this study, we further characterized the glaucomatous phenotype in the egl1 mouse
strain. We assessed the anterior segment morphology, aqueous humor outflow facility, IOP
elevation, and RGC and optic nerve head degeneration. Our study provides insightful
information for using the egl1 mouse strain as an early-onset glaucoma model.

2. Materials and Methods
2.1. Animals

C57BL/6J and C57BL/6J-Pitx2egl1/Boc (egl1 mutant) mice were obtained from the
Jackson Laboratory (Bar Harbor, ME, USA). All animal experiments were performed in
accordance with the National Institutes of Health guide for the care and use of laboratory
animals and were approved by the Institutional Animal Care and Use Committee of the
University of North Texas Health Science Center (IACUC 2020-0023). Mice (both sexes)
aged 3 weeks to 12 months were examined. Thirteen C57BL/6J mice (7 females and 6 males)
and 60 egl1 mice (33 females and 27 males) were randomized into the study, and data were
obtained from 26 and 116 eyes from C57BL/6J and egl1 mutant mice, respectively. Exclusion
criteria included fluid leaking during aqueous humor outflow facility measurement and
central corneal opacity affecting pattern electroretinography recording. Each individual
eye was considered the experimental unit in this study. Each experiment includes similar
numbers of female and male mice.

All animals were housed in individually ventilated cages (IVCs, polysulfone material
with 500 cm2 floor space) (Allentown, Allentown, NJ, USA) at a temperature of 21 to
24 ◦C and humidity of 40–45%. Lights were turned on at 0630 h, and a 12 h light/12 h
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dark cycle was maintained. Same-sex littermates were housed together at the maximum
density of 5 mice per cage. As bedding, a 1/8-inch corn cob (The Andersons, Maumee,
OH, USA) was provided. Shredded paper and enrichment rectangles were used as nesting
and enrichment (The Andersons). Mice were fed an irradiated mouse diet (5LG4, LabDiet,
St. Louis, MO, USA) and provided reverse osmosis filtered drinking water ad libitum. All
materials, including IVCs, lids, feeders, bedding, nesting, and enrichment, were autoclaved
before use. Sentinel mice were negative for at least all Federation of Laboratory Animal
Science Associations (FELASA)-relevant murine infectious agents, as monitored by the
Department of Laboratory Animal Medicine on campus.

2.2. Intraocular Pressure Measurement

Intraocular pressure (IOP) was measured non-invasively using the TonoLab impact
tonometer (Colonial Medical Supply, Franconia, NH, USA) as described previously [28,29].
Briefly, mice were placed in a soft plastic cone (Braintree Scientific, Inc., Braintree, MA,
USA) and gently restrained in a plastic mouse restrainer (Colonial Medical Supply, Lon-
donderry, NH, USA). IOP was measured after mice were acclimated. All measurements
were performed during the same 3 h time window (1–4 pm) during the lights-on phase of
the day; the average of 4–6 measurements was used as the IOP value. IOP was measured
twice a week until pressure elevation was detected, and once a week thereafter. Total IOP
exposure for each individual eye was determined by the determination of the area under
the IOP–time curve (AUC). Six C57BL/6J and twenty-two egl1 mice were included in this
experiment, and IOP was monitored at age 3 through 8 weeks old.

2.3. Slit Lamp Examination

Anterior segments of mouse eyes were examined with a slit lamp (SL-D7; Topcon,
Tokyo, Japan), and images were taken with a digital camera (D100; Nikon, Tokyo, Japan).
Slit lamp examinations were performed on conscious animals. Six C57BL/6J and twenty-
two egl1 mice were examined longitudinally at age 4 weeks to 12 months.

2.4. Anterior Segment Histologic Examination

For histologic examination, animals were euthanized by exposure to 10% to 30% cage
volume/min carbon dioxide. After death was confirmed, eyes were enucleated and fixed
in 10% neutral formalin (Electron Microscopy Sciences, Hatfield, PA, USA) overnight.
Eyes were then dehydrated with ethanol and xylene and embedded in paraffin. Sagittal
sections (5 µm) were prepared, mounted on glass microscope slides, and stained with
hematoxylin and eosin (H&E) for structural evaluation. Three C57BL/6J and six egl1 mice
were examined before and 4 weeks after intraocular pressure elevation.

2.5. Immunofluorescent Staining

For immunofluorescent staining, eyes were fixed in 4% paraformaldehyde (Electron
Microscopy Sciences) in phosphate-buffered saline (PBS) for 2 h at 4 ◦C and cryo-preserved
after 10%, 20%, and 30% sucrose (Thermo Scientific, Rockford, IL, USA) sequential cryo-
protection. Cryosections of mouse eyes were blocked with PBS-based SuperBlock (Thermo
Scientific) for 2 h at room temperature (RT) and incubated overnight at 4 ◦C with primary
antibodies against glial fibrillary acidic protein (GFAP, 1:500 dilution; Cell Signaling #3670,
Danvers, CA, USA) [30], ionized calcium-binding adaptor 1 (Iba-1, 1:500 dilution, Fujifilm
Cellular Dynamics 019-19741, Madison, WI, USA) [31], or neurofilament H (NF-H, 1:1000
dilution, Abcam ab8135, Waltham, MA, USA) [32]. After 3 rinses in PBS, sections were
further incubated with Alexa488 or TRITC conjugated secondary antibodies (Life Technolo-
gies, Carlsbad, CA, USA) against rabbit (for Iba-1 and NF-H) or mouse (for GFAP) IgGs for
1 h at RT. The sections were rinsed again and mounted in ProLong Gold anti-fade reagent
with DAPI (Thermo Scientific). Non-primary control staining was performed using PBS
instead of primary antibodies. Images were viewed and captured using a Zeiss LSM 510
META confocal microscope. The fluorescence intensity for Iba-1 and GFAP were analyzed
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using ImageJ software in a masked manner. Two C57BL/6J and seven egl1 mice (2–3 mice
per time point) were included in this experiment.

2.6. Aqueous Humor (AH) Outflow Facility Measurement

The egl1 mice at ages 8 weeks and 1 year were used for aqueous humor outflow
facility measurement, which was performed using a constant flow infusion method es-
tablished previously [33–36]. In brief, mice were anesthetized by an intraperitoneal in-
jection of a cocktail of ketamine/xylazine (100/10 mg/kg, respectively; maintenance:
1/2 × to 1/4 × induction dose). One drop of 0.5% proparacaine HCl was applied for
corneal anesthesia (Alcaine, Alcon, Fort Worth, TX, USA). The anterior chamber of each
eye was cannulated with a 32-gauge needle attached to tubing connected to a pressure
transducer (BLPR2; World Precision Instruments (WPI), Sarasota, FL, USA) and a glass
microsyringe (Hamilton Company, Reno, NV, USA) filled with sterile PBS and loaded
onto a microdialysis infusion pump (SP101i; WPI). The eyes were infused at a flow rate of
0.1 µL/min initially for approximately 30 min to stabilize the pressure registered by the
pressure transducer. On pressure stabilization, 3 pressure readings, spaced 5 min apart,
were obtained over the following 10 min period. The flow rate was then increased to
0.2 µL/min, and following 5 min for stabilization, 3 pressure readings were obtained in a
similar manner. The process was then repeated at flow rates of 0.3, 0.4, and 0.5 µL/min.
Mean stabilized pressure flow rate curves were generated for each eye and fit using simple
linear regression. The total aqueous humor outflow facility was calculated as the reciprocal
of the slope of each respective curve. All measurements were conducted in a single masked
manner. Seven egl1 mice (3 aged 2 months and 4 aged 12 months) were assessed.

2.7. Retinal Ganglion Cell Function Assessment

Pattern electroretinography (PERG) was performed in 6 egl1 mice using the JORVEC
System (Intelligent Hearing Systems, Miami, FL, USA) as described previously [37]. The
egl1 mice with severe corneal opacity that blocked central cornea were excluded from the
PERG study. Briefly, mice were anesthetized with intraperitoneal injections of a mixture
of ketamine and xylazine (100 and 10 mg/kg, respectively). The PERG responses were
recorded from a stainless-steel needle (Grass, West Warwick, RI, USA) placed in the snout
subcutaneously. Pattern stimuli consisting of contrast-reversing gratings with a spatial
frequency of 0.05 cycles/deg and maximum contrast were displayed on two custom-made
tablets. The contrast reversal frequency was 1 Hz. A total of 2232 responses were averaged.
The amplitude was measured from the positive peak to the negative trough, and the latency
was the time to the peak of the response.

2.8. Retinal Ganglion Cell Quantification

Quantification of retinal ganglion cells (RGCs) was performed using immunostained
retinal whole mounts [38]. Briefly, mice (5 C57BL/6J and 21 egl1 mice) were euthanized by
exposure to 100% CO2(g). Following the cessation of breathing and heartbeat, eyes were
enucleated and fixed in 4% paraformaldehyde (Electron Microscopy Sciences) for 2 h at
4 ◦C. Retinas were dissected from fixed eyes and blocked with 0.3% Triton X-100 in PBS
containing 2% goat serum for 2 h. Retinas were incubated in rabbit polyclonal RBPMS
antibody (1:200, diluted in 0.3% Triton X-100 in PBS, GeneTex GTX118619, Irvine, CA,
USA) [39] overnight at 4 ◦C. Following washes in PBS, retinas were further incubated in
AlexaFluor596 goat-anti-rabbit (1:1000, diluted in 0.1% Triton X-100 in PBS) overnight at
4 ◦C. After washes with PBS, the retinas were cut into four quadrants and mounted on
glass slides (Fischer Scientific, Pittsburgh, PA, USA). Eight images were taken from the
peripheral and mid-peripheral regions in four quadrants of each retina. The number of cells
from each image (0.0867 mm2 retina area) was counted using Adobe Photoshop software
V22.2 (Adobe Systems, Inc., San Jose, CA, USA). The average of all counts from each retina
was used as the number of RGCs presented in each eye. Cell counts were performed in a
masked manner.
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2.9. Statistical Analysis

One-way ANOVA followed by a Tukey post hoc test was performed to analyze
intragroup differences. The unpaired Student’s t-test was used for the comparison of
differences between the two groups. The correlation between RGC counts and IOP exposure
was assessed by Pearson’s correlation coefficient. Data are presented as means ± SEM, and
p < 0.05 was considered statistically significant.

3. Results
3.1. Anterior Segment Morphology in egl1 Mice

We performed slit lamp examination on C57/BL/6J (Figure 1A) and egl1 mice (Figure 1B–I)
aged 4 weeks to 12 months. The egl1 mice developed anterior segment abnormalities of var-
ious types and severities (Figure 1C–I). Approximately 60% of eyes showed localized faint
opacity in the paracentral zone of the cornea (Figure 1C). The onset of the corneal lesion
was as early as 4 weeks old and appeared independent of mechanical stimulation. Some
corneas of aged egl1 mice remained clear, despite repeated IOP measurements (Figure 1B),
similar to those of C57BL/6J wildtype animals (Figure 1A). The corneal lesion progressed to
dense corneal opacity with neovascularization in some animals as they aged (Figure 1D,E).
In a few animals aged 12 months, we observed the diffuse opacity covering the entire
cornea (Figure 1F).

The egl1 mice also developed iris defects including anterior synechiae (Figure 1G–I),
atrophy (Figure 1D), and pupil deviation (Figure 1E). We further examined the anterior
segment histology of 8-week-old young adult mice. In the egl1 mice with normal IOP,
the iridocorneal angle remained open, and the ciliary body appeared normal (Figure 1K)
compared to C57BL/6J wildtype mice (Figure 1J). In eyes with elevated IOP (Figure 1L),
there were anterior synechiae and ciliary body atrophy. Despite the ocular abnormalities,
egl1 animals appeared similar in body size and coat color compared to C57BL/6J mice.
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(G–I). (H) Enlarged view of area indicated by arrow in (G). (J–L) Representative H&E staining im-
ages of cross-section of the ciliary body and iridocorneal angle from C57BL/6J (J), egl1 mouse with 
normal IOP (K) and after 4 weeks of IOP elevation (L). The iridocorneal angle remained open and 
ciliary body appeared normal triangular in C57BL/6J and the egl1 mice with normal IOP. Anterior 
synechiae (the iris attached in the iridocorneal angle) and ciliary body atrophy were seen in eyes 
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Figure 1. Anterior segment morphology in egl1 mice. (A–I) Representative slit lamp image from
C57BL/6J (A) and egl1 mice (B–I). (A) Representative slit lamp image showing clear and avascular
cornea and centrally located pupil in uniformly shaped iris. (B) Normal cornea from an egl1 mouse.
(C–I) Anterior segment lesions in egl1 mice. The egl1 mice developed a variety of anterior segment
lesions (indicated by triangles) such as localized faint opacity in paracentral zone of the cornea (C),
dense corneal opacity with neovascularization (D,E), iris thinning (D,E) and pupil deviation (E),
diffuse opacity covering the entire cornea (F), and iris synechiae (the iris adhesion to the cornea)
(G–I). (H) Enlarged view of area indicated by arrow in (G). (J–L) Representative H&E staining images
of cross-section of the ciliary body and iridocorneal angle from C57BL/6J (J), egl1 mouse with normal
IOP (K) and after 4 weeks of IOP elevation (L). The iridocorneal angle remained open and ciliary
body appeared normal triangular in C57BL/6J and the egl1 mice with normal IOP. Anterior synechiae
(the iris attached in the iridocorneal angle) and ciliary body atrophy were seen in eyes with elevated
IOP. Scale bar = 50 µm.

3.2. IOP Elevation in egl1 Mice

The egl1 mice were maintained on the C57BL/6J background; thus, C57BL/6J mice
were used as control animals in this analysis. We monitored the conscious IOP longi-
tudinally in a cohort of 22 egl1 mice and 6 C57BL/6J mice using the TonoLab tonome-
ter (Figure 2A–C). At 3 weeks of age, egl1 mice exhibited an IOP of 15.9 ± 0.5 mmHg
(mean ± SEM; n = 44) which was similar to age-matched C57BL/6J control mice
(14.0 ± 1.3 mmHg; mean ± SEM; n = 12). A significant elevation of IOP was observed
in egl1 mice as early as 4 weeks old and remain elevated at all ages examined. The IOP
values were 19.2 ± 0.6, 21.7 ± 0.8, and 21.4 ± 0.8 mmHg (mean ± SEM; n = 44) at 4, 6, and
8 weeks of age, respectively, as shown in Figure 2D. The IOP values remained unchanged
in C57BL/6J mice, which were 15.1 ± 0.8, 14.8 ± 1.0, and 15.7 ± 0.9 mmHg (mean ± SEM;
n = 12) at 4, 6 and 8 weeks of age, respectively.

The IOP elevation in egl1 mice was variable and asymmetric. By age 8 weeks, 55%
of mice examined exhibited IOPs under 20 mmHg (Figure 2E). The elevated IOP values
also demonstrated a wide range in mice of the same age. Some mice had IOPs greater than
35 mmHg at all time points examined. Furthermore, individual animals showed dramatic
asymmetry in IOPs, which differed by more than 15 mmHg.
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Figure 2. IOP elevation in egl1 mice. (A) Conscious IOP measurement setup. (B) Plastic cone and
mouse restrainer for IOP measurement. (C) Close view of conscious IOP measurement. (D) The
IOP was monitored in egl1 mice longitudinally. Significant IOP elevation was detected at 4 weeks of
age and remained at all ages examined. Data are presented as means ± SEM (n = 44). **: p < 0.01,
****: p < 0.001. (E) The IOP values from each time point were plotted by three ranges, <20 mmHg,
20–25 mmHg, and >25 mmHg. The IOP values demonstrated a wide range in mice of the same age.

3.3. Aqueous Humor Outflow Facility in egl1 Mice

The AH circulation plays a key role in IOP regulation. We measured total aqueous
humor outflow facility in young (2 months) and aged (1 year) egl1 mice. The outflow
facility in young animals was 30.25 ± 1.34 nL/min/mmHg (mean ± SEM; n = 5); The aged
animals demonstrated significantly reduced outflow facility (17.07 ± 1.44 nL/min/mmHg,
mean ± SEM; n = 7, p < 0.001), indicating a significantly higher outflow resistance in the
aged animals (Figure 3A). The outflow facility and IOP measurement showed a trend of
negative correlation, but this did not achieve statistical significance (Figure 3B).
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Figure 3. Total aqueous humor outflow facility in young and aged egl1 animals. (A) The aged
animals demonstrated significantly lower outflow facility compared to the young animals. Data are
presented as means ± SEM (n = 5 and 7 for 2- and 12-months old animals, respectively). ****: p < 0.001.
(B) Individual outflow facility was plotted against IOP measurement. The outflow facility and IOP
measurement show a trend of negative correlation, but this did not achieve statistical significance.
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3.4. RGC Death in egl1 Mice

The degeneration of RGCs is a key feature of glaucoma. We quantified the RGC loss
in response to IOP elevation in egl1 mice to assess the glaucomatous neurodegeneration.
The egl1 mice with normal IOPs showed similar numbers of RGCs (263 ± 6/0.0867 mm2;
mean ± SEM; n = 17) in the retina, compared to C57BL/6J control mice (270 ± 8/0.0867 mm2;
mean ± SEM; n = 10). As expected, prolonged exposure to high IOP induced RGC loss in
egl1 mice. RGC numbers (217 ± 14/0.0867 mm2; mean ± SEM; n = 14) were significantly
decreased in mice with 8 weeks of IOP elevation (Figure 4A,B).
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Figure 4. RGC degeneration in egl1 mice. (A) Quantification of RGCs was performed before and at 2
and 8 weeks after IOP elevation. Significant RGC loss was observed after 8 weeks of IOP elevation.
Data are presented as means ± SEM (n = 11–17). **: p < 0.01. (B) Representative images show RBPMS
(red) immunolabeled retinal whole mounts from mice before (left) and 8 weeks after (right) IOP
elevation. The density of RGCs, demonstrated by RBPMS positive cells, decreased after 8 weeks
of IOP elevation. Scale bar = 50 µm. (C) Individual RGC count was plotted against IOP exposure
described as AUC. There was a moderate negative correlation between RGC counts and IOP exposure.
R square: 0.43, p < 0.001.

To determine the correlation between RGC death and IOP elevation, we further plotted
the RGC numbers against IOP exposure calculated as the area under the IOP–time curve.
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The RGC counts showed a moderate negative correlation (R square: 0.43, p < 0.001) with
IOP exposure (Figure 4C).

3.5. RGC Functional Loss in egl1 Mice

To further examine glaucomatous neurodegeneration in egl1 animals, we performed
PERG recording in mice with normal and elevated IOP. The egl1 animals demonstrated
a normal PERG waveform with a positive peak elicited at 89.6 ± 2.4 ms, followed by a
negative trough (Figure 5A). The PERG amplitude in the egl1 mice with normal IOP was
23.0 ± 3.2 µV (mean ± SEM; n = 5). After 2 weeks of IOP elevation, there was a significant
decrease in PERG amplitude (9.2 ± 1.3 µV) (Figure 5B) as well as an increase in latency
(155.7 ± 21.6 ms, mean ± SEM; n = 6), which indicates damaged RGC function (Figure 5C).
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before (black) and 2 weeks after (red) IOP elevation. IOP elevation decreased and delayed the PERG
response. (B,C) Bar graphs show decreased PERG responses (B) and increased PERG latencies (C)
after 2 weeks of IOP elevation. Data are presented as means ± SEM (n = 5–6) *: p < 0.05, **: p < 0.01.

3.6. Glaucomatous ONH Changes in egl1 Mice

Elevated IOP induces glial activation in the ONH and optic nerve axonal degenera-
tion, hallmarks of glaucomatous optic neuropathy. To evaluate these phenotypes in egl1
mice, we collected eyes from C57BL/6J and egl1 mice before and 2 and 8 weeks after IOP
elevation and performed immunofluorescence staining using specific antibodies against
glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba-1),
and neurofilament (NF) (Figure 6). Eyes of C57BL/6J and egl1 mice with normal pres-
sure exhibited similar expression levels and patterns of GFAP, Iba-1, and NF. Elevated
IOP increased expression levels of GFAP and Iba-1, which peaked at 2 weeks, indicating
astrocyte activation and microglia infiltration in the ONH in response to glaucomatous
insult. Quantification of GFAP and Iba-1 fluorescence intensity showed a trend of increase
at 2 weeks after IOP elevation without statistical significance (n = 3–6). The pattern of
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neurofilaments became disorganized after 2 weeks of IOP elevation. Eyes with extended
pressure elevation further exhibited disruption of neurofilaments, suggesting optic nerve
axonal damage in the egl1 mice.
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Figure 6. Glaucomatous ONH changes in egl1 mice. Representative immunofluorescence staining
images show increased expression of GFAP and Iba-1 and disorganized NF in the egl1 mice. Images
were taken in the rectangular boxed area in (A). (B–D) Columns show GFAP (red), Iba-1 (green), and
NF (green) staining in C57BL/6J wildtype and egl1 mice with various IOP levels. Nuclei were labeled
with DAPI (blue). Scale bars = 50 µm.

4. Discussion

The present study characterized the glaucoma phenotype in a mouse strain carrying
a missense mutation of Pitx2 named the egl1 mutation. The egl1 mutant mice developed
glaucoma with a significant variation in the age of onset and phenotypic severity within
and between animals. The mice with ocular hypertension demonstrated glaucomatous
retinopathy and optic nerve neuropathy.

As a powerful tool, mouse models carrying the Pitx2 mutation or deletion have been
developed to investigate the functions of PITX2 and the pathogenesis of glaucoma. The egl1
mice have a chemically induced Pitx2 mutation and develop early-onset glaucoma. The
mouse strain is homozygous for the egl1 mutation, which was mapped to chromosome 3.
High-throughput sequencing further identified the mutation as a single G to T transversion
in Pitx2 exon 2, changing amino acid 115 from arginine to leucine [26,27]. In humans, PITX2
has been identified as a glaucoma-causing gene. Mutations in PITX2 are associated with
Axenfeld–Rieger syndrome, which involves ocular malformations leading to congenital and
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childhood glaucoma in more than 50% of the affected patients [40]. Similarly, we found that
the egl1 mouse strain developed anterior segment abnormalities, and by the age of 6 weeks,
approximately 50% of the animals developed early-onset glaucoma despite having an
identical genotype and genetic background. Gender difference in the risk for glaucoma and
glaucoma blindness has been well documented [41,42]. In the egl1 mice, ocular hypertension
developed in male and female mice at a similar percentage. Larger-scale studies are needed
to reveal potential sex-associated differences in glaucoma development and severity in egl1
animals. The IOP elevation in egl1 animals exhibited significant variation and asymmetry.
The onset of ocular hypertension was as early as 3 weeks old, and IOP was elevated to a
maximum of 20 to 37 mmHg. Individual animals exhibited significant ocular hypertension
in one eye and normal IOP in another. The variation and asymmetry in the development
of ocular hypertension may require larger animal cohorts in the research design to ensure
a sufficient sample size for statistical analysis. On the other hand, the wide range of IOP
values offers a spectrum of disease severity and eyes with normal tension, providing an
ideal strain-matched control.

Through our longitudinal IOP measurements, we also found that the IOP elevation in
the egl1 mice demonstrated two patterns: sustained mild elevation until the age of 4 months
or high elevation followed by normal pressure. Ciliary body atrophy has been described in
the Pitx2+/− mice as well as in human chronic cases when left untreated [25]. Similarly, the
histologic examination showed ciliary body atrophy in the egl1 mice with prolonged ocular
hypertension. The reduction of IOP following a high pressure elevation in the egl1 mice is
likely due to ciliary body atrophy. Aqueous humor is produced by the epithelium of the
ciliary body and drained primarily through the conventional outflow pathway consisting
of the trabecular meshwork (TM), Schlemm’s canal, the scleral collector channels, and
aqueous veins, sequentially. It has been recognized that increased aqueous humor outflow
resistance is associated with elevated IOP in glaucoma [43,44]. In addition, studies in
humans and monkeys have shown that aqueous outflow facility (the reciprocal of aqueous
humor outflow resistance) naturally declines with aging, even in healthy eyes [45,46].
Thus, we measured the AH outflow facility in young and aged animals and assessed the
correlation between IOP and AH outflow facility. There was a negative trend of correlation
between IOP and AH outflow facility, suggesting a role played by declined outflow facility
in IOP elevation in the egl1 mice. However, we did not detect a statistically significant
correlation between IOP and facility.

Pattern ERG is a well-accepted standard for assessing RGC function. It allows non-
invasive and longitudinal evaluation of RGC function. It detects RGC functional loss prior
to significant morphological damage [47]. Using PERG, we detected RGC functional loss at
2 weeks after IOP elevation when a significant RGC death was undetectable. The results
further demonstrate the glaucomatous phenotype in egl1 animals and support the use of
PERG as a sensitive tool to monitor the disease progression in the egl1 mouse strain.

The quantification of RGCs showed a mild correlation between RGC loss and IOP
exposure. In addition, outer retinal dysfunction has been reported in egl1 mice. At 3 months
of age, there is a decreased rod b-wave and a lower cone response, which indicates a possible
outer retinal degeneration [27]. A separate study also showed that the deletion of the Pitx2
gene disrupts the development of the retinal pigment epithelium [23]. It is also possible
that outer retinal degeneration may in turn affect RGC health within the inner retina and
contribute to the decrease of RGC numbers.

Recent studies have shown that glia play an important role in the pathogenesis of
glaucoma [48–51]. Astrocytes, the major glial cell population in the ONH, are considered
the mediators of axonal injury in glaucoma. They respond to mechanical compression
due to IOP elevation and undergo a number of cellular changes, such as upregulation
of GFAP cytoskeleton and neurotrophic or neuroinflammatory factors [49,52]. Similarly,
microglia in the ONH become activated and redistributed, express cytokines and other
secreted factors, and exert neuroprotective or neurotoxic effects in glaucomatous eyes [51].
In the egl1 animals, we found upregulated GFAP, and Iba-1 expression also peaked at
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an early stage of the disease, suggesting the activation of astrocytes and infiltration of
microglia following glaucomatous insults. This further validates the glaucoma phenotype
in the mutant animals. The results also support the use of egl1 mice as an in vivo model to
investigate mechanisms of glial activation in glaucoma.

In summary, this study demonstrates that the egl1 mouse strain exhibits key features of
early-onset glaucoma and provides an important tool to study glaucomatous neurodegen-
eration. Additional studies are needed to further characterize glaucomatous neuropathy in
egl1 animals.
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