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ABSTRACT: The hypothesis that life on Earth may have started with a heterogeneous nucleic acid genetic system including both
RNA and DNA has attracted broad interest. The recent finding that two RNA subunits (cytidine, C, and uridine, U) and two DNA
subunits (deoxyadenosine, dA, and deoxyinosine, dI) can be coproduced in the same reaction network, compatible with a consistent
geological scenario, supports this theory. However, a prebiotically plausible synthesis of the missing units (purine ribonucleosides
and pyrimidine deoxyribonucleosides) in a unified reaction network remains elusive. Herein, we disclose a strictly stereoselective and
furanosyl-selective synthesis of purine ribonucleosides (adenosine, A, and inosine, I) and purine deoxynucleosides (dA and dI),
alongside one another, via a key photochemical reaction of thioanhydroadenosine with sulfite in alkaline solution (pH 8−10).
Mechanistic studies suggest an unexpected recombination of sulfite and nucleoside alkyl radicals underpins the formation of the ribo
C2′−O bond. The coproduction of A, I, dA, and dI from a common intermediate, and under conditions likely to have prevailed in at
least some primordial locales, is suggestive of the potential coexistence of RNA and DNA building blocks at the dawn of life.

The composition of Earth’s first genetic polymer has long
been the subject of intense research.1−3 Contrary to the

common “RNA world” hypothesis, the “R/DNA world” theory
posits that the first genetic system might have comprised both
RNA and DNA nucleotides.4−6 This scenario potentially
circumvents the postulated “genetic takeover” of homogeneous
DNA from RNA as the genetic information carrier in the RNA
world,7 replacing it with a divergence of RNA and DNA
subcomponents into more specialized roles. Recent develop-
ments in the prebiotic synthesis of purine deoxyribonucleo-
sides (dA 1 and dI 2)8,9 from ribo-aminooxazoline (RAO 3,
Scheme 1), a common intermediate in the synthesis of
pyrimidine ribonucleosides (C 4 and U 5),10 support the
notion that RNA and DNA building blocks could have
coexisted before life’s emergence. However, existing prebiotic
syntheses of purine ribonucleosides11−14 depend on chemically
and enantiomerically pure sugar starting materials unlikely to
have existed on primordial Earth (e.g., ribose)15 or produce
low yields of biologically relevant nucleosides among a
plethora of undesirable isomers and congeners. Hence, a
robust, stereoselective and furanosyl-selective synthesis of
purine ribonucleosides remains an attractive goal of prebiotic
synthesis. Because of its properties as a conglomerate, RAO 3,
which crystallizes enantiopure from solutions of minimally
enantioenriched carbohydrates,16,17 is of interest as a common
precursor to nucleosides.
Previously, we described a potentially prebiotic synthesis of

deoxyadenosine 1 via photochemical reduction of thioanhy-
droadenosine 6 with sodium bisufite or hydrogen sulfide at pH
7. Thioanhydroadenosine 6 was furnished by tethered
glycosylation with anhydropyrimidines 7, derived from
enantiopure RAO 3.9 Our synthesis of dA 1 was ultimately
completely selective for the canonical stereochemistry,
regiochemistry, and furanosyl isomer of dA and thus
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Scheme 1. Synthesis of Purine Deoxyribonucleosides and
Pyrimidine Ribonucleosides in a Unified Reaction
Networka

aRAO is a common precursor in previous works9,10 and the
coproduction of purine ribo- and deoxyribonucleosides presented
herein. Ade = N9-adeninyl; Hyp = N9-hypoxanthinyl; Ura = N1-
uracilyl; Cyt = N1-cytosinyl; Pi = NaH2PO4.
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constituted an advance over previous glycosylation strat-
egies.11,12,14 However, recent studies suggest that alkaline
lakes were likely common on primitive Earth and may have
facilitated concentration of atmospheric HCN, CO2, and SO2
into groundwater.18,19 These findings prompted us to revisit
the photochemistry of thioanhydroadenosine 6 with sulfite
(SO3

2−) at alkaline pH (8−10). Our investigations have led to
the discovery of an equally viable potentially prebiotic route to
purine ribonucleosides (8, 9) alongside their deoxyribose
congeners (1, 2) via an unexpected novel mechanism.
Alkaline Photochemical Reactivity. When we irradiated (mercury
lamp, 254 nm principal emission) a solution of thioanhy-
droadenosine 6 and sodium sulfite (4.5 equiv) at pH 9, eight
nucleoside products were observed (Table 1). In addition to

deoxyadenosine 1 and its 8-mercapto derivative 10, which were
major products obtained in our previous study at pH 7,9 the
ribonucleosides adenosine 8 and 8-mercaptoadenosine 11
were identified by NMR spectroscopy and spiking with
authentic samples (Figures S25 and S26). The remaining
four products were isolated by preparative HPLC and
characterized by NMR spectroscopy as adenosine-2′-α and
adenosine-2′-β-sulfonates 12 and 13, respectively, and their
corresponding 8-mercapto derivatives 14 and 15 (Figures S1−
S24). All of the 8-mercaptonucleosides (10, 11, 14, and 15)
were gradually converted to their desulfurized structures (1, 8,
12, and 13, respectively) after further irradiation (12−24 h,
Figures S25c and S27−S29). The yields of nucleosides
obtained at various pH values are summarized in Table 1.
The optimum combined yield for ribonucleosides 8 and 11
was 15% at pH 9 after irradiation for 5 h, which also provided
deoxynucleosides 1 and 10 in 43% combined yield (entry 3,
Table 1).
Conversion to Purine Alphabet. Nitrosative desulfurization and
partial deamination were previously shown to convert
deoxyadenosine 1 and its 8-mercapto precursor 10 to a
mixture of dA and dI.9 With a mixture of ribo- and
deoxyribonucleosides 10 and 11 in hand, we evaluated their
reactivity in this context to see if we might additionally
generate inosine 9, a potential surrogate for guanosine in the

primordial genetic alphabet. Inosine functions in nonenzymatic
RNA replication systems without loss of rate or fidelity
compared to guanosine.20 We therefore subjected a 3:1
mixture of 10 and 11 (the distribution of these products
obtained after irradiating 6 for 2 h with sulfite at pH 9) to
nitrosation at pH 4.21,22 After 12 days at room temperature in
the presence of sodium nitrite (10 equiv) and sodium
phosphate, initially at pH 4, A 8, I 9, dA 1, and dI 2 were
obtained in 17%, 6%, 48%, and 27% yield, respectively
(Scheme 2 and Figure S38). Thus, both the ribo- and

deoxyribofuranosides of adenine and hypoxanthine (8, 1, 9,
and 2) are available concomitantly, raising the possibility that
these nucleosides formed components of a primordial genetic
alphabet, ultimately surviving the test of evolution to varying
degrees. The potential role or attrition of sulfonates 12−15, in
prebiotic oligomerization and replication processes, is currently
under investigation.
Molecular Mechanism. Intrigued by the appearance of
sulfonates and adenosine derivatives in the photochemical
reaction, we probed the mechanism of these transformations.
First, we verified that no reaction takes place without
irradiation. Second, we performed the reaction with 6 (ε =
6319 M−1 cm−1) in the absence of sulfite (ε = 20 M−1 cm−1)
(Scheme 3A) and observed ribal 16 and 8-mercaptoadenine 17
(11% and 10% yield, respectively, after 2 h, 80% unreacted
starting material). Finally, we performed 18O-labeling experi-
ments to determine the source of oxygen in the products
(Scheme 3B). These reactions were performed at pH 11 and
for shorter reaction times (25−60 min) to mitigate oxygen
exchange between isotopically differentiated sulfite and
water.23−25 Positive and negative labeling experiments
demonstrate that the source of oxygen in 11 is sulfite.
Together, these results exclude a hydrolytic mechanism for the
formation of 11 and indicate that 11, 14, and 15 are formed by
radical coupling between C2′ of a putative photochemically
generated diradical intermediate 18 (Scheme 3C)9 and a sulfite
radical, at either sulfur or oxygen, followed by net hydrogen
atom transfer (HAT) to the respective C8S radical. Sulfonate
14 is generated by reaction on the α-face of 18 with sulfite
through sulfur, then HAT (Scheme 3C, path b), and adenosine
precursor 11 is generated by reaction on the α-face of 18 with
sulfite through oxygen, then HAT, to form sulfite ester 19
which is rapidly hydrolyzed26 to 11 (Scheme 3C, path d).
Photochemical desulfurization of all 8-mercaptopurine inter-
mediates27 (10, 11, 14, and 15) and production of
deoxyadenosine 1 (Scheme 3C, path a)9 are likely to take
place via previously reported mechanisms.

Table 1. Summary of the Yields of Different Products
Obtained Following Irradiation of Thioanhydroadenosine 6
with Sulfite at pH 7−10 for 5 h

combined yields of productsa (%)

entry pH 1 + 10 8 + 11 12 + 14 13 + 15

1b 7 75
2 8 56 10 14 13
3 9 43 15 20 18
4 10 32 12 17 15

aYields are based on relative integration of the signals in 1H NMR
spectra compared to an internal standard (pentaerythritol). bYields as
reported in ref 9.

Scheme 2. Nitrosative Deamination and Desulfurization of a
3:1 Mixture of 10 and 11 Gives a Mixture of dA, dI, A, and I
(Pi = NaH2PO4)

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.1c07403
J. Am. Chem. Soc. 2021, 143, 14482−14486

14483

https://pubs.acs.org/doi/suppl/10.1021/jacs.1c07403/suppl_file/ja1c07403_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c07403/suppl_file/ja1c07403_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c07403/suppl_file/ja1c07403_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c07403/suppl_file/ja1c07403_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c07403/suppl_file/ja1c07403_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c07403?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c07403?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c07403?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c07403?fig=sch2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c07403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


No arabino-configured oxygenated products (21, 22)27 were
observed (Scheme 3C, path e), even though 22 is stable under
the reaction conditions (Figure S30) and so could in principle
accumulate. Thus, radical coupling between C2′ and sulfite O
is highly stereoselective, in contrast to coupling at sulfite S,
which provides the α- and β-sulfonates 14 and 15. To
investigate this stereoselectivity, we synthesized 2′-deoxy-β-
bromoadenosine 23,28 so we could generate a model putative
radical at C2′ by reductive photochemical cleavage of the
C2′−Br bond.29 When we submitted 23 to UV irradiation in
the presence of sulfite at pH 9 (Scheme 3D), we observed the
expected products, deoxyadenosine 1, adenosine 8, and
sulfonates 12 and 13, but also arabino-adenosine 22 (Scheme
3D). Labeling experiments indicate the same mechanism is
operating. The α/β ratio of sulfonate stereoisomers was
∼53:47 (similar to the reaction with thioanhydroadenosine 6,
∼50:50) and the ratio of ribo- to arabino-adenosine (8:22)
was ∼85:15. We therefore conclude that the high stereo-
selectivity for radical recombination of sulfite at oxygen (for
both 6 and 23) is enforced mostly by the substrate structure of
adenosine and enhanced by the presence of the 8-mercapto
group in 6/18. This is likely due to steric shielding of the β-
face of the C2′ radical intermediates by the nucleobase, which
is increased by presence of the 8-mercapto group in 18. C−O
bond formation is substantially more affected than C−S bond
formation by this shielding because of the corresponding
shorter developing bond length in the respective transition
states (an average C−O bond is ca. 1.4 Å while an average C−
S bond is ca. 1.8 Å30). Accordingly, the 2′-α/β selectivity for
ribo-adenosine over arabino-adenosine is high, but there is
little 2′-α/β selectivity in the formation of sulfonates.
Thus, we propose that the coproduction of deoxyadenosine

and adenosine in the alkaline sulfite-promoted photochemical
reaction of thioanhydroadenosine 6 is mediated by both
reductive and oxidative transformations of putative photo-
chemically generated diradical intermediate 18. In contrast to
the exclusive reduction of 6 observed at pH 7 (entry 1, Table
1; Scheme 3C, path a),9 at alkaline pH (8−10) the ratio
[SO3

2−]:[HSO3
−] is higher,31 favoring coupling of photo-

chemically generated32 radicals over double HAT from HSO3
−

(Scheme 3C, path a). This proposed mechanism is consistent
with the higher proportion of sulfonates and ribonucleosides,
and the lower proportion of deoxynucleoside products,
produced at higher pH (entries 2−4, Table 1). Although
sulfite radicals possess radical character at both S and O
atoms,33 reactions predominate at S, and this is to the best of
our knowledge the first reported radical coupling reaction
between an alkyl radical and sulfite radical at oxygen. The most
closely related example we found was the suggestion by Kolker
and Lapworth34 that alongside reaction at S to form sulfonates,
sulfite radicals may also react with some alkenes at O to form
sulfites. We propose that the absence of the usually complete
selectivity for radical sulfite reaction at S in our case is due to
the highly reactive nature of the two radicals undergoing
combination.
Summary. We show that coproduction of a purine R/DNA
alphabet of nucleosides A, I, dA, and dI is enabled by a novel
photochemical reaction of thioanhydroadenosine 6 with sulfite
at pH 8−10. Mechanistic studies suggest the putative diradical
18 generated by photolysis of 6 undergoes either reduction or
oxidation, with respect to the C2′ radical, to varying extents
depending on pH. Oxidation appears to proceed by the
surprisingly substantial combination of an alkyl radical with a

Scheme 3. Proposed Mechanism for the Coproduction of
Purine Ribonucleosides and Deoxyribonucleosides in the
Photochemical Reaction of 6 with Sulfite at pH 8−10a

a(A) In the absence of sulfite, 6 decomposes to glycal 16. (B) Positive
and negative 18O-labeling experiments (top and bottom, respectively).
Analysis by LCMS revealed the source of the 2′-oxygen of adenosine
precursor 11 to be the sulfite ion, not water or molecular oxygen. (C)
The proposed mechanistic pathways for alkaline sulfite-mediated
photochemical processing of thioanhydroadenosine. Path A: double
hydrogen atom transfer furnishes deoxynucleosides (1, 10). Path B:
radical recombination between the sulfite radical at the sulfur atom of
sulfite and the α-face of the C2′ radical of 18, then HAT, affords α-
sulfonates (12, 14). Path C: radical recombination between the sulfite
radical at the oxygen atom of sulfite and the α-face of the C2′ radical
of 18, then HAT and rapid sulfite ester hydrolysis, affords
ribonucleosides (8, 11). Path D: no arabino-configured products
(21, 22)27 were observed. Path E: formation of β-sulfonates (13, 15)
by radical recombination between the sulfite radical at the sulfur atom
of sulfite and the β-face of the C2′ radical of 18. (D) Photochemical
experiments using a model substrate 23 show a similar outcome with
reduced stereoselectivity for C−O bond formation.
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sulfite radical at oxygen. Because sulfite and UV light are likely
to have been commonplace in primordial environments,35,36

which would undoubtedly have varied in pH at locales or
intervals in time,18,19 such prebiotic processing of thioanhy-
droadenosine 6 seems possible. Moreover, as 6 is derived from
a common precursor used in the prebiotic synthesis of
pyrimidine ribonucleosides (C and U), an extended genetic
alphabet of RNA and DNA nucleosides (C, U, A, I, dA, and I)
could have been available on early Earth via a unified chemical
network and geochemical scenario. Finally, the key photo-
chemical reaction mechanism proposed herein precludes the
formation of nucleosides of noncanonical stereochemistry or
sugar isomerism, consistent with the idea ultraviolet light not
only provided energy essential for prebiotic chemistry but also
enforced remarkable selectivity for biomolecules.37
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