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Abstract The allele frequency spectrum (AFS), or site frequency spectrum, is commonly used to

summarize the genomic polymorphism pattern of a sample, which is informative for inferring pop-

ulation history and detecting natural selection. In 2013, Chen and Chen developed a method for

analytically deriving the AFS for populations with temporally varying size through the coalescence

time-scaling function. However, their approach is only applicable to population history scenarios in

which the analytical form of the time-scaling function is tractable. In this paper, we propose a com-

putational approach to extend the method to populations with arbitrary complex varying size by

numerically approximating the time-scaling function. We demonstrate the performance of the

approach by constructing the AFS for two population history scenarios: the logistic growth model

and the Gompertz growth model, for which the AFS are unavailable with existing approaches. Soft-

ware for implementing the algorithm can be downloaded at http://chenlab.big.ac.cn/software/.
Introduction

The allele frequency spectrum (AFS, aka, the site frequency
spectrum) is a series of fundamental statistics for summarizing
genomic polymorphism. It is defined as the sampling distribu-
tion of allele frequencies of genetic polymorphism in a finite
sample. In practice, AFS can be the number or proportion
of SNPs constructed by binning them according to the counts

of derived alleles. For a sample of n sequences with m identified
segregating sites (polymorphic sites), AFS is written as

f Sið Þ; 1 6 i < ng, with
Pn�1

i¼1 Si ¼ m, where Si denotes the

number of segregating sites in the sample that have i copies

of derived alleles among the n haplotypes. AFS has been a
main focus in theoretical and methodological studies in the
past decades, since it is informative for the inference of ancient

demography of populations [1]. The theoretical expectation of
AFS under a given population history and parameter setting
nces and
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can be developed using both coalescent theory and diffusion
[2–4]. Methods for ancestral inference based on AFS are then
developed in a Poisson random field framework by assuming

that each entry of the AFS follows a Poisson distribution with
the mean equal to the theoretical expectation of the AFS given
population genetic parameters [2–17]. These methods are gain-

ing popularity with the abundance of genomic sequencing
data.

Coalescent theory has been applied to developing AFS in a

single population with time-varying population sizes, including
the exponential-growth model [7,18] and the n-epoch model,
which models the population size changes using several consec-
utive periods (epochs) with different constant sizes [8]. Com-

pared with the AFS developed with diffusion, the coalescent-
based AFS has the advantage of being in analytical form,
and the estimation is fast and accurate for small samples. In

contrast, the diffusion approximation has to rely on numerical
methods, such as finite difference approaches, to approximate
the solutions [9,19]. The coalescent-based AFS is thus very use-

ful for the inference of past demographic history and has been
extensively applied to data analysis [20–24].

One limitation of the coalescent-based AFS methods is that

AFS can only be analytically derived for some simple popula-
tion growth models, such as the n-epoch model and the
exponential-growth model or their combinations thereof
[7,8,23], and generalizations to other complex population his-

tories are often impracticable [7,13,25]. A second limitation
is that for large samples (e.g., haplotype number n > 50), it
is hard to accurately calculate the expected AFS from the for-

mulae. The expected coalescence times ETi; 1 6 i < n are
essential for deriving the coalescent-based AFS, which contain
coefficients in the alternating sum of the hypergeometric series

and are explosively large, causing overflow for large sample
sizes [26]. When the sample size is large, AFS and its derived
statistics are informative for inferring recent population his-

tory. And thus, calculating AFS for large samples becomes
common in population genetic inference from genomic data
[23,27,28]. A high-precision arithmetic library is usually
adopted to obtain accurate numerical values when analyzing

larger samples, which requires tedious programming and
intensive computation [8]. Some alternative solutions were
proposed, specifically for AFS of a single population, e.g.,

Polanski and Kimmel [7] replaced it with hypergeometric sum-
mation to avoid estimating coefficients with large values. Their
approach can efficiently solve the numerical issue, but it is dif-

ficult to generalize to other scenarios with complex population
histories for which the integral function in the hypergeometric
summation is difficult to compute. Most studies have adopted
coalescent simulations to generate a large number of samples

to approximate AFS under specific demographic histories
and applied them to analyze genomic polymorphism. How-
ever, this approach is computationally very intensive

[14,23,27,29–31].
To address the numerical issue in large samples, Chen and

Chen used the large-sample asymptotic distributions of coales-

cence times [32]. Griffiths proved that the coalescence times
and ancestral lineage numbers asymptotically follow a normal
distribution in a constant population [33]. Chen and Chen

extended their forms to populations with time-varying sizes
by using a time-scaling function scheme (see the ‘‘Coalescence
times” subsection below; [34–36]) and then used the first-order
Taylor expansion approximation to achieve the coalescence
times (and further AFS). They illustrated the usage of this
approach by deriving a simple-form formula for AFS in pop-

ulations under exponential growth, which shows high accuracy
compared with simulated results. Note that the first-order Tay-
lor expansion approximation and time-scaling function

approach of Chen and Chen work for both large and small size
samples [32]. Technically, their approach allows to derive AFS
in any populations with arbitrary complex demography. How-

ever, as illustrated in the ‘‘Method” section, for some complex
demographies, it is difficult to derive the analytical form of the
time-scaling function and/or its inverse function, which are
essential in deriving the coalescent-based AFS. In this paper,

we propose a computational approach to efficiently approxi-
mate the analytical formula of the time-scaling function with
a finite sum approximation, and find the set of coalescence

times ETi; 1 6 i < n, with the computing time being nearly
constant as the sample size increases. It is applicable to any
arbitrary complex history for which the time-scaling function

is not tractable. This greatly extends the application of AFS-
based methods in population genetic inference and other stud-
ies, e.g., cancer evolution. We demonstrate the performance of

the approach by obtaining AFS for two population history
scenarios that were difficult to derive using the existing
approaches: the logistic growth model and the Gompertz
model.

In the following sections we first review the coalescent the-
ory framework for obtaining AFS of a single population. We
then summarize the first-order Taylor expansion approxima-

tion method for populations with time-varying size proposed
by Chen and Chen [32]. We illustrate the idea of the computa-
tional approach to construct AFS for arbitrary demography,

and we further derive AFS for populations with two demo-
graphic histories to demonstrate its performance.

Method

Modeling framework

For a sample of n lineages (haplotypes), the coalescence time
Tk is defined as the time when kþ 1 lineages merge into k lin-

eages, and time is measured backward (from the present to the
past). The intercoalescence time Wk ¼ Tk�1 � Tk is the time
during which there are k lineages. Following Fu [2], we say

that any of the k branches spanning the intercoalescence time
Wk has the branch of size k. We assume an infinitely-many-
sites model for mutations, and further the mutations occurring
on any branch along the gene genealogy follow a Poisson pro-

cess. The number of mutations occurring at any branch of size
k then follows a Poisson distribution with the mean of
lkE Wkð Þ, where l is the point mutation rate. During the bifur-

cation process in which k lineages increase to n lineages at pre-
sent, any of these mutations increases the allele count from a
single copy to j among the n lineages with the probability

[3,37]:

pn;k jð Þ ¼
n� j� 1

k� 2

� �

n� 1

k� 1

� � : ð1Þ
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Summing over mutations that occur on branches with dif-
ferent sizes, we can obtain the entries for AFS:

ESj nð Þ ¼
Xn

k¼2

n� j� 1

k� 2

� �

n� 1

k� 1

� � l� kE Wkð Þ

¼ n� j� 1ð Þ! j� 1ð Þ!
n� 1ð Þ! l

Xn

k¼2

k k� 1ð Þ

� n� k

j� 1

� �
E Wkð Þ; 0 < j < n

ð2Þ

Note that EWj is fundamental in the framework above for

constructing AFS. If analytical forms for EWj ¼ ETj�1 � ETj

can be obtained for a population with complex demography,
AFS can be obtained through Equation (2).

Coalescence times

In a constant-size population, the distribution of coalescence
times follows that of the standard Kingman’s n-coalescent,
which are exponential variables with the mean

lm ¼ 2
1

m
� 1

n

� �
; 1 6 m < n ð3Þ

where lm is the coalescence time in units of haploid population

size N. In addition, the intercoalescence times are mutually
independent.

For a population with time-varying size, we denote its pop-

ulation history as N tð Þ; t 2 0;1½ Þ. It is not trivial to derive the
distribution or the expectation of coalescence times for a pop-
ulation with time-varying sizes. The joint distribution of coa-

lescence times Tm; . . . ;Tn�1ð Þ for populations with time-
varying size is calcluated as described previously [3] and shown
as follows.

fTm ;:::;Tn�1
tm; :::; tn�1ð Þ¼

Yn�1

k¼m

kþ1

2

� �

N0k tkð Þ exp �
kþ1

2

� �

N0

Z tk

tk�1

1

k uð Þdu

0
BB@

1
CCA;

ð4Þ
where k tð Þ ¼ N tð Þ=N0 is the relative size function. Polanski
et al. derived the marginal probability density function of coa-
lescence times fTm

by expanding an integral transform of the

marginal probability density function (PDF) into partial frac-
tions [26]. Another way to derive fTm

is based on the definition

of a pure-death process, in the form of a function of the ances-
tral lineage number, P An tð Þ ¼ mð Þ [13,38]. With the marginal
distribution of coalescence times derived, Polanski and Kim-

mel obtained AFS for a population under exponential growth,
which is in complex form, and requires calculating the hyper-
geometric series and exponential integral [7].

Chen and Chen [32] used the time rescaling approach in the
variable-population-size coalescent model [34–36]. The coales-
cence time is rescaled at the rate 1=N tð Þ, denoted as sm:

sm ¼ g Tmð Þ ¼
ZTm

0

1

N uð Þ du; ð5Þ

where sm follows the coalescence time distribution in the stan-
dard Kingman’s n- coalescent [39]. Chen and Chen [32] then
used a Taylor expansion of Tm ¼ g�1 smð Þ around lm to achieve
the approximation:

Tm ¼ g�1 lmð Þ þ ðg�1Þ0 lmð Þ g Tmð Þ � lmð Þ

þ ðg�1Þ00 lmð Þ
2

g Tmð Þ � lmð Þ2 þO g Tmð Þ � lmð Þ3
� �

ð6Þ

Thus we have the mean and variance of Tm,

E Tmð Þ � g�1 lmð Þ; ð7Þ
and

Var Tmð Þ ¼ r2
m

g0 g�1 lmð Þð Þð Þ2 ð8Þ

In general, for any population history N tð Þ; 0 6 t < 1,
time-scaling function g tð Þ can be obtained as in Equation (5),

and further ETm ¼ g�1 lmð Þ can be obtained as shown above.
Chen and Chen demonstrate the application of this approach

using an exponentially growing population as an example
[32]. ET for the exponential growth model is in a very simple
analytical form:

ETm ¼ 1

c
ln 2N0c 1=m� 1=nð Þ þ 1ð Þ ð9Þ

with c is the population growth rate, and the obtained AFS is

highly accurate (Figure 6 of [32]).
Since it is not trivial to derive the coalescence times for

populations with time-varying size in existing studies, and

simulations are usually required as a replacement for most
studies [14,23,27,30,31], Chen and Chen’s [32] approach pro-
vides simple and efficient solution to obtaining ETm. How-

ever, for some complex demographies, the analytical form
of the time-scaling function g tð Þ and its inverse function,
which are essential for deriving ETm, are not tractable. This
prohibits the general usage of their approach for arbitrary

population histories.

Coalescence times under complex demographic history

In this section, we illustrate how to extend Chen and Chen’s
[32] method to be applicable to arbitrary population histories
using a computational approach. As we can see from the sec-

tion above, g tð Þ and g�1 tð Þ are the two essential components
for deriving coalescence times for a given population history

N tð Þ [see Equation (7)]. Note that to obtain ETm, the analytical
form is not required for calculating an arbitrary point t. In
contrast, we only need to find a finite number of Tm values that

correspond to lm; 1 6 m < n and satisfy

lm ¼ g Tmð Þ: ð10Þ
The following two numerical schemes are thus proposed for

calculating ETm, applicable to different situations. The first
approach is generally applicable to all cases, including those

for which g tð Þ cannot be obtained; the second approach is
specifically for the case in which an analytical form of g tð Þ is
available but g�1 tð Þ is not tractable.

Approach 1 (finite-sum approximation)

For a sample of size n under the population history
N tð Þ; t 2 0;1½ Þ, the integral of the time scaling function equa-



638 Genomics Proteomics Bioinformatics 17 (2019) 635–644
tion can be simply approximated using the discrete finite
summation:

lm ¼ g Tmð Þ ¼
ZTm

0

1=N; uð Þdu; 1 6 m < n

�
XTm

u¼0

� 1

N uð Þ ð11Þ

Then, for each lm, the corresponding expected coalescence
times ETm can be obtained during the following sequential

summation procedures:

Step 1 Given a series of expected coalescence times under

the standard n-Kingman’s coalescent

lm ¼ 2 1
m � 1

n

� �
; 1 6 m < n, initialize the procedure from

generation 0 (the current generation) with G ¼ 1
N 0ð Þ.

Step 2 Keep increasing the discrete generation time t, and
calculate G ¼ Gþ 1

N tð Þ until the value t satisfies

ln�1 �
Pt

u¼1
1

N uð Þ; set T n�1 ¼ t.

Step 3 Repeat Step 2, and keep increasing t to obtain the
rest of the values for ET i; n� 2 P i P 1.
Step 4 Terminate the process when ET 1 is obtained.

After ETm; 1 6 m < nf g is available, AFS can be con-
structed through Equation (2). The detailed pseudocode for

implementing the algorithm is listed in Table 1.

Approach 2

For some population histories, analytical form of the time scal-

ing function g tð Þ can be achieved, but the inverse function

g�1 tð Þ is not tractable. An alternative approach can be applied

to obtain ETm for such cases through the following procedures.
For each Tm; 1 6 m < n, we have the non-linear equation,

g Tmð Þ � lm ¼ 0; 1 6 m < n: ð12Þ
Table 1 Procedures for calculating coalescence times using the

finite-sum approximation

Algorithm: calculating coalescence times

Input: population history N tð Þ; 0 6 t < 1, sample size n.

Initialize: li ¼ 2 1
i � 1

n

� �
; i ¼ 1; 2; :::; n� 1; t ¼ 0; G ¼ 1

N 0ð Þ.
For i = n � 1:1

l ¼ li;
While G < l

t ¼ tþ 1;

G ¼ Gþ 1
N tð Þ;

End

If G� l < 1
N tð Þ

ETi ¼ t;

Else

ETi ¼ t� 1;

End

End

Output: expected coalescence times ETi; i ¼ 1; 2; :::; n� 1:
The non-linear equations above can be solved using numer-
ical algorithms to obtain Tm; such as Newton-Raphson [40]. In
this paper, we adopt two numerical methods implemented in

MATLAB. The first one is the fzero function, which imple-
ments Dekker’s algorithm as a combination of bisection,
secant, and inverse quadratic interpolation methods [41]. The

second is the fminsearch function, which uses the simplex
search method of Lagarias and colleagues [42]. This approach
usually takes more time than Approach 1, as for each coales-

cence time Tm, we need to solve the corresponding equation
iteratively. Furthermore, the number of equations and the
computational complexity increase with the sample size, and
thus Approach 2 is more suitable for small samples.

Results

Various population growth models have been proposed to
approximate the ancient population history of humans and
other species. For example, Gazave et al. proposed a five-

scenario model for the European population, including two
stages of population bottlenecks and a very recent exponential
growth [23]. The simple exponential population growth model
may be the most commonly used model. It assumes a constant

growth rate, which is valid when space and resources are
unlimited. The exponential growth model is a good approxi-
mation for the early stage of humans, bacteria, and most pop-

ulations. In cancer evolution studies, models with more
parameters were developed to describe tumor growth [43].
These models are complicated by modifying growth rates with

carrying capacity or other factors, e.g., the logistic growth
model and Gompertz model.

In this section, exponential, logistic, and Gompertz growth

models are used to illustrate the usage of our proposed
approach. For the exponential growth model with a growth
rate c, N tð Þ ¼ N0e

�rt, it is straightforward to analytically
derive the expected coalescence times ETm [Equation (9)]. Run-

ning time using the three approaches (including the analytical
approach, the finite-sum approximation, and Approach 2) was
then compared for the model with the two parameters

N0 ¼ 100; 000 and c ¼ 0:003. For Approach 2, two numerical
methods were adopted: the bisection + interpolation method
implemented in the MATLAB function fzero and the downhill

simplex method implemented in the MATLAB function fmin-
search. The running time was averaged over 1000 repeats run
in MATLAB and is presented in Table 2. The detailed results

for the logistic growth and Gompertz model are elaborated
below.

AFS of the logistic growth model

Compared to the exponential growth model, the logistic
growth model regulates the growth rate with a factor

1� N t
�� �

Nk

� �
, in which Nk is the carrying capacity. It thus has

a sigmoid shape and reaches an equilibrium size of Nk instead
of unlimited growth (Figure 1A). A logistic growth model is
consistent with the population dynamics of many organisms

and is widely used in ecological research. Let c be the maxi-
mum population growth rate (aka, intrinsic growth rate), for



Table 2 Comparison of running time between different methods for three population growth models

Sample size Method Running time (second)

Exponential Logistic Gompertz

10 Analytical calculation 0.000004 0.110637 –

Finite sum approximation (Approach 1) 0.000084 0.000205 0.000204

fzero (bisection + interpolation, Approach 2) 0.003677 0.004618 –

fminsearch (downhill simplex, Approach 2) 0.019621 0.019983 –

50 Analytical calculation 0.000005 0.614442 –

Finite sum approximation (Approach 1) 0.000087 0.000188 0.000208

fzero (bisection + interpolation, Approach 2) 0.034866 0.020172 –

fminsearch (downhill simplex, Approach 2) 0.063361 0.106250 –

100 Analytical calculation 0.000006 1.265550 –

Finite sum approximation (Approach 1) 0.000087 0.000194 0.000206

fzero (bisection + interpolation, Approach 2) 0.068639 0.041638 –

fminsearch (downhill simplex, Approach 2) 0.126790 0.214588 –

500 Analytical calculation 0.000031 7.22106 –

Finite sum approximation (Approach 1) 0.000145 0.000226 0.000209

fzero (bisection + interpolation, Approach 2) 0.377974 0.231884 –

fminsearch (downhill simplex, Approach 2) 0.737102 1.219030 –

Note: Parameter settings for the three models: exponential are listed as follows: N0 = 100,000 and c= 0.003; Logsitic: NK = 10,000, T = 5000,

and c = 0.0053; Gompertz: T= 5000, r= 0.01, a= 0.001 and N0 = 1. For the Gompertz model, only the results of the finite-sum approximation

are available.
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a population under logistic growth, the population dynamics is
described by the differential equation as below.

dN t
�� �

d t
� ¼ c

Nk �N t
�� �

Nk

0
@

1
AN t

�� �
: ð13Þ

Note that in the equation above, time is measured forward

(from the past to the present), and denoted with t
�
to distin-

guish it from the backward time in other sections. The popula-

tion size N t
�� �

follows a logistic curve,

N t
�� �

¼ Nk

1� e�c t
�� �

þNke�c t
� : ð14Þ

After changing the variable of forward time t
�
to backward

time t,

N tð Þ ¼ Nke
cT

ecT þ Nk � 1ð Þect ; ð15Þ

and the model includes three free parameters: Nk, c, and T.
Given the population history function N tð Þ, the time-

scaling function for the logistic growth model can be derived
as follows,

g tð Þ ¼
Zt

0

1

N uð Þ du ¼ e�cT ect � 1ð Þ Nk � 1ð Þ þ cNkt

Nkc
; ð16Þ

and further obtained its inverse function,

g�1 sð Þ ¼ �W e Nk�1ð Þe�rT þNkcs� cT
� �þNkrsþNk � 1

r
; ð17Þ

where W �ð Þ is the Lambert W function, which is calculated

numerically.
According to Chen and Chen [32], the expected coalescence

time ETm ¼ g�1 lmð Þ can be obtained from Equation (17),

which can also be calculated through Approaches 1 and 2 as
described in the previous section. AFS generated from Equa-
tion (17) (‘‘Analytical”) and Approach 1 (‘‘Approach 1”)

for Nk ¼ 10; 000, T ¼ 5000 at three different growth rates
c ¼ 0:003; 0:006; and 0:015 were shown in Figure 1B–D. In
addition, AFS was also obtained using Approach 2, and the

comparison of the running time for a specific parameter setting
(Nk ¼ 10; 000, T ¼ 5000, and c ¼ 0:005) for three approaches
was listed in Table 2.

It can be seen that the AFS obtained by finite-sum approx-
imation (Approach 1) is very close to that from the analytical
approach (Figure 1B–D). The differences in AFS obtained
using Approach 1 and that obtained using the analytical

approach were further quantified by plotting

log
S
approach1
i

S
analytical
i

� �
; 1 6 i 6 50 for each entry of the AFS (Figure 1E).

The resulting values are within the range of �0:02; 0:02½ �, con-
firming the accuracy of the approximation using Approach 1.

AFS of the Gompertz growth model

The Gompertz model is another widely used model to approx-
imate population dynamics. It was originally proposed to

explain human mortality [44] and is also used to describe the
population growth of other species, including bacteria, ani-
mals, and plants [45]. The Gompertz model was found to fit

well with the growth of breast cancer and 19 other tumor cell
populations [46–48]. One of its forms is

dN t
�� �

d t
� ¼ c t

�� �
N t

�� �
; with

dc

d t
� ¼ �ac t

�� �
: ð18Þ

And the solution of the differential equation is



Figure 1 The allele freqeuncy spectra of the logistic growth model

A. The population size as a function of time. B.–D. AFS of the logistic growth model for three growth rates (c) of 0.003 (B), 0.006 (C), and
0.015 (D), respectively, with the carrying capacity Nk ¼ 10; 000 and initial time T ¼ 5000. E. The relative errors of the AFS from the

computational approach compared to the analytical results for the three growth rates of 0.003 (B), 0.006 (C), and 0.015 (D), respectively.

AFS, allele frequency spectrum.
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Figure 2 The allele frequency spectra of the Gompertz model

A. The population growth rate as a function of time. B. The population size as a function of time. C.–H. AFS of the Gompertz model for

six settings with different combination of growth rate (c) and its exponential decay rate (a): c= 0.01, a= 0.0005 (C); c = 0.01, a= 0.001

(D); c = 0.02, a= 0.004 (E); c = 0.03, a= 0.004 (F); c = 0.05, a= 0.004 (G), and c = 0.05, a= 0.008 (H), with initial population size

N0 ¼ 1 and time T ¼ 5000.
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N t
�� �

¼ N0exp
c
a

1� e�a t�ð Þ
� �

; ð19Þ

where c is the initial growth rate; N0 is the initial population

size when it started to grow; and a can be viewed as the expo-
nential decay rate of the growth rate.

It is unfeasible to derive the time-scaling function g tð Þ and
its inverse function g�1 tð Þ for the Gompertz model. Therefore,
there is no analytical calculation or numerical solution

(Approach 2) of the coalescence times for the Gompertz
model. In Figure 2A and B, the growth rates and population
size trajectories as a function of time were shown for six

parameter settings: c ¼ 0:01; a ¼ 0:0005; c ¼ 0:01; a ¼ 0:001;
c ¼ 0:02; a ¼ 0:004; c ¼ 0:03; a ¼ 0:004; c ¼ 0:05; a ¼ 0:004;
and c ¼ 0:05; a ¼ 0:008. The corresponding AFS for n ¼ 50

haplotypes at these six parameter settings are presented in Fig-
ure 2C–H. The running time of Approach 1 for a specific
parameter setting (T ¼ 5000, r ¼ 0:01, a ¼ 0:001 and N0 ¼ 1)
and with different sample sizes (10, 50, 100, and 500) is pre-

sented in Table 2.

Comparison of computing time of different approaches

We compared the computing times to construct the coales-
cence times Tm; 1 6 m < n; using Approach 1 (finite-sum
approximation), Approach 2, and the analytical approach.

For Approach 2, we used two methods for solving the non-
linear equations, including the combination of bisection and
interpolation (bisection + interpolation; implemented in the
MATLAB function fzero) and the downhill simplex (imple-

mented in fminsearch) methods. All the comparisons are run
in MATLAB for three population growth models: the expo-
nential growth, logistic growth, and Gompertz growth model.

The running time for constructing the coalescence times was
recorded for four sample sizes (n ¼ 10; 50; 100, and 500) and
averaged over 1000 repeats, as listed in Table 2 (in seconds).

A trend in Table 2 worth noting is that the finite-sum
approximation runs very fast. The running time of finite-sum
approximation is close to that of the analytical calculation,

nearly of the same magnitude, and much shorter than that of
numerical approaches (Approach 2). The only outlier is the
logistic model, for which the finite-sum approximation runs
much faster than the analytical approach. This is because the

analytical form of the g tð Þ function for the logistic model con-
sists of the Lambert W function, which is calculated numeri-
cally and is time-consuming.

Second, the running time of the finite-sum approximation
approach is nearly constant with increasing sample size n. As
we mentioned above, the computational complexity is O 1ð Þ,
and thus, it is insensitive to the sample size. This guarantees
the computational efficiency of the approach when the sample
size becomes large, enabling its application to large-sample

data analysis.
The numerical approach for solving the g tð Þ function

(Approach 2) also works efficiently but is more time-
consuming than the finite-sum approximation approach for

all three population growth models. Furthermore, the running
time increases with the sample size n, as the number of nonlin-
ear equations to solve increases linearly with n.
Conclusion

AFS is informative for population genetic inference. Various
AFS-based methods have been developed for inferring popula-

tion histories and detecting natural selection in the past years.
They have gained popularity with the abundance of genomic
sequencing data (e.g., [3,5,7–10,49]). Compared with the

diffusion-based AFS methods that require approximation of
the solutions with numerical approaches, modeling AFS using
coalescent theory is computationally efficient. Most popula-
tion genetic inference methods using the coalescent likelihood

require computationally intensive algorithms for parameter
estimation, such as importance sampling or Markov chain
Monte Carlo, while the coalescent-based AFS methods only

depend on the expected coalescence times, which guarantee
the analytical form [2,3,13].

The coalescent-based AFS methods have shortcomings.

First, for large samples it is impossible to obtain accurate cal-
culations due to numerical overflow of large coefficients in the
hypergeometric series. Second, it is difficult to derive the

coalescent-based AFS for complex population histories, which
limits its application to simple growth models, such as the
exponential growth and n-epoch models. Chen and Chen [32]
showed that for complex demography, we can obtain the

expected coalescence times through a linear Taylor expansion
approximation, which involves the time-scaling function g tð Þ
and its inverse function g�1 tð Þ. The analytical equations of coa-
lescence times derived using this approach are in a simple form
and can successfully overcome the numerical issue for large

samples. Furthermore, the time-scaling scheme is technically
applicable to arbitrary complex population histories. However,
in practice, the analytical forms of the time-scaling function

g tð Þ and its inverse function are not achievable for many cases,
limiting the applications. For example, in the study of cancer
cell growth, various population growth models in complex
form were proposed to describe the dynamics of cancer cells

[43], for which the analytical form of AFS is difficult to derive.
In this paper, we propose a computational approach, the
finite-sum approximation, which efficiently solves the problem

of Chen and Chen [32] when the analytical form of the time-

scaling function g tð Þ and its inverse function g�1 tð Þ are not

derivable.
We apply the computational approach to three widely used

models, including the exponential, logistic, and Gompertz

growth models to demonstrate its performance. As shown in
the Results section, the finite-sum approximation approach is
computationally very efficient, and the running time is nearly
on the magnitude of that of the analytical approach. Further-

more, the computational time does not increase linearly with
the sample size, ensuring its efficiency for AFS of large sample
sizes. This is especially attractive for the flexibility to tackle a

complex population history that is intractable by using the
analytical approach, for example, the Gompertz growth model
shown in Table 2. The computational approach presented in

this paper is applicable to single populations with arbitrary
complex varying size and significantly enables the application
of the coalescent-based AFS approaches to population genetic

inference in the genomic sequencing era. However, we should
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note that using the proposed computational approach to
model the joint AFS of multiple populations with arbitrary
population size changes and gene flows remains challenging

and will be addressed in future work.
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