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Introduction: Developing a machine learning-based approach which could provide
quantitative identification of major depressive disorder (MDD) is essential for the
diagnosis and intervention of this disorder. However, the performances of traditional
algorithms using static functional connectivity (SFC) measures were unsatisfactory. In
the present work, we exploit the hidden information embedded in dynamic functional
connectivity (DFC) and developed an accurate and objective image-based diagnosis
system for MDD.

Methods: MRI images were collected from 99 participants including 56 healthy controls
and 43 MDD patients. DFC was calculated using a sliding-window algorithm. A non-
linear support vector machine (SVM) approach was then used with the DFC matrices
as features to distinguish MDD patients from healthy controls. The spatiotemporal
characteristics of the most discriminative features were then investigated.

Results: The area under the curve (AUC) of the SVM classifier with DFC measures
reached 0.9913, while this value is only 0.8685 for the algorithm using SFC measures.
Spatially, the most discriminative 28 connections distributed in the visual network (VN),
somatomotor network (SMN), dorsal attention network (DAN), ventral attention network
(VAN), limbic network (LN), frontoparietal network (FPN), and default mode network
(DMN), etc. Notably, a large portion of these connections were associated with the
FPN, DMN, and VN. Temporally, the most discriminative connections transited from the
cortex to deeper regions.

Conclusion: The results clearly suggested that DFC is superior to SFC and provide
a reliable quantitative identification method for MDD. Our findings may furnish a better
understanding of the neural mechanisms of MDD as well as improve accurate diagnosis
and early intervention of this disorder.
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INTRODUCTION

Major depressive disorder (MDD) is characterized by depressed
mood, lack of interest, and motivation, as well as impaired
cognitive function and attention, etc. (Friedman and Anderson,
2014; Hamilton et al., 2015; Otte et al., 2016). This disorder
represents a major public health issue and has been predicted
to be a leading cause of disability (Wiles et al., 2013). Recent
studies leveraging neuroimaging techniques have deepened our
understanding of the neural mechanisms of MDD and revealed
abnormalities in brain function and structure in these patients
(Parlar et al., 2017). Current diagnosis of MDD is basically based
on structural interview of the patients, which is expert dependent.
Developing a machine learning-based approach, which could
possibly realize the quantitative characterization of the brain
imaging data and achieve an objective prediction of the brain
disorders (Gong and He, 2015), deserves more attention.

Neuroimaging studies based on functional magnetic
resonance imaging (fMRI) have provided rich evidence of
abnormalities in neural activity and functional connectivity of
multiple brain regions and networks of patients with MDD,
including cingulate cortex, precuneus, and medial prefrontal
cortex (mPFC) of the default mode network (DMN), dorsolateral
prefrontal cortex (dlPFC) of the central executive network
(CEN), insula of the salience network and the amygdala,
hippocampus, etc. (Hamilton et al., 2015; Mulders et al., 2015;
Otte et al., 2016; Ambrosi et al., 2017). These findings collectively
point toward the fact that aberrant functional connectivity can
be used as an imaging metric to provide new opportunities
for accurate diagnosis of MDD. Likewise, recent studies used
fMRI-based functional connectivity measures as eigenvalues to
distinguish MDD patients from healthy subjects. Then, after
leave-one-out cross validation (LOOCV), it achieved an accuracy
over 70% by support vector machine (SVM) or partial least
squares (PLSs) classifiers (Cao et al., 2014; Bhaumik et al., 2016;
Yoshida et al., 2017).

Previous studies on resting-state functional connectivity were
mainly based on the temporal correlation between regional
blood oxygen level-dependent (BOLD) time courses, barring
an implicit assumption that functional connectivity is temporal
stationary (Sporns, 2011; Jie et al., 2018). As a matter of
fact, a number of researches have revealed that functional
connectivity may experience a dynamic change over time
(Calhoun et al., 2014), which, to a certain extent, might
be attributed to the neuronal origin and related to the
cognitive and vigilance state variations (Chang et al., 2013;
Thompson et al., 2013; Jie et al., 2018). By measuring time-
varying functional connectivity among brain regions, dynamic
functional connectivity (DFC) analysis furnishes a more detailed
description of interactions in the brain. Indeed, some studies
have found that the DFC analysis produced time-varying
co-activation patterns, which the traditional static functional
connectivity (SFC) analysis was not able to obtain (Xiao and
Duyn, 2013). Thus, DFC has been applied to underlie the
pathophysiology of diseases such as autism spectrum disorder
(ASD), Parkinson’s disease, migraine, and seizure, etc. For
example, increased dynamics of thalamic to sensory network

and decreased dynamics of global network were detected in a
patient with ASD (Fu et al., 2019). Clustering analysis showed
that the stability of weak connection decreased while that
of strong connection increased in patients with Parkinson’s
disease (Kim et al., 2017), similar results were found in
interictal migraine patients (Tu et al., 2019), which imply
dysrhythmia in brain connections in these diseases. Besides, a
high accuracy was achieved by classifying seizure patients and
normal people with DFC analysis, which may help to provide
a better understanding of the underlying mechanisms of this
disease (Liu et al., 2017). In addition, recent research has shown
that the metastable state calculated through DFC analysis was
correlated to the stage of consciousness (Hudson et al., 2014;
Cavanna et al., 2017), and dynamic fluctuations in functional
connectivity were also suggested to be related to individual
cognitive states and psychological activities (Shine et al., 2016;
Pang et al., 2018).

Dynamic connectivity analysis in patients with depression
has provided new insights into the neural mechanisms of this
disorder. In particular, Kaiser et al. (2016) found that meditation
in depressed patients is associated with abnormal communication
patterns of brain fluctuations (Kaiser et al., 2016). Zhi et al.
(2018) used the sliding-window algorithm to identify three
types of node damage which were related to the severity of
depressive symptoms and cognitive ability. Wang et al. (2019)
found decreased DFC variability between the anterior DMN and
the right CEN compared with controls (Wang et al., 2019). It is
noteworthy that initial attempts have been made to validate that
the accuracy of a machine learning-based diagnosis system could
be largely improved by using DFC metrics, instead of traditional
SFC measures (Zheng et al., 2019).

In the present work, we aimed to develop a machine learning-
based scheme for discrimination of patients with MDD by
leveraging the hidden information embedded in DFC in order
to provide accurate, objective, and image-based diagnosis of
MDD. Resting-state fMRI data were collected from 56 healthy
controls and 43 MDD subjects. DFC was calculated using the
sliding-window algorithm which is the most widely used method
to investigate DFC by calculating functional connectivity in
a succession of neighboring time windows (Hutchison et al.,
2013a). Then, a non-linear SVM classifier-based recursive feature
elimination (SVM-RFE) approach was performed to select the
optimal feature subset for classification model development
with a training dataset. The performance of the established
model was then validated with a testing dataset and achieved
a favorable accuracy and area under the curve (AUC) of
receiver operating characteristic (ROC) of 0.9975. Furthermore,
we investigated the spatial and temporal characteristics of the
most discriminative connections. The results revealed that the
most discriminative connections formed core brain networks
including the frontoparietal network (FPN), visual network
(VN), DMN, etc. The current study demonstrated that by
combining features obtained from DFC analysis with advanced
machine learning techniques, we can provide an objective
and reliable image-based diagnosis system for MDD. More
importantly, these findings could also provide novel insights into
the underlying neural mechanisms of depression.
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MATERIALS AND METHODS

Participants
Forty-three eligible right-handed MDD patients (13 male and
30 female) were recruited from Xijing Hospital. Fifty-six healthy
controls (all right-handed, 30 male and 26 female) were recruited
via advertising. The baseline demographics of the subjects are
shown in Table 1. Two-sample t-tests were performed to verify
whether there are significant intergroup differences of age and
educational level. A chi-square test was applied to verify whether
the constituent ratio of gender was significant between the two
groups. Statistical analyses of this study were performed by using
IBM SPSS statistics (v. 22.0, Armonk, NY, United States). The
level of confidence was kept at 95%, and results with p < 0.05
were considered significant.

Patients were tallied with the diagnostic criteria of Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV) or ASD for a current episode of MDD as assessed
by two experienced psychiatrists. The severity of depression
and anxiety was assessed by Hamilton Depression Rating Scale
(HAMD, 24 items) and Hamilton Anxiety Rating Scale (HAMA),
respectively. Exclusion criteria included incomplete HAMD test,
relevant medical or neurological disorders, and incorrect head
position, etc. Each of the 99 subjects was informed of the aims
and procedures of the research and signed an informed consent.
The experiment was carried out in strict accordance with the
requirements of the Ethics Committee in Xijing Hospital.

Acquisition and Preprocessing fMRI Data
The resting-state fMRI data were acquired at Xijing Hospital
using a GE Discovery MR750 3.0 T MRI system. fMRI data were
gathered from 99 subjects who completed the functional scan
with the parameters set as follows: TR = 2,000 ms, TE = 30 ms,
flip angle = 90◦, FOV = 240 mm, matrix = 64 × 64, number
of slices = 45, slice thickness = 3.5 mm, spacing = 0.0 mm.
Except for the functional data, a whole-brain T1 structural image
was obtained for each subject with the following parameters:
TR = 8.2 ms, TE = 3.2 ms, FOV = 256 mm, matrix = 256 × 256,
flip angle = 12◦, slice thickness = 1 mm, no spacing.

The procedure of data analysis was shown in Figure 1. Data
were preprocessed using Data Processing Assistant for Resting-
State fMRI1 (DPARSF, version 2.3) (Yan et al., 2016). The first

1http://www.rfmri.org/DPARSF

TABLE 1 | Demographics for the MDD patients and HCs.

HC MDD p-value

Age 32.28 ± 10.80 35.23 ± 11.23 0.157

Gender (male/female) 30/26 13/30 0.013

Educational qualifications (year) 15.78 ± 4.33 11.44 ± 3.33 <0.001

HAMD – 23.35 ± 3.33l –

HAMA – 18.04 ± 3.33l –

Data are shown as (mean ± SD). HAMA, Hamilton Anxiety Rating Scale;
HAMD, Hamilton Depression Rating Scale; HC, healthy control; MDD, major
depressive disorder.

10 scans of the resting-state fMRI images were discarded in
order to eliminate the effects of magnetic field instability. The
remaining 200 fMRI images were then corrected for slice timing,
compensating the differences in acquisition time between slices.
Then, realignment was performed to correct for head motion
between fMRI images at different time points by translation
and rotation. The high-resolution structural image was then
co-registered with functional images and segmented into gray
matter, white matter, and cerebrospinal fluid (CSF) signal. The
deformation parameters from the structural image to the MNI
template were then used to normalize the resting-state fMRI
images into a standard space. Next, a Gaussian filter with a half
maximum width of 6 mm was used to smooth the functional
images. Then, the linear trends were removed. The effects of
white matter signal, CSF signal, and Friston 24 head motion
parameters were regressed out. Finally, a band-pass filter of
0.01∼0.1 Hz was used for filtering.

Dynamic Functional Connectivity
Analysis
The DFC analysis was performed by GRETNA2 (v2.0.0).
The brain was parcellated into 274 regions according to the
brainnetome atlas3. However, one of the regions numbered 255
with a low probability density was not identified, thus 273 regions
were left. Then, Pearson’s correlation coefficient was used for
measuring the functional connectivity. DFC between any pair
of these regions was then calculated using a sliding-window
algorithm. Sliding-window algorithm is one of the most widely
used to evaluate dynamic brain functional connectivity. The
functional connectivity between two nodes was first calculated
using a subsection of the data within a time window. The window
was then slid one step, and the calculation of the functional
connectivity was repeated within the new time window. As
recommended in previous studies, the window width should be
no less than 1

/
fmin, fmin represents the minimum frequency of

the signal (Shakil et al., 2016; Liao et al., 2018; Guo et al., 2020).
In the current study,fmin was 0.01 Hz and the TR was 2 s, thus
the window width was set to 100 s (50 time points), and the
step length was set to two time points. Finally, we obtained
76 DFC matrices for each subject, with 273 × 273 variables
from each matrix.

Feature Extraction and Selection
The upper diagonal elements of the functional connectivity
matrices were extracted and 76 × 37,128 = 2,821,728 features
were left for each subject to constitute the entire feature set.
A linear model was used before classification to regress out the
effects of gender and educational level. Then, a two-sample t-test
(p < 0.001, uncorrected) was applied to select features with
significant intergroup differences between the MDD patients and
the health controls, resulting in a 1 × 5,635 feature vector for
each subject which is the total features used in the classification.
Further considering the high-throughput features extracted from
the relatively limited subjects would inevitably cause redundancy

2https://www.nitrc.org/projects/Gretna
3http://atlas.brainnetome.org/
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FIGURE 1 | The data analysis pipeline. After data acquisition and preprocessing, sliding-window algorithm was applied with the window width set to 50 time points
and the step size set to two time points to calculate dynamic functional connectivity (DFC). For each subject, a 1 × 5,653 DFC matrix was obtained after two sample
t-test and employed as features for classification with a non-linear support vector machine (SVM) classifier.

and over fitting in classification, in this study, a non-linear SVM-
RFE approach was employed afterward to find an optimal feature
subset with the best discriminative power for MDD identification.
Detailed descriptions of this widely applied approach were
presented in our recent studies (Xu et al., 2019a,b).

Performance Evaluation Using the
Prediction Model Developed by the
Selected Features
With the optimal feature subset selected, the prediction model
was then developed for MDD identification. The non-linear SVM
classifier with the radial basis function kernel was implemented
using the widely used LIBSVM toolbox for model construction
and performance evaluation (Chang and Lin, 2011). Labels of the
patient group were set as “+1,” and that of the healthy controls
were set as “–1.” The grid search approach was performed
to select the optimal parameters “-c, -g” for the classification
model construction. Considering the limited sample-set size, an
external 10-fold cross validation (CV) strategy with 100-round
classifications was used to fully evaluate the performance. This
strategy first randomly and almost evenly divides the entire
sample set into 10 subsets. Then, nine subsets are used to train
the classifier and the remaining one subset is used to validate
the trained classifier. After 10 subsets are successively validated,
one round classification is finished and the average performance

can be obtained. Owing to the random allocation of the 10-
fold subsets, only one round classification may not well reflect
the overall performance of the samples. Instead, the procedures
above are usually repeated for 100 rounds, and the final average
performance after all these rounds classifications can be achieved.

In order to compare the prediction performance of the current
results with that of using other brain templates, the widely used
Anatomical Automatic Labeling (AAL) template with 116 brain
regions was adopted to repeat the steps above, including DFC,
SFC feature extraction, and feature selection and classification.

Finally, the extracted DFC and SFC features were combined
to classify the MDD patients from the healthy controls
in both templates.

In order to verify the reliability, consistency, and
generalizability of the proposed method, the database was
further divided into the training set (including 73 subjects with
33 MDD patients and 40 healthy controls) and the testing set
(including 26 subjects with 10 MDD patients and 16 healthy
controls), accounting for about 80 and 20% of the whole datasets,
respectively. The baseline demographics of the training set
subjects are shown in Supplementary Table S1, the testing set
subjects are shown in Supplementary Table S2. Then, a two-
sample t-test was applied with all the features in the training set
to determine the features with significant intergroup differences
between MDD patients and the health controls. After that, these
features with significant differences in the training set were

Frontiers in Neuroscience | www.frontiersin.org 4 March 2020 | Volume 14 | Article 191

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00191 March 25, 2020 Time: 18:38 # 5

Yan et al. Identification of MDD Using DFC

further selected using the SVM-RFE to determine an optimal
feature subset for model development. The performance of the
model was then validated using the testing set.

Relationships Between the Selected
Features and Clinical Variables in the
Major Depressive Disorder Group
We performed the Pearson’s correlation analysis between the
selected features and clinical variables including HAMD and
HAMA in the MDD group separately. Before the analysis, a linear
model was used before classification to regress out the effects of
gender and educational level.

RESULTS

Feature Selection and Performance
Evaluation
Considering the imbalance of sample size between the two groups
in this study, the AUC value was employed as the criterion for
optimal feature subset determination (Xu et al., 2019a,b). Finally,
a subset of 28 features with the highest AUC value of 0.9975 was
selected as the optimal feature subset for model construction, as
shown in Figure 2A.

At the same time, we compared the performances of the
system using features obtained from DFC matrices with that of
the system using features extracted from traditional SFC matrices.
SFC matrices that measured the average functional connectivity
were obtained by calculating the correlation between the whole
time-series of any two nodes. Thus, for each subject, SFC analysis
only resulted in one 273 × 273 functional connectivity matrix,
while DFC analysis obtained 76 273 × 273 matrices. Figure 2B
shows the diagnostic performances of the system with SFC
matrices. Apparently, the AUC of the system was higher when
using DFC matrices (0.9975) which embedded rich information
on time-dependent fluctuations in connections than those using
static connectivity matrices (0.8746). In addition, with the lack of
features extracting time-varying connections, more (14 for static
matrices compared with 28 for dynamic matrices) were required
for the system to achieve its highest AUC.

We further assessed the performances of the systems with
SVM and 10-fold CV (Figure 3 and Table 2). Figure 3 shows
the ROCs of models constructed with the most discriminative
features selected from the DFC and SFC metrics. The AUC value
of the model with 28 optimal DFC features was 0.9913 while
that of the model with 14 SFC features was only 0.8685. The
results apparently indicated the superiority of the DFC-based
classification model for MDD discrimination.

Then, we estimated the classification performance using the
optimal feature subset selected from the DFC-based features,
SFC-based features, and both of the DFC- and SFC-based features
with different brain templates.

With the Brainnetome atlas template, the performance of the
optimal feature subset selected from the DFC-based features in
the training set was much better than that of SFC, while the
performance of the optimal feature subset selected from the DFC-

and SFC-based features did not witness a dramatic increase, as
shown in Supplementary Figures S1, S2 and Supplementary
Tables S3, S4. When using the testing data for the performance
verification, we observed that the results of the DFC-based
optimal features were also the best, whereas the performance of
the other two optimal feature subsets received a dramatic decline,
indicating the low consistency and generalizability of the models
developed by using these two optimal feature subsets.

With the AAL atlas template, the performance of the
optimal feature subset selected from the DFC-based features
in the training set was also much better than that of
SFC, while the performance of the optimal feature subset
selected from of the DFC- and SFC-based features was
nearly the same with that of the DFC-based optimal features,
as shown in Supplementary Figure S3 and Supplementary
Table S5. When using the testing data for verification, we
also noticed that the performance of the DFC-based optimal
features was the best but was severely inconsistent with the
performance of using these optimal features in the training
set, as shown in Supplementary Figure S4 and Supplementary
Table S6.

All the results above conclusively reveal that the classification
model developed using the DFC-based optimal features extracted
from the brain regions using the Brainnetome atlas template
could be more powerful for the discrimination between the MDD
patients and the healthy people; the SFC-based features could
probably introduce certain feature redundancy that might further
impair the discriminative power of the prediction model.

Spatiotemporal Characteristics of the
Most Discriminative Dynamic Functional
Connections
In fact, the 28 most discriminative DFC connections were
28 abnormal DFCs in patients with MDD compared with
healthy controls. We further investigated the spatiotemporal
characteristics of the most discriminative dynamic functional
connections in patients with MDD. More specifically, the
28 abnormal DFCs involved seven different brain networks
and 40 different brain regions, distributed in 24 sliding
windows. Figure 4 shows the spatial pattern of these
connections which clearly suggested that these connections
form brain networks including the VN, somatomotor
network (SMN), dorsal attention network (DAN), ventral
attention network (VAN), limbic network (LN), FPN, and
DMN, etc. Table 3 provided more detailed information
on these connections with their discriminative power
(weight). According to Table 3, the connections that
demonstrated the highest discriminative power included
DFC connections between the inferior parietal lobule (IPL)
and middle frontal gyrus (MFG), between parahippocampal
gyrus and IPL, between cingulate gyrus and orbital gyrus.
Figure 5 shows the temporal characteristics of these
28 connections. The most discriminative connections
within each time window were depicted. We found that
over time, the brain area gradually penetrated from
the cortex to the deeper regions of the brain. More
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FIGURE 2 | Feature selection process of using the support vector machine–classifier-based recursive feature elimination (SVM-RFE) algorithm with 5,653 dynamic
functional connectivity (DFC)-based variables and 248 static functional connectivity (SFC)-based variables, respectively. Panel (A) represents the curve of the area
under the curve (AUC) values using the top n features from the DFC matrices, and the red dot in the local magnification of the curve stands for the highest AUC value
of 0.9975 achieved by the top 28 features. Panel (B) displays the curve of the AUC values using the top n features from the SFC matrix, and the blue dot in the local
magnification of the curve shows the highest AUC value of 0.8746 achieved by the top 14 features.

importantly, Figure 5 also implicated that the most
discriminative connections varied largely from one time
window to another. Thus, traditional SFC analysis which
is unable to capture the time-dependent variations in
functional connections would fail to detect these most
discriminative connections.

Relationship With Clinical Properties
In the analysis of correlations between the selected features
and clinical characteristics in the MDD group, we found that
the dynamic functional connection between fusiform gyrus and
inferior temporal gyrus was significantly negatively correlated
with HAMD scores, connections between basal ganglia and
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FIGURE 3 | Performance comparison of the 28 selected dynamic functional
connectivity (DFC)-based features and 14 selected static functional
connectivity (SFC)-based features with a non-linear support vector machine
(SVM) classifier and 10-fold cross validation (CV) strategy. The blue and red
curves represent the receiver operating characteristic (ROC) curves of using
the 28 and 14 optimal features, respectively.

inferior temporal gyrus, the precuneus and superior frontal
gyrus (SFG) were significantly positively correlated with HAMA
scores, connection between medioventral occipital cortex and
the amygdala was significantly negatively correlated with HAMA
scores. Figure 6 shows the details of relationships between DFC
features and clinical characteristics.

DISCUSSION

In this study, we developed a machine learning diagnosis
framework for patients with MDD based on subjects’ dynamic
resting-state functional connectivity patterns. Three main
findings emerged from the current study: (1) Patients with MDD
could be reliably differentiated from healthy controls based on
the patterns of resting-state DFC with a high accuracy of 0.9913
(10-fold CV). (2) Spatially, the most discriminative connections
formed core networks including the VN, SMN, DAN, VAN, LN,
FPN, and DMN, etc. (3) Temporally, the most discriminative
connections were not stationary as assumed by traditional SFC
analysis. On the contrary, these connections varied from the
cortex to deeper structures of the brain over time.

Static Functional Connectivity Analysis
Versus Dynamic Functional Connectivity
Analysis
Although the high-throughput feature set containing 5,635
variables were obtained from the upper diagonal elements
of the DFC matrices, they might not contribute equally
for the distinction between MDD patients and the healthy
controls. In fact, the features highly correlated with each
other or less capable of MDD identification would inevitably

TABLE 2 | Performance comparison between the optimal feature subsets
determined from DFC and SFC using the non-linear SVM classifier and 10-fold CV
with 100-round classifications.

Method Optimal
features size

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC

DFC 28 96.77 94.68 95.59 0.9913

SFC 14 76.19 83.05 80.07 0.8685

AUC, area under the curve; CV, cross validation; DFC, dynamic functional
connectivity; SFC, static functional connectivity; SVM, support vector machine.

cause redundancy for the classifier training, impairing the
overall discriminative power for MDD patients. Therefore,
the SVM-RFE approach was employed to determine an
optimal feature subset for prediction model construction
(Xu et al., 2019a,b). The classification performance of the
model using all the 5,635 variables and a non-linear SVM
classifier with LOOCV achieved the sensitivity, specificity,
accuracy, and AUC of 53.49, 71.43, 63.64%, and 0.7072,
respectively, whereas these metrics were greatly improved to
97.67, 94.64, 95.96%, and 0.9975 using the model constructed
by the 28 optimal features and the same classifier with
LOOCV. It apparently demonstrates the effectiveness and
great potential of SVM-RFE approach for redundancy
reduction, optimal feature determination, and performance
improvement. Concerning the LOOCV might introduce
the overtraining in the classification, the non-linear SVM
classifier with 10-fold CV was further employed to evaluate the
performance of the optimal features. The results demonstrate
the favorable robustness and consistency of the model
for MDD diagnosis.

As far as we know, most of the previous studies were
based on the resting-state functional connectivity, and the
accuracy of the distinction between MDD patients and the
healthy controls varied between 76.10 and 91.90% (Bhaumik
et al., 2017; Li et al., 2017; Yoshida et al., 2017; Zhong
et al., 2017). However, a growing number of studies suggest
that resting-state functional connectivity may hide some
information, which could be fully reflected in DFC (Zhang
et al., 2019; Zheng et al., 2019). In order to compare the
capability of the DFC and SFC matrices for the quantitative
characterization of patients with MDD, the prediction model
using the optimal features extracted from the SFC matrix was
also developed. The classification performance was apparently
inferior to that of the DFC-based prediction model, denoting
that the DFC might effectively describe the network changes
associated with the feelings and executive function that
closely relate to MDD, thus could obtain more excellent
classification performance when used for MDD identification
(Zhang et al., 2019).

The potential explanation of the superiority of the DFC-based
prediction model is that during the resting-state scanning,
subjects were required to simply close their eyes without
thinking about anything. However, there still exist mind
wandering and attention return. These cognitive processes
may lead to huge fluctuations of brain connections during
scanning (Chang and Glover, 2010). Such time-varying
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FIGURE 4 | The spatial distribution of the 28 most discriminative dynamic connections after feature selection. The size of the node represents the node degree,
while the color of the node represents the brain network that this node belongs to.

information of the spontaneous brain activity could not
be reflected in SFC but might be captured by DFC using
the sliding-window algorithm with appropriate window
width and step size.

Besides, the results of the DFC-based prediction model further
suggest that the present method could not only improve the
classification performance in comparison with state-of-the-art
approaches (Demirtas et al., 2016) but also shed light upon the
temporal patterns of brain activity and their applications in brain
disorder diagnoses.

Spatial Characteristics of the Most
Discriminative Connections
Using the SVM-RFE approach, we selected 28 optimal features
from 5,635 dynamic functional connections obtained in 76
time windows. The spatiotemporal characteristics of these most
discriminative connections were then investigated by mapping
these connections into the 76 DFC matrices to reconstruct
the spatial patterns and analyze the temporal characteristics
of these connections. Interestingly, we noted that although
several brain networks were implicated, a large portion of
these connections were associated with the FPN, VN, and
DMN. The findings indicated that these regions contributed
largely to accurate classification of MDD patients with healthy
controls and thus may play an important role in the neural
mechanisms of MDD.

The most discriminative connections formed several core
brain networks including the VN, SMN, DAN, VAN, LN,
FPN, and DMN, etc., suggesting that connectivity of these
networks may be disrupted in patients with MDD. The
results are in line with numerous previous studies that have
observed abnormal connectivity of these networks (Wang
et al., 2012; Wu et al., 2013, 2017; Hilland et al., 2018; Fan

et al., 2019; Yu et al., 2019). Among these networks, the
connection between MFG and IPL demonstrated the most
significant contribution to the accurate classification of MDD
patients with healthy controls. Previous researchers found
that MFG and SFG showed decreased functional connectivity
in MDD with robustness (Sheng et al., 2018; Yang et al.,
2019). Cui et al. (2018) found that the global functional
connectivity of the right IPL increased in MDD patients
compared with the control group in two distinct datasets,
and IPL is one of the discriminative effective connections
when distinguishing MDD patients and healthy controls in
a classification study with an accuracy of 91.67% (Geng
et al., 2018). More importantly, both of the MFG and
IPL are subregions of FPN, which is a cognitive control
network, especially a goal-directed regulation of attention
and emotion, etc. (Marek and Dosenbach, 2018). Leming
et al. (2019) found disruption of normative pathways in FPN
in MDD, and others found abnormal connections between
FPN and some networks such as DMN in MDD (Disner
et al., 2011). These results were consistent with those of a
cognitive model that disorders of goal-directed attention and
emotion can lead to excessive rumination (Kaiser et al., 2015).
Besides, another study also reported that three subnetworks
in the FPN of MDD patients had increased functional
connectivity before treatment and recovered after treatment,
which makes it a potential target for antidepressant therapy
(He Y. et al., 2018).

Default mode network is a central network for MDD which
was verified in numerous researches in the last decades, most
of results contribute to a conclusion that the aberrant function
and structure of it was related to depressive rumination. Kühn
et al. (2012) found that rumination was correlated negatively
with the volume of gray matter in the anterior cingulate cortex
and other regions. In the functional connectivity analysis, a
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meta-analytic result showed an increased connection between
DMN and subgenual prefrontal cortex, which was able to
predict rumination level (Hamilton et al., 2015). Besides, a
DFC analysis was conducted by Kaiser et al. (2016), and
they reported that the increased DFC between the mPFC
and the insula was correlated with the level of rumination.
However, a recent study applied a multicenter research with
1,642 participants and reached a conclusion that reduced
but not increased connection was only in recurrent MDD,
and this had a positive relation with symptom severity (Yan
et al., 2019). Our result also showed that the DFC between
the precuneus and SFG was significantly positively correlated
with HAMA scores.

VN was also an important region that contributed to
classification. Our findings are consistent with recent studies
that have noticed functional and structural abnormalities in the
VN in MDD patients. Zeng et al. (2012) used SFC analysis
to classify patients with MDD and healthy controls, and they
reported that the VN was among the most discriminative
regions (Zeng et al., 2012). Latterly, in the study of functional
connectivity density (FCD), a decrease in long-term FCD of
supraoccipital gyrus was found, suggesting that the visual
cortex is a key hub for MDD (Zou et al., 2016). In

TABLE 3 | The 28-dynamic function connectivities.

Number Functional connectivity Sliding time
window

Weight

(1) IPL_R_6_3 MFG_R_7_5 9 1.00

(2) IPL_L_6_6 PhG_R_6_2 64 0.96

(3) CG_R_7_4 OrG_L_6_2 14 0.93

(4) BG_R_6_3 INS_L_6_4 74 0.89

(5) VI_Vermis ITG_L_7_3 47 0.85

(6) LOcC_R_4_1 PCL_R_2_1 65 0.81

(7) Tha_L_8_5 BG_L_6_2 20 0.78

(8) FuG_R_3_1 ITG_L_7_4 7 0.74

(9) INS_L_6_5 MFG_R_7_4 10 0.70

(10) VIIIa_R IPL_R_6_4 71 0.67

(11) INS_L_6_3 MFG_L_7_3 51 0.63

(12) INS_R_6_1 IPL_L_6_6 76 0.59

(13) CG_R_7_7 OrG_R_6_3 42 0.56

(14) BG_R_6_2 IPL_R_6_1 2 0.52

(15) Tha_L_8_4 PrG_L_6_2 9 0.48

(16) BG_R_6_1 ITG_L_7_5 53 0.44

(17) VI_Vermis CG_R_7_6 63 0.41

(18) LOcC_R_4_1 PCL_R_2_1 66 0.37

(19) MTG_R_4_1 IFG_R_6_3 1 0.33

(20) VI_Vermis ITG_L_7_3 48 0.30

(21) Amyg_L_2_1 MVOcC_L_5_4 7 0.26

(22) FuG_R_3_1 IFG_L_6_3 20 0.22

(23) VI_Vermis CG_R_7_6 62 0.19

(24) CG_R_7_7 OrG_R_6_3 43 0.15

(25) IPL_R_6_3 MFG_R_7_5 12 0.11

(26) Amyg_L_2_1 MVOcC_R_5_2 55 0.07

(27) PCun_L_4_4 SFG_R_7_7 19 0.04

(28) BG_R_6_3 INS_L_6_4 73 0.00

addition, the structure of the VN was also impaired in the
patients. Significantly thinner calcarine gyrus was found in
MDD patients than in healthy controls (Suh et al., 2019).
Occipital bending is a powerful biomarker for depression,
and patients with occipital bending were reported to have
abnormal cortical thickness in the posterior occipital lobe
(Fullard et al., 2019). Notably, a recent study revealed that brain
regions associated with early awakening and visual processing
overlap in patients with MDD (Tao et al., 2018). Thus,
impairments in the visual areas may result in disruption of sleep
rhythms and symptoms of sleep disturbances generally seen in
patients with MDD.

When analyzing the temporal characteristics of the most
discriminative features, we found that these connections were
distributed in different time windows, reflecting the non-
stationary characteristics of functional connectivity over time
which has been consistently noticed in literature (Xiao and
Duyn, 2013; Bi et al., 2016; Demirtas et al., 2016; Kaiser
et al., 2016; Du et al., 2018; He C. et al., 2018). These
results thus provide an explanation why the classification
model with the DFC features could achieve better performances
than the model with SFC features, since traditional static
analysis may eliminate the contribution of the more volatile
connections (Britz et al., 2010; Chang and Glover, 2010;
Hutchison et al., 2013b). Furthermore, we noticed that the
most discriminative connections gradually changed from cortical
regions to deeper structures of the brain over time, suggesting
a switch between the cortical and limbic systems in the
patients at rest.

To summarize, the current study used a data-driven machine
learning approach to demonstrate that by leveraging valuable
information embedded in DFC metrics, we could provide
an accurate diagnosis scheme for patients with MDD. The
spatiotemporal characteristics of those most discriminative
connections could provide a novel insight into the neural
mechanisms of this disorder.

Limitations
This study has some limitations and caveats to bear in
mind. Although sliding-window algorithm is one of the
most widely used methods to investigate DFC, a recent
study has suggested that this algorithm tends to suppress
dynamic correlation, especially those that change rapidly
with time (Mokhtari et al., 2019). In addition, the step
size and window width should be carefully set for the
sliding-window algorithm. For the current study, we set the
window width to 50 time points and the step size to two
time points as suggested by previous studies (Guo et al.,
2020). We will further investigate the effects of different
parameter settings in future studies. Finally, we used machine
learning to successfully distinguish depression patients from
normal people. However, the sample size in the current
study is relatively small. Future studies may independently
replicate our results on large sample datasets. Despite many
limitations, our study suggested that by combining dynamic
resting-state functional connectivity analysis and machine
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FIGURE 5 | The temporal distribution of the 28 most discriminative dynamic connections after feature selection. (A–C) The connections in different time windows.
(D) The color of the inner circle represents the brain network that the node belongs to. The lines in the circle represent the connections, and the color of the
connections represents different windows.

FIGURE 6 | The relationship between the optimal dynamic functional connectivity (DFC) features and clinical characteristics in the major depressive disorder (MDD)
group.
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learning techniques, we were able to provide a reliable imaging-
based quantitative identification of major depression for early
intervention in MDD patients.
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