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Abstract: The development of Fricke gel (FG) dosimeters based on poly(vinyl alcohol) (PVA) as the
gelling agent and glutaraldehyde (GTA) as the cross-linker has enabled significant improvements
in the dose response and the stability over time of spatial radiation dose distributions. However, a
standard procedure for preparing FG in terms of reagent concentrations is still missing in the literature.
This study aims to investigate, by means of spectrophotometric analyses, how the sensitivity to the
radiation dose and the range of linearity of the dose–response curve of PVA-GTA-FG dosimeters
loaded with xylenol orange sodium salt (XO) are influenced by ferrous ammonium sulphate (FAS)
and XO concentrations. Moreover, the effect of different concentrations of such compounds on
self-oxidation phenomena in the dosimeters was evaluated. PVA-GTA-FG dosimeters were prepared
using XO concentrations in the range 0.04–0.80 mM and FAS in the range 0.05–5.00 mM. The optical
absorbance properties and the dose response of FG were investigated in the interval 0.0–42.0 Gy. The
results demonstrate that the amount of FAS and XO determines both the sensitivity to the absorbed
dose and the interval of linearity of the dose–response curve. The study suggests that the best
performances of FG dosimeters for spectrophotometric analyses can be obtained using 1.00–0.40 mM
and 0.200–0.166 mM concentrations of FAS and XO, respectively.

Keywords: Fricke gel dosimetry; xylenol orange sodium salt; ferrous ammonium sulphate; PVA-
GTA hydrogel

1. Introduction

Fricke gel (FG) dosimeters are chemical dosimeters prepared by infusing a ferrous
ammonium sulphate (FAS) solution (i.e., the Fricke solution [1]) into a hydrogel matrix.
The interaction of ionizing radiation with the molecules of the hydrogel and the consequent
formation of free radicals activate different chemical routes that lead to the oxidation of
ferrous ions (Fe2+). The final concentration of radiation-induced Fe3+ ions is proportional
to the energy deposited by ionizing radiation in the dosimeter, i.e., the absorbed dose.
Three-dimensional (3D) spatial information on the absorbed dose is obtainable within
the gel volume, and it can be captured and retrieved by a suitable readout technique [2].
Magnetic Resonance Imaging (MRI) is the main imaging modality of FG dosimeters and
relies on the dose-dependent changes in nuclear relaxation times of the hydrogen nuclear
spins caused by radiation exposure and consequent iron oxidation. Indeed, Fe2+ and Fe3+
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ions have different paramagnetic features and perturb the relaxation times of neighboring
water protons differently [2–4].

Alternatively, Optical Computed Tomography (OCT) can be used to quantify localized
variations in the optical attenuation coefficient, which are proportional to the absorbed dose.
In fact, in FG dosimeters, spectrophotometric determination of the light absorption and
hence concentration of ferric ions is achievable using visible (Vis) light when using a suitable
ligand that moves the absorption bands of Fe3+ from ultraviolet (UV) to longer wavelengths.
One of the most used chelating agents is xylenol orange sodium salt (XO) [5]; when added
to the Fricke solution, XO chelates Fe3+ ions, creating chemical species characterized by a
broad absorption band that peaks at around 585 nm (further explanation of the possible
Fe3+–XO complexes and their optical absorptions is given in the Section 3). Furthermore,
XO reduces the diffusion of ferric ions within the gel matrix and hence the loss of dose
localization that is a known limitation of FG dosimeters [2–4].

The Fricke solution underlying FG dosimeters is a well-established chemical dosimeter
in liquid form (i.e., the Fricke dosimeter), and it is also used as a primary standard for
absorbing the dose in water in various ionizing radiation metrology laboratories. In fact,
the composition of the Fricke dosimeter in terms of chemical species and concentration
is standardized. Similarly, the chemical yield of ferric ions G(Fe3+) in Fricke solution was
obtained with high accuracy by the comparison of the Fricke dosimeter with calorimetric
standards [2].

By contrast, a lack of harmonization in the composition of FG dosimeters emerges
from the literature. This is essentially a consequence of the fact that FG dosimeters are
still a subject of research in various laboratories that are trying to overcome the current
limits of these dosimeters, which are mainly related to their poor temporal stability due to
self-oxidation and Fe3+ diffusion phenomena. In fact, attempts to improve the dosimetric
properties of FG dosimeters resulted in several studies on different chemical formulations
obtained by using further organic additives such as saccharides [6–8], antioxidants [9–12],
nanocomposites [13–15], chelating agent alternatives to xylenol orange [16–23], and, finally,
different gel matrices acting as mobility-reducing agents [24–28].

A non-exhaustive overview of several compositions of xylenol orange–FG dosimeters
investigated by different research groups is given in Table 1.

Table 1. Composition of various Fricke gel dosimeters available in the literature prepared with
different gel agent (GA), ferrous ammonium sulphate (FAS), and xylenol orange (XO) contents.

Year Author Gel Agent (GA) GA
(%)

FAS
(mM)

XO
(mM)

2022 Piotrowski et al. [29] Pluronic F-127 25.0 0.01–5.00 0.03–0.50

2021 Dudek et al. [28] Pluronic F-127 25.0 1.00 0.165

2021 Farajzadeh & Sina [30] Gelatin 0–220 mM 0.02–2.50 0.02–0.20

2021 Pérez et al. [31] Gelatin 3.0 1.0 0.165

2021 Gallo et al. [32] PVA + GTA 8.0 0.5 0.165

2019 Smith et al. [33]
PVA 10.0–20.0 0.4 0.20–0.40

Gelatin 10.0 0.1–0.4 0.10–0.40

2019 Vedelago et al. [34] Gelatin 4.0 0.3–0.6 0.10–0.20

2019 Babu et al. [11] Gelatin 5.0 0.3 0.050

2019 Lazzeri et al. [35] PVA + GTA 10.0–12.5 0.5 0.165

2018 Lazzaroni et al. [36]
PVA + GTA 10.0 0.5 0.165

Gelatin 3.0 0.5 0.165
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Table 1. Cont.

Year Author Gel Agent (GA) GA
(%)

FAS
(mM)

XO
(mM)

2017 Welch et al. [37] Gelatin 6.0 0.3 0.050

2017 Marini et al. [38]
PVA + GTA 9.1 0.5 0.165

Gelatin 2.9 0.5 0.165

2017 Marrale et al. [39]
PVA + GTA 10.0 1.5 0.165

Agarose 3.0 1.5 0.165

2017 Soliman et al. [40] Gelatin 4.0 1.0 0.100

2017 Gambarini et al. [41]
Gelatin 3.0 1.0 0.165

Agarose 1.5 1.0 0.165

2017 Del Lama et al. [42] Gelatin 0–250 mM 0.3–5.0 0.05–0.25

2016 El Gohary et al. [43] Gelatin 4.0 1.0 0.10

2014 Marrale et al. [44] Agarose 3.0 0.5–5.0 0.165

2010 Cavinato et al. [45] Gelatin 5.0 1.0 0.1

2009 Babic et al. [46] Gelatin 6.0 1.0 0.05

2008 Babic et al. [47] Gelatin 4.0 0.1–0.9 0.025–0.100

2008 Davies et al. [48] Gelatin 3.85 1.0 0.10

2008 Galante et al. [49] Gelatin 1.0, 5.0, 10.0 1.0 0.10

2003 Healy et al. [6] Agarose 1.0 0.4 0.20

2002 Hill et al. [50] PVA 20.0 0.4 0.40

2000 Chu et al. [24] PVA 15.0, 20.0, 25.0 0.2–0.8 0.20–0.80

1997 Pedersen et al. [51]
Gelatin 4.0

1.5 1.50
Agarose 1.5–3.0

1997 Kron et al. [52]
Gelatin 2.0–10.0 0.5–1.0

0.02–025
Agarose 1.0–1.5 0.25

1996 Rae et al. [53] Gelatin 4.0 0.2 0.20

1996 Tarte et al. [54] Agarose 1.0 0.4 0.20

1991 Appleby et al. [55] Agarose 1.5 0.4 0.04–0.06

1987 Appleby et al. [56] Agarose 1.5 0.2 0.0

1984 Gore et al. [57] Gelatin 4.0 1.0 0.0

Considering the gel matrices used to prepare FG dosimeters, the interest in hydrogels
obtained with poly(vinyl alcohol) (PVA) and cross-linked by glutaraldehyde (GTA) is
increasing [19,20,25,26,35,58–61]. Indeed, compared with natural gelling agents such as
gelatin and agarose, such synthetic compounds allow for higher levels of reproducibility in
the manufacturing process of FG dosimeters and slower diffusion of Fe3+ ions within the
gel matrix [38,39,58].

As already observed in natural-matrix-based FG dosimeters [47], and also in PVA-GTA-
FG dosimeters, the dosimetric properties are expected to be influenced by the concentrations
of FAS and chelating agent used to prepare the dosimeter. However, to the best of the
authors’ knowledge, no systematic studies on such dependences are available in the
literature for these types of FG dosimeters. Therefore, this study aims to investigate, by
means of spectrophotometric analyses, how the sensitivity to the radiation dose and the
range of linearity of the dose–response curve of PVA-GTA-FG loaded with XO (XO-PVA-
GTA-FG) dosimeters are influenced by FAS and XO concentrations. In parallel, the effect of
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different concentrations of such compounds on self-oxidation phenomena occurring in the
investigated FG dosimeters was evaluated.

2. Materials and Methods

The procedure used for the preparation of XO-PVA-GTA-FG dosimeters is well-
established and has been described in previous papers [58]. All batches of FG dosimeters
were prepared using ultrapure water obtained by a water purification system (Milli-Q®

Direct, EMD Millipore, Burlington, VT, USA) and analytical-grade reagents. In this study,
twenty-one distinct sets of samples, characterized by different concentrations of ferrous
ammonium sulphate hexahydrate (FAS, Carlo Erba, Val-de-Reuil, FR) and xylenol orange
tetra-sodium salt (XO, Sigma-Aldrich, Saint Louis, MO, USA), were prepared. Details
of the XO and FAS concentrations in the samples are given in Table 2. The use of such
concentrations enabled us to cover an [FAS]/[XO] ratio from 0.25 to 25.0.

Table 2. Details of XO and FAS concentrations and their ratio in the investigated set of samples. Sets
12, 16, and 19 had the same XO and FAS concentrations as Sets 3, 10, and 11, respectively, but they
were prepared at different times and used in distinct experiments.

SET XO
(mM)

FAS
(mM)

[FAS]/[XO]
Ratio

1 0.200 0.05 0.25

2 0.200 0.10 0.50

3 0.200 0.40 2.00

4 0.200 0.60 3.00

5 0.200 1.00 5.00

6 0.200 5.00 25.00

7 0.020 0.40 20.00

8 0.040 0.40 10.00

9 0.080 0.40 5.00

10 0.133 0.40 3.00

11 0.166 0.40 2.40

12 0.200 0.40 2.00

13 0.240 0.40 1.67

14 0.400 0.40 1.00

15 0.800 0.40 0.50

16 0.133 0.40 3.00

17 0.166 0.50 3.00

18 0.200 0.60 3.00

19 0.166 0.40 2.40

20 0.166 0.50 3.00

21 0.166 0.60 3.60

The final concentration of the remaining reagents employed for the preparation
of dosimeters was equal to 8.7% (w/w) for poly(vinyl alcohol) (PVA, Mowiol®-20-88,
Mw ~125 kDa, Sigma-Aldrich), 27.7 mM for glutaraldehyde (GTA, Sigma-Aldrich), and
27.0 mM for sulfuric acid (Sigma-Aldrich).

For each set, at least 25 dosimeters inside 10 mm optical path length poly(methyl-
methacrylate) (PMMA) cuvettes were obtained.
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After the complete gelation, all FG dosimeters were sealed, protected from light, kept
refrigerated at the controlled temperature of 6 ◦C for 1 day, and brought back to room
temperature 1 h before the irradiations and the spectrophotometric measurements.

The samples were irradiated with an IBL 437C 137Cs blood irradiator at the “Fon-
dazione IRCCS Istituto Nazionale dei Tumori” of Milano, Italy at room temperature using a
dose rate of 11 cGy/s. Dose intervals of 0–36 Gy and 0–42 Gy were used for the samples of
Sets 1–6 and 7–21, respectively. Three dosimeters of each set were irradiated for each dose
value. Optical absorbance (OA) measurements of un-irradiated and irradiated samples
were carried out with a UV–Vis spectrophotometer (Cary 100 UV–Vis, Agilent Technologies,
Santa Clara, CA, USA) in the wavelength range of 360–720 nm with steps of 1 nm. OA
spectra were acquired using one cuvette filled with ultrapure water as a reference.

Furthermore, in order to investigate self-oxidation phenomena, three un-irradiated
samples of the Sets 1–15 of Table 2 were placed inside a thermostatic bath at the temperature
of 21.0 ± 0.5 ◦C. After a thermalization time of 15 min, OA spectra of these samples were
measured at regular times ti, starting from t0 = 0 up to tf = 90 min, in approximately
13-min steps.

3. Results and Discussion
3.1. FAS Variation

In FG dosimetry, OA spectra of each sample are generally reported as differences
(∆OA) between the OA spectrum measured after and before the exposure to ionizing
radiation. Indeed, the quantity ∆OA evaluated at a suitable wavelength or in a suitable
wavelength range can be directly correlated to the absorbed dose. When XO is used as the
chelating agent in FG dosimeters, negative values of ∆OA are expected in a wavelength
region centered at around 430 nm where the absorption band of free XO occurs. Indeed,
the increase in the concentration of Fe3+ ions, while increasing the radiation dose, gave rise
to a decrease in XO molecules not bounded with ferric ions.

By contrast, positive values of ∆OA in a broad wavelength interval at around 500–
650 nm can be detected and correspond to partially overlapping absorption bands due
to various ferric ions and xylenol orange complexes [62,63]. In fact, XO is able to bind
one or two metal ions at both of its ends in a π-electron conjugated system thanks to the
presence of the iminodiacetic acid groups linked to the chromophoric moiety, as well as
by phenolate oxygen atoms. The most representative complexes present three different
stoichiometric ratios between XO and ferric ions: (Fe3+)-(XO)2, (Fe3+)-(XO), and (Fe3+)2-
(XO) (Figure 1) [63,64].

Gels 2022, 8, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 1. Xylenol orange–iron complexes. 

Examples of ΔOA spectra of XO-PVA-GTA-FG dosimeters prepared with an XO con-
centration of 0.200 mM and two different FAS concentrations (equal to 0.10 mM and 1.00 
mM, i.e., Sets 2 and 5 of Table 2, respectively), irradiated to various doses, are shown in 
Figure 2. A saturation effect can be clearly observed for the dosimeters prepared with an 
FAS concentration of 0.10 mM (Figure 2b). In fact, the ΔOA spectra related to doses above 
12 Gy were fully overlapping, indicating the full depletion of Fe2+ in the dosimeters. 

Figure 1. Xylenol orange–iron complexes.



Gels 2022, 8, 204 6 of 17

The probability of each complex’s formation depends on the Fe3+ and XO concen-
trations [62]. For example, it is known from the literature [46,62] that increasing the
concentration of Fe3+ ions or XO favors the formation of the (Fe3+)2-(XO) complex or the
(Fe3+)-(XO)2 complex, respectively. Upon Fe3+ binding, the yellow-orange color of FG
dosimeters loaded with XO changes to violet, allowing us to point out the formation of the
complex in the visible range. In fact, the (Fe3+)2-(XO) and (Fe3+)-(XO) complexes present
an absorption band in the range of approximatively 500–620 nm, while the (Fe3+)-(XO)2
complex absorbs light at a shorter wavelength in the spectral region overlapping the tail of
the main absorption peak of the free XO at 430 nm [63].

Examples of ∆OA spectra of XO-PVA-GTA-FG dosimeters prepared with an XO
concentration of 0.200 mM and two different FAS concentrations (equal to 0.10 mM and
1.00 mM, i.e., Sets 2 and 5 of Table 2, respectively), irradiated to various doses, are shown
in Figure 2. A saturation effect can be clearly observed for the dosimeters prepared with an
FAS concentration of 0.10 mM (Figure 2b). In fact, the ∆OA spectra related to doses above
12 Gy were fully overlapping, indicating the full depletion of Fe2+ in the dosimeters.
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Figure 2. Examples of ∆OA spectra of XO-PVA-GTA-FG dosimeters prepared with (XO) = 0.20 mM
and using two different FAS concentrations: (a) (FAS) = 1.00 mM and (b) (FAS) = 0.20 mM. The
samples were irradiated at various doses.

By considering the whole set of dosimeters prepared with different FAS concentrations
(i.e., Sets 1–6 of Table 2) irradiated at different doses, and integrating their ∆OA spectra
in the wavelength interval (500–620 nm), the dose–response curves shown in Figure 3
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were obtained. Each data point of Figure 3 corresponds to the average over three different
samples. The error bars (one standard deviation) are smaller than the dimensions of the
symbols.
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Figure 3. Dose–response curves of XO-PVA-GTA-FG dosimeters prepared using different FAS
concentrations at a fixed XO concentration of 0.20 mM. The orange straight lines are the linear fits
to the experimental data. The dashed green lines were drawn to guide the eyes. The error bars
correspond to one standard deviation and are smaller than the symbol dimensions.

For the samples with FAS concentrations equal to 0.40 mM, 0.60 mM, 1.00 mM, and
5.00 mM, straight lines were fitted to the experimental data in the dose interval 0–30 Gy
(solid orange lines in Figure 3). The results of the fit parameters are given in Table 3. For
the remaining samples with FAS concentrations of 0.10 mM and 0.05 mM, no fits were
performed because of the limited number of data points showing a dynamic trend of the
dosimeter response with the radiation dose.

Table 3. Slope values of the straight lines fitted to the experimental data of Figure 3 in the interval
0–30 Gy, indicating the sensitivity to the radiation dose of the set of samples prepared with different
FAS concentrations. The coefficients of determination are also reported. Uncertainties correspond to
one standard deviation.

(FAS) mM Slope (Gy−1) R2

5.00 6.99 ± 0.05 0.9997

1.00 7.78 ± 0.06 0.9997

0.60 7.98 ± 0.06 0.9998

0.40 8.22 ± 0.07 0.9996
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The slope values of Table 3 indicate that a slight decrease in the sensitivity of the
dosimeters with increasing the FAS concentration from 0.40 mM to 5.00 mM occurred in
the investigated XO-PVA-GTA-FG dosimeters. In addition, such a slight decrease in the
sensitivity was associated with a better linearity above 30 Gy. However, it is worth noting
that a satisfactory linear dose response up to at least 30 Gy was observed in all the FG
dosimeters with an FAS concentration ranging from 0.40 mM to 5.00 mM.

These findings confirm that, for a fixed XO concentration of 0.200 mM, there is a
rather wide range of FAS concentrations that can be employed for the preparation of XO-
PVA-GTA-FG dosimeters without expecting significant changes in their main dosimetric
features. Actually, most of the research available in the literature about XO-FG dosimeters
was performed using FAS concentrations in the interval 0.50–1.50 mM (i.e., an [FAS]/[XO]
ratio from 1 to 10), independently of the employed gelling matrix (see Table 1).

3.2. XO Variation

Figure 4a shows the OA spectra of un-irradiated XO-PVA-GTA-FG dosimeters pre-
pared with a FAS concentration of 0.40 mM and different XO concentrations ranging from
0.020 mM to 0.800 mM (i.e., Sets 7–15 of Table 2). As expected, the presence of XO molecules
in the dosimeters gave rise to a broad main absorption band centered at approximately
430 nm [63]. The amplitude of this peak increased as the XO concentration increased and
for the samples prepared with XO concentrations of 0.400 mM and 0.800 mM instrumental
saturation occurred.
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concentration. The dashed orange line was drawn to guide the eyes. The error bars correspond to
one standard deviation.

An absorption band centered at approximately 585 nm can be also observed in the OA
spectra of the dosimeters prepared with very low XO concentrations (i.e., ≤0.080 mM). This
peak can be explained by the presence of Fe3+ ions produced by self-oxidation phenomena
and the formation of (Fe3+)2-(XO) and (Fe3+)-(XO) complexes. Indeed, such complexes are
characterized by a main OA peak at 585 nm [63]. For higher XO concentrations, Fe3+-(XO)2
complexes are expected to be the major species. Such complexes absorb light at a shorter
wavelength [63], i.e., in the spectral region overlapping the tail of the main absorption peak
of the free XO at 430 nm. The complete trend of the OA at 585 nm vs. XO concentration is
shown in Figure 4b.
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Examples of ∆OA spectra of XO-PVA-GTA-FG dosimeters prepared with an FAS
concentration of 0.40 mM and different XO concentrations and irradiated at various doses
are shown in Figure 5.

Gels 2022, 8, x FOR PEER REVIEW 10 of 18 
 

 

Examples of ΔOA spectra of XO-PVA-GTA-FG dosimeters prepared with an FAS 
concentration of 0.40 mM and different XO concentrations and irradiated at various doses 
are shown in Figure 5. 

 
Figure 5. Examples of ΔOA spectra of XO-PVA-GTA-FG dosimeters prepared using different XO 
concentrations and irradiated at various doses. 

Only the spectral region of interest for dosimetric purposes (i.e., the wavelength in-
terval where the absorption bands related to XO–Fe complexes occurred) was considered. 
It is worth noting that the boundary of the absorption region strictly depends on the XO 
concentration. In fact, the shape of the ΔOA spectra of the dosimeters prepared with the 
highest XO concentration of 0.800 mM (Figure 5a) was different from those measured in 
the dosimeters with an XO concentration lower than 0.400 mM (Figure 5c–h), inde-
pendently of the dose. Indeed, the highest ΔOA values in Figure 5a occurred at a wave-
length lower than 585 nm. This could be explained by considering that, when increasing 

Figure 5. Examples of ∆OA spectra of XO-PVA-GTA-FG dosimeters prepared using different XO
concentrations and irradiated at various doses.

Only the spectral region of interest for dosimetric purposes (i.e., the wavelength
interval where the absorption bands related to XO–Fe complexes occurred) was considered.
It is worth noting that the boundary of the absorption region strictly depends on the XO
concentration. In fact, the shape of the ∆OA spectra of the dosimeters prepared with the
highest XO concentration of 0.800 mM (Figure 5a) was different from those measured in the
dosimeters with an XO concentration lower than 0.400 mM (Figure 5c–h), independently of
the dose. Indeed, the highest ∆OA values in Figure 5a occurred at a wavelength lower than
585 nm. This could be explained by considering that, when increasing the XO concentration,
the formation of the complex 1:2 (Fe3+)-(XO)2 is predominant, presenting an absorption
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peak under 500 nm. When decreasing the concentration, the main complex becomes the
1:1 (Fe3+)-(XO) complex with a peak at about 585 nm in an acidic medium. However,
the complex (Fe3+)2-(XO), prevailing when the iron concentration is higher than the XO
concentration, also shows an absorption peak at the same wavelength [62,63]. Thus, the
exact attribution of the maximum optical absorption is difficult because the mentioned
complexes are present in equilibrium in the solution.

Actually, the shape of the ∆OA spectra of Figure 5a suggests that the (Fe3+)-(XO)2 com-
plexes make a greater contribution than the other ones due to the effect of the availability of
XO molecules that can be bounded with radiation-induced ferric ions. Consequently, in the
samples with the highest XO concentration the absorption band related to (Fe3+)2-(XO) and
(Fe3+)-(XO) that peaked at 585 nm appeared to only be a shoulder of the main absorption
band that peaked at a lower wavelength and was related to the (Fe3+)-(XO)2 complexes [62].

A similar shape was observed for the ∆OA spectra of the samples prepared with a XO
concentration of 0.400 mM, but only for doses ≤14 Gy (Figure 5b).

Actually, the relative ratio between the concentration of xylenol orange and the con-
centration of ferric ions in complexes with different stoichiometric ratios (and consequently
their absorption bands) depends on the dose, i.e., on the concentration of ferric ions pro-
duced in the dosimeters after exposure to ionizing radiation [14,59].

The samples with XO concentrations of 0.200 mM and 0.166 mM (Figure 5c,d) were
characterized by the well-known ∆OA spectra, such as the one described in Figure 2a,
and showed a systematic increase in their intensity as the radiation dose increased. For
lower XO concentrations (Figure 5e–h), the dynamic trend with the radiation dose was
progressively lost and, for the lowest XO concentration of 0.020 mM, the ∆OA spectra fully
overlapped each other.

The observed saturation effects of the response of these dosimeters were attributable
to the low concentration of XO molecules that can be bounded with the radiation-induced
ferric ions.

A thorough analysis of the dose–response curve of the XO-PVA-GTA-FG dosimeters
prepared with an FAS concentration of 0.40 mM and different XO concentrations is shown
in Figure 6, where the cumulative values of ∆OA in the spectral interval 500 nm–620 nm
(ΣOA) were plotted versus radiation dose. Each data point of Figure 6 corresponds to the
average over three different samples.

For the samples with an XO concentration ranging from 0.080 mM to 0.800 mM,
straight lines were fitted to the experimental data. The results of the fit parameters, together
with details of the dose interval considered for the fitting procedure, are given in Table 4.
For the remaining samples with XO concentrations of 0.020 mM and 0.040 mM, no fits were
performed because of the limited number of data points showing a dynamic trend with the
radiation dose.

The slope values of Table 4 demonstrate a systematic increase in the sensitivity of the
dosimeters with a decrease in the XO concentration. Such an increase was associated with
a contraction of the interval where the dose–response curve proved to be linear.

In addition to the use of the cumulative ∆OA, dose–response curves similar to those of
Figure 6 were obtained by considering the ∆OA values calculated at individual wavelengths
in the interval 500–630 nm in 5-nm steps. Several examples of such curves in dosimeters
prepared with XO concentrations of 0.800, 0.240, 0.166, and 0.133 (i.e., Sets 15, 13, 11, and
10 of Table 2) related to the selected wavelengths of 630, 585, and 530 nm are shown in
Figure 7.

A straight line was fitted to each dose–response curve and the sensitivity to the
radiation dose (i.e., the slope of the fitted straight line) for each sample at each individual
wavelength was accordingly obtained.

The complete results of the wavelength-dependence of the sensitivity to the radiation
dose for XO-PVA-GTA-FG dosimeters prepared with different XO concentrations are shown
in Figure 8, where the slope values of the fitted straight lines vs. wavelength are plotted.
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The trend observed in Figure 8 confirmed the highest sensitivity at 585 nm for all the
samples, except the ones prepared with the maximum XO concentration of 0.800 mM.
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Table 4. Slope values of the straight lines fitted to the experimental data of Figure 6, indicating the
sensitivity to the radiation dose of the set of samples prepared with different XO concentrations.
The dose interval considered for the fitting procedure and the coefficients of determination are also
reported. Uncertainties correspond to one standard deviation.

(XO) mM Slope (Gy−1) Linear Dose Interval
(Gy) R2

0.800 4.97 ± 0.02 0–42 0.9999
0.400 6.52 ± 0.04 0–35 0.9998
0.240 7.88 ± 0.06 0–28 0.9997
0.200 8.22 ± 0.06 0–28 0.9998
0.166 8.37 ± 0.11 0–28 0.9991
0.133 8.78 ± 0.05 0–21 0.9999
0.080 9.07 ± 0.38 0–14 0.9966
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3.3. Fine Tuning of FAS and XO Concentrations

The results of the analysis of the dose–response curves of XO-PVA-GTA-FG dosime-
ters prepared with different FAS and XO concentrations indicate that the use of an FAS
concentration in the interval 0.40–0.60 mM, coupled with the use of an XO concentration in
the interval 0.133–0.200 mM, guaranteed satisfactory dosimetric properties of the samples
both in terms of sensitivity and linearity (Figure 9).
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Figure 9. Dose–response curves of XO-PVA-GTA-FG dosimeters obtained by slight changes in FAS
and XO concentrations. (a) [FAS]/[XO] ratio equal to 3; (b) (XO) = 0.166 mM and (FAS) = 0.6, 0.5,
and 0.4 mM. The error bars correspond to one standard deviation and are smaller than the symbol
dimensions. The dashed lines were drawn to guide the eyes.

Figure 9a shows the dose–response curves of three different sets of samples (Sets 16–18
of Table 1) prepared by maintaining the [FAS]/[XO] concentration ratio equal to 3.0. The
three curves were rather similar: For doses ≤35 Gy, the maximum variation among the
cumulative ∆OA values of the samples was found to be equal to 8%. At higher doses, the
saturation effect was more evident for the FAS concentration of 0.40 mM. A significantly
lower variability was observed among XO-PVA-GTA-FG dosimeters prepared with a
FAS concentration in the interval 0.40–0.60 mM but using a constant XO concentration of
0.166 mM (Sets 19–21 of Table 1).

The dose–response curves of these samples are plotted in Figure 9b. In this case, within
the entire investigated dose interval, the maximum variation among the cumulative ∆OA
values of the samples was assessed to be equal to 3.0%.

3.4. Self-Oxidation

Besides the optimization of FAS and XO concentrations to guarantee an adequate
level of sensitivity and a wide range of linearity, the effects of such compounds on the self-
oxidation features of XO-PVA-GTA-FG dosimeters were investigated. Figure 10a,b show
examples of the change in the cumulative OA over time measured in un-irradiated XO-PVA-
GTA-FG dosimeters prepared with different concentrations of FAS and XO, respectively.
Each data point represents the difference between the cumulative OA measured at the time
ti and that obtained at the time t0.

The results suggest that the self-oxidation rate did not significantly depend on the
XO concentration when an FAS concentration of 0.40 mM was used (Figure 10b). Similar
self-oxidation trends were observed in samples with an XO concentration of 0.200 mM
and FAS concentrations ranging from 0.40 mM to 1.00 mM. By contrast, XO-PVA-GTA-FG
dosimeters prepared with an FAS concentration of 5.00 mM showed faster self-oxidation
and after 60 min the cumulative OA was three times higher than the value of samples
prepared with lower FAS concentrations.
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4. Conclusions

A systematic study on the effects of variation in ferrous ammonium sulfate (FAS) and
xylenol orange (XO) concentrations on the dosimetric properties of Fricke gel dosimeters
prepared with poly(vinyl alcohol) (PVA) cross-linked by glutaraldehyde (GTA) was carried
out. The investigated properties concerned the dose–response curves (i.e., the sensitivity
and range of linearity), the self-oxidation rate, and the level of self-oxidation.

From the outcomes achieved in this study, some conclusions can be drawn about the
behavior of the tested XO-PVA-GTA-FG dosimeters. Firstly, increasing the FAS concentra-
tion does not significantly increase the absorbed dose–optical response range, nor does it
increase the optical sensitivity. However, a more pronounced level of self-oxidation was
noticed; thus, an increase in the FAS concentration tends to decrease the temporal stability.
On the other hand, lower FAS concentrations reduce the dosimeter’s response range. How-
ever, there was no evidence of variations for the optical sensitivity. Furthermore, it was
found that the XO concentration is the main factor responsible for the limited absorbed
dose response.

Starting from these considerations, the experimental data were in line with the lit-
erature data on traditional and natural gel matrices. In particular, 1.00–0.40 mM and
0.200–0.166 mM are the optimal intervals of FAS and XO concentrations, respectively, to be
used in the preparation of dosimeters in order to maximize their performances in the case
of spectrophotometric analyses.

The results obtained in this paper allow us to begin a new investigation on the possi-
bility of improving the dosimetric stability of the FG by adding alternative chelating agents
and/or antioxidants, such as sulfosalicylic acid (SSA), methylthymool blue sodium salt
(MTB), ethylenediaminetetraacetic acid (EDTA), and dimethylsulfoxide (DMSO).
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