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Plant–insect interactions are common and important in basic and applied biology. Trait
and genetic variation can affect the outcome and evolution of these interactions, but
the relative contributions of plant and insect genetic variation and how these interact
remain unclear and are rarely subject to assessment in the same experimental context.
Here, we address this knowledge gap using a recent host-range expansion onto alfalfa
by the Melissa blue butterfly. Common garden rearing experiments and genomic data
show that caterpillar performance depends on plant and insect genetic variation, with
insect genetics contributing to performance earlier in development and plant genetics
later. Our models of performance based on caterpillar genetics retained predictive
power when applied to a second common garden. Much of the plant genetic effect
could be explained by heritable variation in plant phytochemicals, especially saponins,
peptides, and phosphatidyl cholines, providing a possible mechanistic understanding
of variation in the species interaction. We find evidence of polygenic, mostly additive
effects within and between species, with consistent effects of plant genotype on growth
and development across multiple butterfly species. Our results inform theories of plant–
insect coevolution and the evolution of diet breadth in herbivorous insects and other
host-specific parasites.
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A central challenge for the biological sciences is to understand the causes and consequences
of trait variation within and among species. Experimental manipulations aimed at
understanding the molecular basis of organismal variation have most often been done
in settings stripped of all or most ecological context. This approach can be fruitful for
simple traits, including some aspects of morphology (e.g., refs. 1–4), but is lacking when
it comes to interspecific interactions that include the evolution of crop pests, emerging
infectious diseases, and other host–parasite associations (5, 6).

Plants and herbivorous insects have contributed much to our understanding of the
formation and persistence of interactions between hosts and parasites, in part because
they are experimentally tractable, but also because insects are the most diverse macroscopic
organisms on the planet, and their specialized feeding habits play a role in their diversifi-
cation (7–11). Yet, classic studies of the molecular basis of plant–insect interactions have
relied on candidate genes or targeted classes of phytochemical compounds (e.g., refs. 12–
14). More recently, evolutionary geneticists have taken advantage of new technologies to
explore the genetic basis of herbivory in a genomic context. With very few exceptions, these
studies have focused on genetic variation in either herbivores or plants (refs. 15–19; but see
ref. 20), but rarely both in the same study and never, to our knowledge, paired with modern
metabolomic approaches that allow for untargeted discovery of influential compounds
(21). This leaves us with considerable uncertainty concerning the relative importance of
heritable traits in herbivores and in plants for determining the outcome of plant–insect
interactions. For example, particular genetic variants in an herbivore might be associated
with increased feeding efficiency, but only when challenged with particular plant variants,
such as specific defensive metabolites or combinations of physical defenses (22). However,
without an understanding of the genetic architecture of both the herbivore physiology
and the plant traits, the evolutionary trajectory of the system cannot be understood in
the context of available theoretical models or forecast with respect to the evolution of
defense in the plant or increased performance in the herbivore. We address this need using
a recent host-range expansion onto alfalfa by the Melissa blue butterfly, emphasizing the
role of prediction when building an understanding of the functional genetic basis of a
novel plant–insect interaction.

The Melissa blue butterfly (Lycaeides melissa) is widespread in western North America
(23). It exists in isolated populations associated with larval host plants in the legume family,
including many species of Astragalus and Lupinus (24, 25). The Melissa blue colonized
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alfalfa (Medicago sativa) after the plant was introduced to the
western United States as a forage crop in the mid 1800s and
is now commonly found on naturalized (i.e., feral) alfalfa along
roadsides and trails (24). Melissa blue butterflies show evidence of
adaptation to alfalfa, but this host plant remains inferior to known
native hosts in terms of caterpillar development, with cascading
life-history effects (26–28). As insect growth and survival are often
reduced on novel hosts, the lower quality of alfalfa for Melissa blue
butterflies is likely typical of a general phenomenon (29). Alfalfa
is phenotypically variable (30) and, thus, is not a homogeneous
resource for Melissa blue butterflies. In particular, phenotypic
variation among naturalized alfalfa populations, including phyto-
chemical variation, affects Melissa blue caterpillar growth and host
patch occupancy (25, 31, 32). However, it is unclear how much
of this phenotypic variation has a genetic basis. Moreover, as is
true for other plant–insect interactions, the relative contributions
of plant (alfalfa) and insect (Melissa blue) genetic variation to
the outcome of the interaction is unexplored, including whether
growth and successful development from caterpillar to adult is in-
fluenced by additive or epistatic genetic variation in the interacting
species.

Here, we use multiple common garden rearing experiments
combined with multilocus genetic mapping and genomic predic-
tion to build and test models that quantify the relative effects
and interactions of alfalfa and Melissa blue genetic variation on
caterpillar performance (i.e., growth and survival). We specifically
test the following alternative hypotheses: (i) Caterpillar perfor-
mance is primarily affected by Melissa blue genetic variation
and architecture; (ii) caterpillar performance is primarily affected
by genetic variation and architecture in the host plant; (iii) the
genetics of the interacting species have similar effects on caterpillar
performance and combine additively; (iv) the genetics of the
interacting species have similar effects on caterpillar performance
and combine epistatically; and (v) the null hypothesis that neither
Melissa blue nor alfalfa genetic variation has an appreciable effect
on caterpillar performance (Fig. 1). Genetic mapping of 1,760
plant traits, including 1,750 phytochemical metabolites, con-
tributes to testing these hypotheses and also allows us to probe the
functional basis of plant genetic effects on caterpillar performance.
Finally, we conduct complementary rearing experiments to test the
consistency of plant genetic effects (i.e., their lack of interaction
with herbivore genetics) across butterfly populations and species.

Fig. 1. Main hypotheses tested about the contribution of plant and insect
genetics to caterpillar performance were as follows: (i) Caterpillar perfor-
mance is primarily affected by insect (L. melissa) genetics; (ii) caterpillar
performance is primarily affected by plant (M. sativa) genetics; (iii) the genetics
of the interacting species have similar effects on caterpillar performance and
combine additively; (iv) the genetics of the interacting species have similar
effects on caterpillar performance and combine epistatically; and (v) the null
hypothesis that neither insect nor plant genetic variation has an appreciable
effect on caterpillar performance. The illustration (by R. Ribas) shows an
L. melissa caterpillar feeding on alfalfa, while being tended by ants; additional
biotic or abiotic factors, such as the presence of mutualistic ants, also affect
caterpillar performance in the wild (25), but are not a component of this
study.
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C

Fig. 2. (A) Map of plant (M. sativa) and insect (L. melissa) common garden
source populations. Symbol shapes denote source type—Lm, L. melissa; Ms-
abs, M. sativa site without L. melissa butterflies; and Ms-pres, M. sativa site with
L. melissa butterflies—and are colored to indicate different populations within
taxa. The A, Inset illustration shows an adult L. melissa perched on M. sativa
(illustration by R. Ribas). (B) Ordination of genetic variation via PCA for the
M. sativa common garden plants. (C) Ordination of genetic variation via PCA
for the L. melissa caterpillars from the rearing experiment. Points in B and C
denote individual plants or caterpillars and are colored to match the map (A).

Results

Overview of the Primary Common Garden Rearing Experi-
ment. We planted a common garden comprising 1,080 alfalfa
(M. sativa) plants at the Greenville Experimental Farm near
Logan, UT (41.765 ◦N, 111.814 ◦W) in 2018 (SI Appendix,
Fig. S1A). Seeds for this garden were collected from 11 naturalized
(i.e., feral) M. sativa sites in the western United States, including
five sites where L. melissa butterflies are found (SI Appendix,
Table S1 and Fig. 2A). Caterpillars for the experiment were
sourced from six sites by obtaining eggs from gravid L. melissa
females in 2019. We detected substantial genetic variation and
only subtle genetic differentiation among the source locations for
alfalfa (161,008 single-nucleotide polymorphisms [SNPs]; mean
expected heterozygosity = 0.168, FST = 0.029) and for L. melissa
(63,194 SNPs; mean expected heterozygosity = 0.065, FST =
0.045) (Fig. 2B and SI Appendix, Fig. S2). Nearby SNPs (<100
base pairs [bps]) exhibited appreciable linkage disequilibrium
(LD) in M. sativa (median r2 = 0.050, 95th percentile = 0.862)
and L. melissa (median r2 = 0.002, 95th percentile = 0.052),
but this decayed rapidly with physical distance with especially low
levels of LD beyond 100 bps in L. melissa (SI Appendix, Fig. S3).

The main rearing experiment was conducted in summer 2019.
For this experiment, caterpillars were reared individually on
each of the 1,080 alfalfa plants. Rearing was done in a growth
chamber, with caterpillars fed fresh leaf tissue as needed. In this
experiment, 26.1% of the caterpillars survived to pupation and
14.1% survived to eclose as adults (mean survival time = 21.8 d)
(Fig. 3A). Mean L. melissa weights were 2.94 mg (SD = 2.13) at
8 d, 12.7 mg (SD = 7.71) at 14 d, and 20.0 mg (SD = 7.21) at
pupation. Weight and survival were variable within and among
groups of caterpillars from different source populations and within
and among groups that consumed plants grown from different
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Fig. 3. (A) Plot shows survival and development of L. melissa over the course
of the rearing experiment. Colored regions denote the number of individuals
that were living caterpillars, pupae, adults, or dead at each day posthatching.
(B) Plots show pairwise correlations between L. melissa performance traits.
Scatterplots are shown in the lower-triangle panels—each point denotes
one individual—and Pearson correlations are reported in the corresponding
upper-triangle panels. Traits are given along the diagonal panels: 8-d weight,
14-d weight, pupal weight, and truncated survival time. Scatterplots and
Pearson correlations are based on residuals after controlling for confounding
environmental effects (see Materials and Methods for details).

M. sativa source populations (SI Appendix, Figs. S4 and S5).
Weight and survival metrics of performance were positively
correlated, including, 8-d weight vs. 14-d survival (Pearson
r = 0.0916, 95% CI = 0.0237 to 0.159), 14-d weight vs. survival
to pupation (r = 0.472, 95% CI = 0.416 to 0.525), and pupal
weight vs. survival to eclosion (r = 0.449, 95% CI = 0.342 to
0.545) (Fig. 3B). Past work has shown that weight and lifetime
fecundity are highly correlated in L. melissa (26).

Plant and Caterpillar Genetic Variation Affect Performance.
Using multilocus genome-wide association (GWA) methods (see
SI Appendix, Figs. S6–S8 for evidence of adequate Markov chain
Monte Carlo [MCMC] performance), we found evidence that
both M. sativa and L. melissa genetic variation contributed to
caterpillar performance in the common garden rearing experiment
(Fig. 4A), consistent with our hypotheses (iii) and (iv) (Fig. 1).
Specifically, M. sativa genetics (161,008 SNPs) explained between
2% (survival to 8 d) and 36% (14-d weight) of the variation in
performance (mean across traits = 17%), and L. melissa genetics
(63,194 SNPs) explained 5% (weight at pupation and survival

to pupation) to 29% (8-d weight) of the variation in the same
nine caterpillar performance measures (mean = 15%) (values
denote point estimates of the percent variance explained [PVE];
see SI Appendix, Table S2 for credible intervals; cross-validation
results are shown in the next section). Caterpillar genetics
contributed more to performance metrics from early development
(e.g., 8-d weight and survival to 8 and 14 d), whereas plant
genetics mattered more for later development (e.g., 14-d weight,
pupal weight, and survival to pupation and adult), resulting in a
trend toward a negative relationship between caterpillar and plant
genetic contributions across traits (Pearson r = −0.52, 95%
CI = −0.88 to 0.22, P = 0.15). We detected mostly positive
genetic correlations among performance traits (Fig. 4B), with
similar, but not identical, genetic correlations calculated from
M. sativa and L. melissa polygenic scores (Pearson correlation be-
tween M. sativa and L. melissa genetic correlations, r = 0.80, 95%
CI = 0.63 to 0.89, P = 5.923e−9). Polygenic scores in this
context quantify the estimated effect of many plant or caterpillar
genetic variants on a performance trait.

Mapping results suggested mostly a polygenic basis for the
performance traits, with point estimates of >10 loci affecting
most traits (SI Appendix, Tables S2–S4 and Fig. 4 C and D),
but with more evidence of specific SNPs strongly associated with
performance in L. melissa. This included 10 SNPs with posterior
probabilities of association (i.e., posterior inclusion probabilities)
>0.5 with at least one performance trait (Fig. 4D and SI Appendix,
Table S5). Some of these SNPs were in or near (<20 kilobase pairs
[kbps]) genes with biologically plausible functions for affecting
performance, such as MSP-300, Lipase member H, and Juvenile
hormone acid O-methyltransferase, all of which were associated
with 8-d weight. For example, MSP-300 affects muscle devel-
opment and muscle–ectoderm attachment in Drosophila (33).
Insect lipases metabolize fats, are expressed in gut tissue, and
can affect survival and reproductive capacity in insects; Lipase
member H, in particular, has further been associated with viral
resistance in the moth Bombyx mori (34, 35). Juvenile hormone acid
O-methyltransferase is involved in juvenile hormone biosynthesis
and, thus, in the regulation of insect growth and development,
especially metamorphosis (36, 37). A single M. sativa SNP was
strongly associated with survival to pupation (posterior inclusion
probability [PIP] >0.5; chromosome 1, position = 12,930,966
bps). This SNP was found in a gene encoding TOM1-like pro-
tein 9 and was within 30 kbps of six additional genes, including
two genes with known links to plant–insect interactions: dentin
sialophosphoprotein, which is associated with soybean compen-
satory growth after cutworm herbivory (38); and photosystem I
reaction center subunit psaK, which has been mechanistically linked
to tolerance to aphids and aphid feeding preference in Ara-
bidopsis (39) (SI Appendix, Table S6). We obtained similar re-
sults with complementary genetic mapping analyses that included
20 genetic PCs as additional controls for population structure
when estimating SNP–performance associations; this was true
both in terms of the percentage of variation in performance
explained (Pearson correlations > 0.99, P < 0.001 for caterpillar
and plant genetics) (SI Appendix, Tables S7 and S8 and Fig. S9)
and in terms of specific SNP–performance associations (Pearson
correlations for posterior inclusions probabilities, M. sativa, r =
0.76, P < 0.001; L. melissa, r = 0.98, P < 0.001) (SI Appendix,
Fig. S10).

We repeated the genetic mapping approach using a combined
dataset of both M. sativa and L. melissa genetic loci (i.e., the
combined 224,202 SNPs) (genetic PCs were not included here or
in subsequent analyses). The combined dataset generally explained
more of the variation in caterpillar performance, 17 to 49%
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Fig. 4. Genetic mapping of caterpillar per-
formance. (A) Dot chart shows Bayesian es-
timates of the proportion of trait variation
explained by M. sativa genetics (Ms), L. melissa
genetics (Lm), or both combined (Ms+Lm) for
each caterpillar-performance trait: W8d, 8-d
weight; W14d, 14-d weight; Wpup, pupal weight;
S8d, 8-d survival; S14d, 14-d survival; SPup,
survival to pupation; SAdu, survival to adult;
Stot, total survival time; and Stime, (trun-
cated) survival time. Points and horizontal lines
denote point estimates (posterior medians)
and 95% equal-tail probability intervals, re-
spectively. (B) Heatmap shows genetic correla-
tions between pairs of caterpillar-performance
traits based on M. sativa genetics (lower tri-
angle) or L. melissa genetics (upper triangle).
Manhattan plots in C and D show poste-
rior inclusion probabilities (PIPs) for genotype–
performance associations based on M. sativa
and L. melissa SNPs, respectively. Points de-
note SNPs with different colors and symbols
for different performance traits. Only SNPs with
PIPs ≥ 0.01 are depicted. Horizontal lines at PIPs
of 0.1 and 0.5 are included for reference.

(mean = 24%), than either M. sativa or L. melissa genetic loci
alone. Moreover, the combined variation explained for each per-
formance trait was well described by a model where the variance
explained separately by plant and caterpillar genetics combined
additively. Specifically, in a linear regression model, the percent
variance in performance traits explained by plant and caterpillar
genetics separately explained 97% of the variation in the estimates
of the variance explained by the combined genetic datasets (linear
regression, βplant = 1.17, P = 6.6e−6; βcaterpillar = 0.80, P =
0.00037, r2 = 0.97) (SI Appendix, Fig. S11), consistent with our
hypothesis (iii) (Fig. 1).

Given the evidence of additivity of genetic effects between
species presented above, we next turned to more direct tests of
the hypothesis that epistatic interactions contribute to caterpil-
lar performance, with a specific focus on caterpillar and pupal
weight (see Materials and Methods for details and justification).
To minimize the low power associated with testing all SNP–SNP
interactions, we tested for marginal epistasis—that is, for evidence
of an epistatic interaction between each SNP and any of the other
SNPs. We failed to find significant evidence of marginal epistasis
among M. sativa SNPs, among L. melissa SNPs, or between
M. sativa and L. melissa SNPs (i.e., no SNPs achieved genome-
wide significance) (SI Appendix, Figs. S12 and S13). Our failure
to find epistasis in this manner could be driven in part by limited
power to detect it. Thus, we next refit the multilocus GWA
models described above, but with additional terms for epistatic

interactions. This allowed us to directly ask where including epis-
tasis increases our ability to explain caterpillar performance. To do
this in a statistically tractable way, we added pairwise interactions
between the 150 SNPs with the most evidence of marginal epis-
tasis (i.e., lowest P values); this added an additional 11,175 terms
to each model. Models including these epistatic effects failed to
explain more of the variation in caterpillar performance than our
purely additive models (Fig. 5). Thus, these direct tests of epistasis
provide additional evidence against hypothesis (iv) and, thus,
in favor of hypothesis (iii) (i.e., additivity within and between
species) (Fig. 1). Consequently, we focus on the additive models in
tests of predictive power below, before presenting additional tests
of additivity vs. epistasis in subsequent sections of this paper.

Predicting Caterpillar Performance from Plant and Caterpillar
Genotype. We next showed that our genotype–phenotype mod-
els were moderately successful at predicting caterpillar perfor-
mance. This is relevant both for validating these models and for
demonstrating their potential utility and limitations in making
predictions about effects and evolutionary trajectories in nature.
Specifically, genomic predictions of performance from 10-fold
cross-validation exhibited statistically significant positive correla-
tions with observed performance values for 3 out of 10 perfor-
mance traits for M. sativa genetics, 5 out of 10 traits for L. melissa
genetics, and 6 out of 10 traits for M. sativa and L. melissa genetics
combined (Fig. 6A). Especially pronounced positive correlations
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Fig. 5. Genetic mapping of caterpillar performance with epistasis. The dot
chart shows Bayesian estimates of the proportion of trait variation explained
by M. sativa genetics (Ms), L. melissa genetics (Lm), or both combined (Ms+Lm)
for 8-d weight (W8d), 14-d weight (W14d), and pupal weight (Wpup). Points
and horizontal lines denote point estimates (posterior medians) and 95%
equal-tail probability intervals, respectively, for the proportion of trait vari-
ation explained by additive effects and pairwise epistatic effects. Vertical
black lines denote point estimates (posterior medians) for the proportion of
variation explained by additive genetic effects alone (as presented in Fig. 4A).

between observed and predicted performance were detected for
14-d weight based on M. sativa genetics and 8-d and 14-d survival
based on L. melissa genetics. More generally, our ability to predict
performance traits was well explained by our estimates of heritabil-
ity (i.e., PVE): We calculated Pearson correlations of 0.89 (95%
CI = 0.55 to 0.98, P = 0.0013) and 0.62 (95% CI = −0.073
to 0.91, P = 0.074) between PVE estimates and the correlation
between observed and predicted traits for M. sativa and L. melissa
genetics, respectively (Fig. 6B). In other words, we better predicted
caterpillar performance for the performance traits that were more
heritable.

Having demonstrated moderate predictive power within
the main common garden, we next asked whether genotype–
phenotype models estimated from this garden could successfully
predict L. melissa performance for additional caterpillars fed
M. sativa from a second, smaller common garden (the Gene Miller
Life Science Garden; n = 180 plants) (SI Appendix, Fig. S1). This
second garden, planted in 2018 on the Utah State University
(USU) campus ∼2.5 km from the Greenville Experimental
Farm garden, included plants from 6 of the 11 M. sativa source
sites and caterpillars from each of the sites used in the main
experiment. Survival rates for caterpillars reared on plants from
this garden were similar to those reared on plants from the
main garden (SI Appendix, Fig. S14). Predictive performance for
the second garden differed notably for M. sativa vs. L. melissa
genotype–phenotype models, with statistically significant positive
correlations between observed and predicted trait values in the
new garden for only 1 trait for M. sativa genetics vs. 6 of the 10
performance traits for L. melissa genetics (Fig. 6C ). Predictions
for the combined dataset were similar to those based on L. melissa
genetics alone. Consistent with these patterns, estimates of PVE
from the main garden explained predictive power for L. melissa

genetics (Pearson r = 0.93, 95% CI = 0.68 to 0.98), but not
M. sativa genetics (r = 0.17, 95% CI = −0.56 to 0.75). Thus,
unmeasured environmental differences likely limit our ability
to predict performance from plant genetics across gardens to a
much greater extent than for caterpillar genetics (plant growth
environments differed, but caterpillar-rearing environments did
not), despite these gardens being separated by only ∼2.5 km.
Differences in the exact genetic composition of the two gardens
could add to this effect.

Genetic Associations with Plant Traits Explain the Plant Genetic
Contribution to Caterpillar Performance. Having shown that
plant genetic variation affects caterpillar performance, we now fo-
cus on the Greenville Experimental Farm (SI Appendix, Fig. S1A)
to identify possible components of the functional basis of the
documented plant genetic effects. This also allowed us to further
test for effects of additive vs. epistatic interactions between plant
and caterpillar genotypes on caterpillar performance (see our
hypotheses (iii) vs. (iv) in Fig. 1). We first determined the extent
to which genetic loci associated with caterpillar performance were
also associated with other plant traits, including potential plant
vigor or defense traits (17). Such genetic correlations could arise
from pleiotropy, but also from LD between distinct loci affecting
the plant traits and caterpillar performance (i.e., genetic corre-
lations do not demonstrate a causal genetic link between traits).
Still, such an association would be consistent with the hypothesis
that these traits, or other genetically correlated traits, constitute
possible mechanisms by which plant genotype affects caterpillar
performance. To do this, we measured and mapped 1,760 plant
traits in the Greenville Experimental Farm garden using the
same multilocus mapping approach and M. sativa SNP dataset
described above. The traits included plant height, leaf length,
leaf width, leaf area, leaf shape, leaf weight, specific leaf area
(SLA), leaf toughness, trichome density, levels of herbivory on the
plants in the field, and 1,750 plant chemistry metabolites, which
were quantified and characterized by using liquid chromatography
combined with mass spectrometry (LC-MS; similar to refs. 25
and 32).

We documented genetic variation affecting most of the
plant traits, with mean PVEs of 20.5% for the nonchemical
traits (minimum = 5.6%, maximum = 38.7%) and 10.9%
(310 traits > 20% and 20 > 50%) for the 1,750 chemical traits
(SI Appendix, Table S9). Additionally, in the main Greenville
Experimental Farm common garden, the distribution of PVE
for the 1,750 chemical traits differed markedly from that for
1,750 matched, randomized traits, consistent with a clear genetic
contribution to this variation in leaf metabolites (SI Appendix,
Fig. S15).

Multiple plant traits, including chemical and nonchemical
traits, exhibited genetic correlations with each caterpillar-
performance trait; in other words, plant-trait polygenic scores
were correlated with caterpillar-performance polygenic scores
when inferred from plant genetics (Fig. 7 A and B and
SI Appendix, Fig. S16). However, because of the large number
of measured traits and genetic correlations among the plant
traits (SI Appendix, Fig. S17), many of the genetic correlations
between plant traits and caterpillar performance were likely
redundant. Thus, to identify the combined subset of traits
most strongly predictive of caterpillar performance (and, thus,
the best candidates for a mechanistic link to performance),
we next fit a least absolute shrinkage and selection operator
(LASSO)-penalized regression model for the polygenic scores
of each caterpillar-performance trait (based on plant genetics) as
a function of the polygenic scores for the 1,760 plant traits. These
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B D
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Fig. 6. Genomic prediction of caterpillar per-
formance. (A) Dot chart shows Pearson cor-
relations between cross-validation genomic
predictions of phenotypes and the observed
values based on M. sativa genetics (Ms),
L. melissa genetics (Lm), or both combined
(Ms+Lm) for each caterpillar-performance trait:
W8d, 8-d weight; W14d, 14-d weight; Wpup,
pupal weight; S8d, 8-d survival; S14d, 14-d sur-
vival; SPup, survival to pupation; SAdu, survival
to adult; Stot, total survival time; and Stime,
(truncated) survival time. Points and horizontal
lines denote point estimates (posterior medi-
ans) and 95% equal-tail probability intervals,
respectively. For example, a large value on the
x axis indicates a high correlation between
observed performance values and predictions
from genotype based on cross-validation. (B)
Scatterplot of PVE vs. the Pearson correlation of
genomic predictions from A. Each point denotes
a trait and is colored to indicate values from
M. sativa or L. melissa genetics. Colored lines
are best fits from ordinary linear regression,
and a dashed line denotes the 0 value on the
y axis. (C) Dot chart similar to A, but for ge-
nomic predictions of phenotypes in a second
common garden (the Gene Miller Life Science
Garden) based on the models fit from the main
garden. (D) Scatterplot of correlations between
observed caterpillar-performance-trait values
and genomic predictions of these values us-
ing cross-validation within the main garden vs.
prediction for samples in the Gene Miller Life
Science Garden based on the models fit for the
main garden.

models explained 41 to 80% of the variation in the caterpillar-
performance scores (mean = 69.2%, cross-validation predictive
r2 ranged from 0.39 to 0.76) (SI Appendix, Table S10 and
Fig. 7C ). On average, 260 of the 1,760 traits were retained in these
models (i.e., given nonzero regression coefficients), with a range
of 117 (survival time) to 347 (8-d survival) traits (Fig. 7 D and
E and SI Appendix, Fig. S18). Both chemical and nonchemical
traits were retained in the models. Nonchemical traits with the
biggest effects included a positive effect of plant height on 14-d
weight (β = 0.037), positive effects of trichome density (β =
0.036) and SLA (β = 0.031) on survival to adulthood, and
a negative effect of leaf toughness on survival to adulthood
(β = −0.34). Consistent with a previous phenotypic assay
of caterpillar performance and plant metabolomic variation in
this system (32), top chemical traits included several saponins,
including saponins (two distinct medicagenic acids) associated
with effects on caterpillar weight and survival (SI Appendix,
Tables S12 and S13). The flavonoid glycoside Tricin 7-glucoside
was associated with reduced survival, whereas several peptides
(e.g., MESA.583 = C13H18O, a fragment of a N -acyl amine;
MESA.615 = C23H43N7O7; and MESA.849 = C14H19NO3,
an N -acyl amine) were associated with reduced weight or
survival (SI Appendix, Tables S12 and S13). Lastly, we fit LASSO

regression models on the 1,064 principal components (PCs) from
an ordination of the plant-trait and chemistry polygenic scores,
which represent 1,064 independent (orthogonal) variables. Our
goal here was to provide additional evidence that multiple, distinct
genetic factors contributed to explaining caterpillar-performance
polygenic scores. Models based on these predictors explained 27
to 76% of the variation in the caterpillar-performance scores
(mean = 56.6%, cross-validation predictive r2 ranged from 0.25
to 0.72), with an average 180 of the 1,064 PCs retained in the
LASSO models (range = 52 to 337) (SI Appendix, Fig. S19).

Compared to predicting polygenic scores for caterpillar perfor-
mance, our ability to predict caterpillar performance at the pheno-
typic level from plant-trait polygenic scores was notably reduced
(SI Appendix, Table S10 and Figs. S20 and S21). This was ex-
pected, as plant genetics only explained a modest proportion of the
variation in performance and, thus, the ability to explain variation
in these traits (not just polygenic scores) was necessarily capped by
performance-trait heritabilities. Still, when considering all perfor-
mance traits together, plant-trait polygenic scores explained more
of the trait variation than expected by chance (Fisher combined
test, χ2 = 34.42, degrees of freedom [df ] = 18, P = 0.011).
This signal was driven primarily by association of plant traits with
8- and 14-d weight and survival to pupation and eclosion.
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Fig. 7. Associations between plant-trait
polygenic scores and caterpillar-performance
polygenic scores. Scatterplots show genetic
correlations between plant chemistry and
other plant traits and 14-d caterpillar weight
(A) and survival to pupation (B) inferred from
plant genetics as a function of the proportion
of plant-trait variation explained by genetics
(PVE). A dashed horizontal line denotes a
genetic correlation of zero. C shows the
variance explained by LASSO regression models
of caterpillar-performance polygenic scores
estimated from plant genetics as a function of
polygenic scores for 1,750 plant chemistry traits
and 10 nonchemistry traits. Black dots denote
inferred values of r2, and gray dots show
similar estimates using randomized plant-trait
polygenic scores (10 random datasets each).
D and E show standardized regression
coefficients (coef.) from the LASSO models for
14-d weight (D) and survival to pupation (E).

Lastly, we determined the extent to which the association of
plant-trait polygenic scores with caterpillar-performance poly-
genic scores (both inferred from plant genetics) was affected
by the L. melissa genotype. Such an interaction would suggest
that caterpillar performance is affected by epistatic interactions
between M. sativa and L. melissa genotypes, as predicted by our
hypothesis (iv) (Fig. 1). We used PC scores from the first four
PCs of the L. melissa genotype matrix, which together accounted
for ∼15% of the L. melissa genetic variation, as summaries of

the L. melissa genotype. We then fit LASSO-penalized regres-
sion models for caterpillar-performance polygenic scores as a
function of these PC scores, plant-trait polygenic scores, and
interactions between each plant-trait polygenic score and each
of the four PCs. This allowed us to test for epistasis at the level
of plant morphology and phytochemistry polygenic scores from
M. sativa and four axes of L. melissa genetic background and
thereby avoid the lack of power that would be associated with
exhaustively testing SNP–SNP interactions (nonetheless, these
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models still included 4 × 1,760 = 7,040 possible interaction
terms). We found no evidence of epistasis between M. sativa and
L. melissa affecting caterpillar performance. Specifically, including
these interaction terms in the models actually reduced the variance
explained by the LASSO models (SI Appendix, Table S11), and
the interaction terms were retained less frequently in the models
than the noninteraction terms (SI Appendix, Figs. S22 and S23).
We obtained similar results when fitting models for caterpillar-
performance-trait values rather than polygenic scores, with a
smaller proportion of interaction terms retained in the model
for most traits (SI Appendix, Figs. S24 and S25) and no overall
increase in variance explained by models with vs. without in-
teractions (i.e., the variance explained in 14-d-weight doubled,
but the variance explained in 8-d weight was halved, and there
was no detectable general increase in variance explained across
traits) (SI Appendix, Fig. S26). Thus, these results support our
hypothesis (iii) with additive contributions of plant and caterpillar
genetics (Fig. 1).

Plant and Caterpillar Genetics Have Consistent Effects on
Performance. We conducted two additional experiments to
determine the extent to which genetic differences among
M. sativa plants or populations had consistent effects on caterpillar
performance for different butterfly populations and species. This
constitutes another test of additivity vs. epistasis for plant and
insect genotypes (our hypotheses (iii) vs. (iv) in Fig. 1) and of the
potential for our findings to provide general predictions beyond
our main study populations. In the first of these experiments,
L. melissa (Lycaenidae) caterpillars from four populations were
reared on greenhouse-grown M. sativa sourced from six sites
(SI Appendix, Table S14). Two additional butterfly species, Colias
eurytheme (a legume specialist) (Pieridae) and Vanessa cardui (a
generalist that rarely feeds on alfalfa) (Nymphalidae), were reared
on these same plants. Whereas only modest genetic differences
exist among the L. melissa populations (Fig. 2) (23, 24), these
three butterfly species are deeply divergent (∼100 million y),
creating substantial opportunities for the effect of the M. sativa
genotype and phenotype to interact with genetic differences
among the butterfly taxa (40). Caterpillars were fed leaf tissue
from multiple individual plants, but each caterpillar was given
plants from a single source population, and leaves from each
plant were fed to all three butterfly species. Survival rates were
highest for C. eurytheme, followed by L. melissa and, lastly,
V. cardui (SI Appendix, Fig. S27). Plant population (here used
as a proxy for plant genotype) explained ∼3 to 10% of the
variation in 8-d weight for each butterfly species and 9 to 14%
of the variation in 14-d weight, with larger effects in the butterfly
species less-well-adapted to M. sativa (SI Appendix, Table S15).
Caterpillar population explained a small, but nonzero, proportion
of the variation in 8-d weight in L. melissa (this could not be
assessed in the other species), but not a significant amount of
variation in 14-d weight. Thus, consistent with our main results
above, genetic differences among plant and caterpillar populations
(caterpillar populations for L. melissa only) explained variation in
caterpillar performance, with plant genetics mattering more for
14-d weight than 8-d weight and caterpillar genetics mattering
more for 8-d weight than 14-d weight. Plant population and
plant maternal family also explained variation in plant growth
and development traits, consistent with our common garden
results above (SI Appendix, Table S9). Importantly, the effect of
each plant population on caterpillar performance was remarkably
consistent across L. melissa populations and even across different
species, with moderate to large positive correlations (though not
always significantly so) in the effect of each plant population on

8- and 14-d weight across all pairs of population and species
(SI Appendix, Fig. S28).

The final complementary experiment used the same three
butterfly species—L. melissa, C. eurytheme, and V. cardui—but,
instead, involved feeding each caterpillar leaf tissue from a single
M. sativa plant from a third common garden near the University
of Nevada (University of Nevada, Reno, Main Station Farm;
SI Appendix, Fig. S1). We used these data to ask whether the effect
of plant genotype (here, individual plant) on caterpillar weight was
consistent across species. We detected modest, positive, pairwise
correlations between the three species of caterpillars, suggesting
similar effects of plant genotypes on performance in these differ-
ent herbivorous species (SI Appendix, Fig. S29). Specifically, the
correlations were as follows: V. cardui vs. L. melissa, r = 0.33
(P = 0.015, t = 2.52, df = 52); C. eurytheme vs. L. melissa,
r = 0.43 (P = 0.0010, t = 3.48, df = 52); and C. eurytheme vs.
V. cardui, r = 0.15 (P = 0.28, t = 1.08, df= 52). Thus, these two
experiments combined with our main results show that genetic
variation within M. sativa affects caterpillar performance across
populations and species of butterflies in a remarkably consistent
manner, consistent with the additivity hypothesis (hypothesis (iii)
in Fig. 1).

Discussion

From an ecological perspective, the greatest diversity of life is not
counted in the number of species or other taxonomic units, but
in the diversity of interspecific interactions (41). The ubiquity
of plant-feeding insects has made them a focal point for under-
standing the evolution, persistence, and variability of interactions
(9, 42, 43). The outcomes of plant–insect interactions (e.g.,
caterpillar survival) might depend on genetic variation within
each species, and these genetic effects could compound addi-
tively or nonadditively. Taken all together, our results support
the hypothesis that both plant (alfalfa) and insect (Melissa blue
butterfly) genotype matter for caterpillar growth and survival and
that these contributions are mostly additive (our hypothesis (iii) in
Fig. 1). These results are qualitatively similar to those reported in
another study (20), which identified individual plant (Arabidopsis
thaliana) and caterpillar (Pieris rapae) genes affecting caterpillar
performance. The advance over previous work that we offer here
is in quantitative, genomic prediction of caterpillar performance,
which, in contrast to the identification of specific genes, provides
a formal connection from trait genetics to models of evolution
for quantitative traits (44). We specifically demonstrated that the
combined effects of plant and insect genotype explain a substantial
proportion of variation in caterpillar growth and survival (17
to 49%) and that these mostly additive effects can predict per-
formance from genotypes in cross-validation analyses. Moreover,
models that included pairwise epistatic effects failed to explain
caterpillar performance better than the additive-only models. We
were able to identify specific traits and phytochemicals associated
with the plant contribution to performance, most notably plant
size, and several saponins, peptides, and phosphatidyl cholines.
Whereas some of these classes of chemicals (e.g., saponins) are best
known as insect toxins or feeding deterrents (e.g., refs. 45–47), our
results suggest that these classes include molecules with positive
and negative effects on performance, consistent with other recent
metabolomic work (25, 32). We also found evidence that plant
genotype had consistent effects on performance in multiple but-
terfly populations and distantly related species, including a second
legume specialist (C. eurytheme) and a generalist (V. cardui). This,
too, is consistent with results from the only other similar study
(20), which documented conserved changes in gene expression in
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response to herbivores across multiple plant and butterfly species.
This consistency is relevant to the predictability and nature of the
evolution of plant–insect interactions, as we discuss more below.

Our results have clear implications for the study of coevolu-
tion, which takes many forms and pertains to the formation of
new species and new interactions (43). Quantitative theories of
coevolution have historically been dominated by gene-for-gene
models, in which the fitness of a particular genetic variant in (for
example) a parasite is conditioned on the presence of a specific
gene in the host (22). Evidence in support of gene-for-gene models
has come mostly from plant–pathogen systems (ref. 22; but see
ref. 48). In contrast, diffuse models of coevolution relax some
of the expectations for gene-by-gene interactions and have been
favored by researchers working with more macroscopic parasites,
including herbivorous insects (49). However, relevant investiga-
tions in plants and insects have mostly relied on experiments
that contrast categories of individuals (strains or biotypes), rather
than more comprehensive or continuous variation in genetically
variable populations (reviewed in ref. 12), which has left the
field with uncertainty regarding the most relevant theoretical
context for the diversity of evolving plant–insect interactions. The
results that we report are not consistent with the gene-for-gene
model of coevolution, as the performance of our focal herbivore
was both highly polygenic and successfully predicted without
interactions between caterpillar and plant genotypes. Instead, our
results suggest that genetic differences in plant quality and defense
have similar effects, regardless of insect genotype or even species.

Our results also shed light on the evolution of diet breadth
and host use in herbivorous insects. Specifically, the finding of
substantial heritable variation in the Melissa blue butterfly for
growth and survival suggests that ongoing adaptation to alfalfa,
which, at present, is a marginal host (26), is not constrained
by a lack of genetic variation. This is consistent with earlier
work on this system (28). Likewise, alfalfa appears to harbor
genetic variation to evolve traits that reduce the success of the
Melissa blue even further, and this inference likely extends to
other herbivores, given the consistent effects of plant variation
on other butterfly species reported here and on other herbivores
in an observational study (25). While the persistence of plant
genetic variation affecting herbivores might be attributable to the
age of these interactions (since most herbivores of alfalfa in North
America are recent colonists), we suspect that other factors are
more important. First, the asymmetry in our predictions, with
consistent caterpillar genetic effects, but not plant genetic effects,
on performance between common gardens, suggests a major
role for plasticity in the effect of plant genotype on caterpillar
performance. This is not surprising, given considerable evidence
that biotic and abiotic environmental factors affect plant quality
and plant defenses in alfalfa (31) and other plants (50), but
does mean that genetic variation in performance measured in the
laboratory and common garden might not strongly predict effects
in specific natural populations (51). Moreover, other biotic and
abiotic factors could contribute more to caterpillar growth and
survival in the wild, and some of these could interact with plant
genotype. For example, recent work has shown that the abundance
of ants, which tend Melissa blue caterpillars and thereby reduce
the threat from enemies (see image in Fig. 1), greatly increases
caterpillar survival and population persistence on alfalfa, with ant
abundance indirectly affected by alfalfa phytochemistry (25, 52).
In contrast to the complexity of plant effects, the more consistent
effects of caterpillar genetic variants raises the possibility that
the ability of herbivores to successfully utilize plants might more
readily evolve, while the ability of plants to evolve defenses will
be more contingent (on local environments, etc.). This, again,
supports a diffuse model of coevolution (49) and could eventually

help us understand the accumulation of host-specific herbivores
on plants through evolutionary time.

Beyond issues specific to herbivorous insects and their host
plants, genetic variation within species is important for host–
parasite interactions (53), including, for example, susceptibility to
parasitic diseases in humans and other animals being a function
of both genetic variation in the hosts and among pathogen strains
(54). However, as is the case for plant–insect interactions, genomic
investigations of other pairwise interactions have rarely considered
both species simultaneously, but have focused on either the host
or parasite. If epistatic, among-species interactions were common
(as assumed by the gene-for-gene model of coevolution), the piece-
wise approach (focusing on one interacting species rather than the
pair) might be a major roadblock to progress in understanding the
evolution of these systems. However, if additivity and consistency
of polygenic effects hold generally, as documented in the plant and
herbivores studied here, a focus on one species in an interaction
might not be misleading and might inform predictive models, but
this hypothesis remains to be tested with other interacting species.

Materials and Methods

Establishing the Primary Common Garden. We planted a common gar-
den comprising 1,080 alfalfa plants at the Greenville Experimental Farm near
Logan, UT (41.765 ◦N, 111.814 ◦W) in 2018 (SI Appendix, Fig. S1A). Seeds
for this garden were collected from 11 naturalized alfalfa sites in the western
United States, including 5 sites where L. melissa are found and 6 sites lack-
ing L. melissa butterflies (SI Appendix, Table S1). An average of 4.9 seeds were
planted from each of 220 maternal plants (with an average of 97.6 seeds planted
from each site; SD = 8.6, range = 77 to 105) (SI Appendix, Table S1). See
SI Appendix, Establishing the Primary Common Garden for additional details.

Caterpillar Husbandry and Performance Assays. We obtained L. melissa
eggs from gravid females collected from six sites between June 16 and July 4,
2019 (SI Appendix, Table S1). As in past work, gravid females were caged with a
few sprigs of host plant (M. sativa) and allowed to lay eggs (17, 26, 28). Eggs were
kept in a Percival incubator (model no. 136VL) at 27 ◦C with 14-h light:10-h dark.
Upon hatching, caterpillars were assigned randomly to feed on a specific M. sativa
plant. Each neonate caterpillar was carefully transferred to a Petri dish with a sprig
of fresh plant material (a few leaflets) with the stem of the plant tissue wrapped
in a damp Kimwipe. We verified that each caterpillar was alive and uninjured
after transfer. The Petri dish containing the caterpillar was then returned to the
incubator. Caterpillars were given fresh leaf tissue ad libitum and were checked
daily for survival, pupation, and eclosion as adults.

As metrics of performance, we measured 8-d and 14-d caterpillar weight
and weight at pupation using a Mettler Toledo XPE105 analytical microbalance
(Mettler Toledo). Weights were recorded to the nearest 0.01 mg, and we took
the mean of two independent weight measurements. L. melissa caterpillars
generally spend 20 to 30 d as larvae (17), and weight and lifetime fecundity
are highly correlated in L. melissa (26). We then considered the following nine
performance metrics: 8-d caterpillar weight (milligrams), 14-d caterpillar weight
(milligrams), weight at pupation (milligrams), survival to 8 d (binary), survival
to 14 d (binary), survival to pupation (binary), survival to adult (binary), total
survival time (integer-valued), and truncated survival time (integer-valued) (55).
For truncated survival time, we truncated survival at the maximum number of
days required for any of the caterpillars to reach eclosion; this avoids caterpillars
that developed slowly, but never pupated or eclosed, from having longer survival
times than the caterpillars that successfully eclosed as adults.

Generating the Genetic Data. We extracted DNA from 1,236 M. sativa
plants and 1,079 L. melissa caterpillars, pupae, or adults reared on these plants
(these numbers include plants and insects from the Gene Miller Life Science
Garden). We then generated partial genome sequences for each organism
using our genotyping-by-sequencing approach (23, 56); this produced ∼2.5
billion reads for M. sativa and ∼2.5 billion reads for L. melissa (SI Appendix,
DNA Extraction and Sequencing) (57–60). We then aligned the DNA sequences to
the M. sativa or L. melissa genome and identified SNPs using samtools (versions
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1.10), bcftools (version 1.9), and GATK (version 4.1) (61, 62) (SI Appendix,
DNA Sequence Alignment and Variant Calling). After filtering, we retained
161,008 SNPs for M. sativa and 63,194 SNPs for L. melissa. We then estimated
genotypes using the Bayesian (ad)mixture model implemented in entropy (ver-
sion 2.0) (23, 63) (SI Appendix, Inference of Genotypes and Genetic Variation).
Patterns of genetic variation were then summarized with principal component
analysis (PCA) and by calculating measures of LD and genetic differentiation
among samples from different source populations (i.e., FST) (SI Appendix,
Inference of Genotypes and Genetic Variation).

Preparing the Caterpillar-Performance Data for Genetic Mapping. We
removed potential confounding variation from the caterpillar-performance data
prior to analyzing genotype–performance associations. First, we regressed each of
the nine caterpillar-performance metrics on caterpillar hatch date (to control for
temporal effects) and source population (to control for potential nongenetic—e.g.,
maternal environment—effects). This was done with the lm function in R. Next,
we used distance-based Moran’s eigenvector maps to remove possible effects
of space (location) within the common garden. This procedure involved creating
spatial variables based on a PCA of a truncated (nearest-neighbors) Euclidean
distance matrix (i.e., a principal coordinates analysis), where distance was defined
from the spatial layout of the common garden (64). We then used forward selec-
tion of variables following ref. 65 to select spatial variables (eigenvectors) that
explained the variation in each trait. Specifically, we first tested for a significant
(at P < 0.05) fit of a model with all of the spatial variables. If and only if this
full model was significant, we began adding spatial variables to a null model
one at a time based on the extent to which they increased the total model r2.
This procedure continued until either: 1) the P value for the most recently added
variable was >0.05; 2) the total r2 exceeded the original r2 from the full model
with all variables; 3) adding the new variable did not increase the model r2; or
4) 200 spatial covariates had been added. A model with no spatial covariates was
selected for most caterpillar-performance traits, with 14-d weight being the sole
exception (20 covariates explaining 14% of the trait variation). Scaled residuals
from the final model for each trait were then used for genetic mapping.

Multilocus Genetic Mapping of Caterpillar Performance. We tested for as-
sociations between 1) M. sativa SNPs (161,008 SNPs), 2) L. melissa SNPs (63,194
SNPs), and 3) SNPs from both species combined (224,202 SNPs) and each of
the nine caterpillar-performance metrics (i.e., the residuals from the models de-
scribed in the previous paragraph). We performed these analyses using Bayesian
sparse linear mixed models (BSLMMs), which we fit with gemma (version 0.95al-
pha) (66). A key advantage of this approach for genotype–phenotype association
analyses is that, unlike traditional GWA mapping methods that test each genetic
marker separately, the BSLMM approach fits all SNPs in a single model and,
thus, mostly avoids issues related to testing large numbers of null hypotheses.
The BSLMM method assumes that trait values are determined by a polygenic
term and a vector of the (possible) measurable effects of each SNP on the trait
(β) (66). Bayesian MCMC with variable selection was used to infer the posterior
inclusion probability (PIP) for each SNP—that is, the probability that each SNP has
a nonzero effect or association—and the effect size conditional on it being nonzero
(67). The polygenic term denotes each individual’s expected deviation from the
mean phenotype based on all of the SNPs. This term accounts for phenotypic
covariances among individuals caused by their relatedness or overall genetic
similarity (66). The kinship matrix also serves to control for population structure
and relatedness when estimating effects of individual SNPs (β) along with their
PIPs. Similarly, SNPs in LD with the same causal variant effectively account for each
other, such that only one or the other is needed in the model, and this redundancy
is captured by the PIPs. Moreover, in the context of our study, mapping with
plants grown from seed in a common garden and caterpillars reared from eggs in
growth chambers substantially reduces some issues related to the confounding
effects of population structure, such as genotype–environment correlations, that
commonly cause problems in human association-mapping studies (68) and,
more generally, in observational studies of human genetics (69).

The hierarchical structure of the model makes it possible to estimate addi-
tional parameters that describe aspects of a trait’s genetic architecture (17, 66,
67, 70). These include the percentage of the PVE by additive genetic effects
(which includes β and the polygenic term and should approach the narrow-
sense heritability), the percentage of the PVE due to SNPs with measurable effects

or associations (the percentage of the phenotypic variance explained by genic
effects, which is based only on β), and the number of SNPs with measurable
associations (n-γ). All of these metrics use MCMC to integrate over uncertainty
in the effects of individual SNPs, including whether these are nonzero. Lastly,
using this BSLMM approach, it is also possible to obtain genomic-estimated
breeding values (GEBVs) or polygenic scores—that is, the expected trait value for
an individual from the additive effects of their genes, as captured by both β and
the polygenic term (17, 70).

For each of the nine caterpillar-performance metrics and three genetic
datasets, we conducted 10 MCMC runs with gemma, each comprising 1 million
iterations and a 200,000 iteration burn-in. Every 10th MCMC sample was
retained to form the posterior distribution. Polygenic scores (i.e., GEBVs) were
then calculated from the genetic datasets and model-averaged effect estimates
for each SNP locus; these incorporate the polygenic term, as is standard in
genomic prediction methods (e.g., refs. 71 and 72). Genetic covariance matrixes
were computed from the estimated polygenic scores.

As noted above, the kinship matrix and multilocus approach of the BSLMM in
gemma control for confounding effects of population structure and relatedness
when testing for individual SNP–phenotype association, but, nonetheless, this
method could fail to fully capture complex patterns of structure (see, e.g., ref.
68). Thus, to verify the robustness of our results, we fit additional models using
the BSLMM approach in gemma, where we included the first 20 genetic PCs as
potential covariates to further account for population structure. This was done as
described above, except that the analysis was only conducted for M. sativa and
L. melissa SNPs separately. We compared this to our main results both in terms
of the percentage of variation in performance explained by genetics (PVE) and
specific SNP–performance-trait associations.

Direct Tests of Epistatic Genetic Effects on Caterpillar Performance.
We tested for epistatic interactions affecting caterpillar performance among
1) the 161,008 M. sativa SNPs, 2) the 63,194 L. melissa SNPs, and 3)
the 224,202 SNPs from both species (this includes within- and between-
species epistatic interactions). We conducted these tests with MAPIT (https://
github.com/lorinanthony/MAPIT) (73). Exhaustive testing of all pairwise SNP–
SNP interactions suffers from low statistical power because of the large number
of tests involved. The statistical method in MAPIT overcomes the problem of low
power by, instead, testing for marginal epistatic effects—that is, testing the null
hypothesis that a given SNP does not interact with any of the other SNPs (i.e.,
that the variance component for epistatic effects is zero) (73). This is done without
trying to identify the specific SNPs with which a focal SNP interacts. We computed
P values for tests of marginal epistasis using the recommended hybrid method
that first implements a z-test to compute a P value and then recomputes the
P value with the Davies method if the initial values is less than 0.05 (as in ref. 18).

For many of the survival traits, we observed an unexpected excess of
very low P values, especially for L. melissa SNPs and for 8- and 14-d survival
(SI Appendix, Fig. S30). We strongly suspect that this is a statistical artifact,
especially as these measures constitute residuals from integer or binary traits,
and the control kinship matrix consists of relatedness based on plant and insect
genetics, a combination of complications that could be problematic for this
method and inflate type-I errors (note that this differs from the BSLMM in
gemma, where the multilocus approach allows SNPs to serve as controls for
each other). Given our concern that these results are not biologically meaningful,
we conservatively focus only on the weight measurements when presenting
these tests of epistasis, as these do not appear to suffer from the same issue
(SI Appendix, Figs. S12 and S13).

Even with the MAPIT method, a potential exists for tests of epistasis to be
underpowered, especially in terms of achieving strict, genome-wide significance.
Thus, we conducted additional analyses using the BSLMM approach from gemma
to test for associations between M. sativa and L. melissa genetics and caterpillar
performance, but where we included pairwise epistatic effects among SNPs with
the most evidence of marginal epistasis from the MAPIT analyses (similar to
ref. 18). Our goal was to ask whether including these additional epistatic terms
improved the explanatory power of the model. In these analyses, we considered
only the caterpillar weight traits (for the reasons noted above). We included either
1) the top 150 SNPs with the lowest P values for marginal epistasis within species
(for analyses with only M. sativa or L. melissa SNPs) or 2) the top 75 SNPs from each
species with the lowest P values for marginal epistasis in the combined species
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analysis. We then created new genetic covariates for all pairwise interactions
between pairs of the 150 SNPs ( 150×149

2 = 11,175 potential epistatic effects).
We did this by taking the product of the centered and standardized genotypes
for each pair of loci. These were then included in the BSLMM model for gemma
(though not in the construction of the kinship matrix, which was solely based
on additive effects). We fit these models as described above, except that we
increased the number of MCMC iterations and burn-in to 2 million and 400,000,
respectively. We then determined the total PVE in weight explained by the models
with additive and epistatic effects for M. sativa genetics, L. melissa genetics, and
both M. sativa and L. melissa genetics combined.

Within-Garden Cross-Validation and Genomic Prediction. We used 10-
fold cross-validation to assess our ability to predict performance traits from
M. sativa genetic data, L. melissa genetic data, and the combined genetic data
from M. sativa and L. melissa. To do this, we first randomly assigned each
observation to 1 of 10 test datasets. Then, for each test dataset, we estimated
genotype–phenotype associations using gemma as described above, but based
only on the 90% of individuals not in that test dataset. For this, we used a single
MCMC run comprising 1 million iterations, a 200,000-iteration burn-in, and a
thinning interval of 10. We then used gemma to predict the phenotypes of the
10% of individuals held back for the test set (these individuals were not used
to fit the model); this was done with the predict option in gemma. We then
quantified predictive performance using the Pearson correlation between the
genomic predictions of each performance metric and the observed values.

Gene Miller Life Science Garden Setup and Genomic Prediction.
We further tested our ability to predict caterpillar-performance-trait values from
genotypes by generating genomic predictions of performance for caterpillars
reared on M. sativa from a second, smaller common garden comprising 180
M. sativa—The Gene Miller Life Science Garden (see SI Appendix, Establishing
the Gene Miller Life Science Garden for details). We used leaf tissue from these
plants for rearing L. melissa caterpillars in the summer of 2019 exactly as
described for the main common garden at the Greenville Experimental Farm
(see Caterpillar Husbandry and Performance Assays for details). This parallel
experiment was conducted at the same time as the main experiment. Plant and
caterpillar samples from this parallel experiment were sequenced along with
the samples from the Greenville Experimental Farm experiment. We successfully
obtained genetic data from 172 M. sativa and 156 caterpillars of the 180 involved
in this experiment. These genetic data were processed along with those from the
main garden (see SI Appendix, DNA Sequence Alignment and Variant Calling for
details).

We then used the estimated, model-averaged effects from the BSLMM fits in
gemma from the main garden to predict performance traits based on plant, cater-
pillar, or plant and caterpillar genotypes for these individuals. We compared these
genomic predictions (i.e., polygenic scores computed from the main-garden
models) to the observed performance-trait values for these caterpillars. This was
done by using residuals after removing effects of hatch date and block (i.e.,
plot) within the USU garden. As with the within-garden cross-validation analyses
described in the previous section, predictive power was measured by the Pearson
correlation between the predicted and observed performance-trait values.

Plant-Trait Measurements and Phytochemical Analysis. We measured
a series of morphological traits potentially associated with plant vigor or
resistance to insects (e.g., putative structural plant defenses) (17, 74, 75)
for each of the 1,080 M. sativa plants in the Greenville Experimental Farm
common garden: plant height, leaf length, leaf width, leaf area, leaf shape,
leaf weight, SLA, leaf toughness, trichome density, levels of herbivory on the
plants in the field, and 1,750 plant chemistry metabolites, which were quantified
and characterized by using LC-MS. See SI Appendix, Plant Trait Measurements
and Sample Extraction and Phytochemical Analysis for details (55). We further
annotated the 20 phytochemicals that were most strongly associated with
caterpillar performance (SI Appendix, Structural Annotations of Phytochemicals).

Multilocus Genetic Mapping of Plant Traits. We tested for associations
between the M. sativa SNPs (161,008 SNPs) and 1,760 plant traits: leaf
length, leaf width, leaf area, leaf shape, leaf weight, SLA, trichome density,
leaf toughness, plant height, field herbivory and 1,750 metabolomic chemical
features (see the previous two sections for details). This was done by using

the 1,080 M. sativa plants from the main common garden at the Greenville
Experimental Farm in Logan, UT. We first removed possible effects of spatial
location within the garden, as captured by distance-based Moran’s eigenvector
maps using forward selection of variables (65), exactly as described for the
caterpillar-performance traits above (see Preparing the Caterpillar-Performance
Data for Genetic Mapping). The final models explained 18 to 51% of the variation
in plant traits (mean = 35%) with 22 to 77 covariates retained. As with the
caterpillar-performance traits, genotype–plant-trait associations were estimated
by fitting BSLMMs with gemma (version 0.95alpha) (66). For each of the
1,760 plant traits, we conducted 10 MCMC runs with gemma, each comprising
1 million iterations and a 200,000 iteration burn-in. Every 10th MCMC sample
was retained to form the posterior distribution. Polygenic scores were then
calculated from the genetic datasets and model-averaged effect estimates
for each SNP locus. Genetic covariance matrixes were computed from the
estimated polygenic scores. The model-fitting procedure was repeated with 1,760
randomized plant-trait datasets (i.e., values of each of the original traits were
permuted among plants) to verify that the distribution of genotype–phenotype
associations from the real dataset differed from null expectations.

LASSO Regression Models. We used LASSO regression to 1) identify the subset
of plant traits with polygenic scores that best predicted caterpillar-performance
polygenic scores and 2) estimate the direction and magnitude of these asso-
ciations (see SI Appendix, LASSO Regression Models). We fit additional LASSO
models 1) using PCs of the 1,760 plant-trait polygenic scores as covariates and
2) to determine whether plant-trait polygenic scores could explain and predict
caterpillar performance at the phenotypic level. Lastly, we fit an additional model
to evaluate the extent to which plant genetic effects interacted with caterpillar
genetics to affect performance (SI Appendix, LASSO Regression Models).

Complementary USU Greenhouse and Nevada Common Garden Rearing
Experiments. An additional rearing experiment was conducted by using
M. sativa grown in a USU greenhouse to 1) replicate the general effect of
M. sativa genotype on caterpillar performance and 2) determine whether
different plant genotypes had consistent effects of caterpillar performance across
different butterfly populations and species (i.e., C. eurytheme and V. cardui).
We performed yet another rearing experiment with the same three species of
caterpillars using an experimental M. sativa garden at the University of Nevada,
Reno (SI Appendix, Fig. S1). Together, these experiments provide additional
tests of additivity vs. epistasis with respect to genetic differences among
butterfly populations and among deeply divergent species. See SI Appendix,
Complementary USU Greenhouse Experiment and Complementary Nevada
Common Garden Rearing Experiment for details.

Data, Materials, and Software Availability. DNA sequence data have been
deposited in the National Center for Biotechnology Information Sequence Read
Archive (accession nos. PRJNA866185, PRJNA866184, PRJNA866152, and
PRJNA866133) (57–60). Phenotypic data are available from Dryad (http://doi.org/
10.5061/dryad.cvdncjt6x) (55). Computer scripts are available from GitHub
(https://github.com/zgompert/DimensionsExperiment) (76).
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