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Abstract: Solid-state NMR has proven to be a versatile technique for studying the chemical structure,
3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly
in thin films, the study of chemical modification, molecular packing, end chain motion, distance
determination and solvent-matrix interactions is essential for controlling the final product properties
and applications. Despite its atomic-level research capabilities and recent technical advancements,
solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films
due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse
sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article
will comprehensively and critically review the work done by solid-state NMR on different types of
thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware
design used to overcome the technical issues in thin-film research.

Keywords: solid-state NMR spectroscopy; magic angle spinning (MAS); thin films; solvent-matrix
interactions; sensitivity boosting; polarization enhancement

1. Introduction

Thin films have a massive impact on the modern era of technology and have gained
unprecedented interest during the past years due to their versatile properties and poten-
tial applications [1–5]. They are regarded as the backbone for advanced applications in
various fields, such as optical devices [6], electronic devices [7], biosensors and plasmonic
devices [8–10], environmental [11] and biological applications [12], solar cells [13–15], bat-
teries [16–18] and so on. This class of advanced materials is generally defined as a thin layer
of material having a thickness that ranges from fractions of a nanometer (i.e., monolayer)
to several micrometers [19,20]. Thin films are composed of two parts: a layer or multi-
layer and a substrate where films are deposited on. These layers are extremely diverse,
spanning from inorganic to organic materials, and are produced by two deposition meth-
ods: (1) physical methods and (2) chemical methods. The quality of thin films produced
strongly hinges on their morphology and stability, which determines their final applica-
tions. It is also important to mention that the morphology and stability of thin films are
strongly dictated by the deposition technique used for their preparation. Among the most
commonly used physical deposition methods to prepare thin films are evaporation and
sputtering techniques [21,22]. The general mechanism of the evaporation technique relies
on changing the phase from solid to vapor and then again to solid phase on a specific
substrate. This process usually takes place under vacuum or at controlled atmospheric
conditions. Thermal vacuum evaporation is the simplest technique to form thin amorphous
films, such as chalcogenide films [23,24], which are widely utilized in memory-switching
applications [25,26], phase change materials [27,28] and solar applications [29]. Other evap-
oration techniques that are also sometimes used include electron beam evaporation [30–32]
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and laser beam evaporation [33,34]. On the other hand, sputtering is most commonly used
to deposit metal and oxide films with careful control over crystalline structure and surface
roughness [35,36]. In the sputtering process, an evacuated chamber composed of a metallic
anode and cathode is used to generate a glow discharge, which results in the bombardment
of ions [35]. The applied voltage during this process is usually in the order of several keV,
and a pressure of more than 0.01 mbar is enough to ensure film deposition [35]. There are
two common types of sputtering: (a) direct current (DC) sputtering and (b) radio frequency
(RF) sputtering [37,38]. Aluminum nitride films are typical examples of films produced by
sputtering [37,38].

Even though physical deposition methods provide high-quality thin films, they require
expensive equipment and are highly costly [19,20]. Hence, chemical deposition methods are
sought as economically viable and widely used global methods for the production of thin
films [19,20]. Chemical deposition depends on the chemistry of solutions, pH, viscosity and
so on. Among the paramount techniques used in chemical deposition is the sol–gel [39–41]
route, which produces high-quality films with low equipment requirements. Additionally,
this process produces a large quantity of nanosized films with modeled and controlled
particle size, morphology, orientation and crystal structure, as well as optimized physical
and chemical properties [42]. The sol–gel method has been applied to synthesize metal
oxides, where it simply relies on the conversion of a colloidal suspension “sol” into a viscous
gel [42]. Additionally, among the other important chemical deposition techniques that have
been widely applied are: chemical vapor deposition (CVD) [43–46], spin coating [47–49],
dip coating [50,51], chemical bath deposition [52,53] and spray pyrolysis technique [54,55].

In order to tailor the final properties of thin films in a targeted application and obtain
information on their morphology, chemical and physical properties, there is a dire and
urgent need to carefully characterize such films. Several characterization techniques in the
past have been deployed to analyze thin films [56–58], but only minor attention was given
to solid-state NMR with its wide range of techniques [59]. Over the last decades, solid-state
NMR has developed from a low-resolution shadowed technique into an indispensable one
for structural and dynamic determination of a wide range of solid and semi-solid systems.
NMR is a physical phenomenon based on the perturbation of the nuclear spin located
in a strong external magnetic field using a weak oscillating magnetic field, which intern
responds by an electromagnetic signal that is detected and transformed into spectra. When
the oscillation frequency matches the intrinsic frequency of the targeted nuclei, resonance
occurs; hence, valuable chemical information can be determined. NMR phenomenon is
summarized in three sequential steps:

• The alignment of the nuclear spins along the applied external magnetic field.
• The perturbation of this alignment using a weak oscillating magnetic field.
• The detection of the NMR signal (voltage induced in a detection coil).

The interactions between the active nuclear spins and the magnetic fields determine
the line shape of the peaks, thus the overall broadness of the spectra. Therefore, different
solid-state NMR techniques were developed, including newly designed pulse sequences,
to suppress and eliminate the broadness in the spectra of solid materials [60].

The arising orientation-dependent nuclear magnetic interactions in immobilized solid
states is from the restricted thermal motions and lack of rapid molecular tumbling. This
insufficient mobility exposes different types of internuclear and orientation-dependent
nuclear interactions that accommodate information on the local geometric and electronic
structure. Solid-state NMR is capable of performing a variety of experiments on a wide
range of nuclei to retrieve valuable information on the local geometric and electronic
structure from the emerged orientation-dependent nuclear magnetic interactions. The
range of nuclei solid-state NMR is capable of measuring is not limited to the conven-
tional nuclei for organic materials typical 1H [61–64] and 13C [65–68] nuclei for organic
thin films, but extends in inorganic thin films to cover a huge portion from the peri-
odic table such as 2H [69,70], 7,8Li [71–73], 11B [74], 14,15N [72,75], 17O [76], 19F [77–79],
27Al [80–83], 29Si [84–87], 31P [71,72,86,88,89], 55Mn [90–92], 59Co [93–95], 69,71Ga [75,96],
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75As [97], 89Y [98], 129Xe [99,100] and 207Pb [101]. The most suitable solid-state NMR
techniques for different thin-film types are summarized below in Table 1.

Table 1. A summary of the most suitable solid-state NMR techniques for the chemically different thin-film types. MAS:
magic angle spinning; DNP: dynamic nuclear polarization; MRFM: magnetic resonance force microscopy.

NMR Active Nuclei Chemical Connectivity Solid State NMR Technique References

1H Organic/Inorganic 1D, 2D MAS and multiple
quantum [61–64]

2H Organic 1D, 2D MAS [69,70]
7,8Li Inorganic 1D MAS and β-NMR [71–73]
11B Inorganic 1D MAS [74]
13C Organic 1D, 2D MAS [65–68]

14,15N Inorganic High-field NMR [72,75]
17O Inorganic fast MAS, isotopic enrichment [76]
19F Organic/Inorganic 1D MAS, MRFM [77–79]

27Al Inorganic 1D, 2D MAS, high-field NMR [80–83]
29Si Organic/Inorganic 1D MAS [84–87]
31P Organic/Inorganic 1D, 2D MAS, DNP [71,72,86,88,89]

55Mn Inorganic NMR relaxometry [90–92]
59Co Inorganic NMR relaxometry [93–95]

69,71Ga Inorganic High-field NMR [75,96]
75As Inorganic 1D MAS [97]
89Y Inorganic 1D MAS [98]

129Xe Inorganic Hyper-polarization [99,100]
207Pd Inorganic Fast MAS, DNP [101]

2. Chemical Connectivity
2.1. Inorganic Films

Carbon-based thin films [102] are involved in a wide range of applications starting
from porous carbon/graphene nanosheets [103,104] in high-performance supercapacitors
to diamond films [105], showing superconductive properties when doped with boron. The
superconductive properties of diamond films doped with boron open the route for the
exploration of the superconductivity origin in the proximity of metal-insulator transition.
Therefore, four types of boron-doped diamond films having different crystallization prop-
erties and thickness (i.e., thick-100, thin-100, 111 and polycrystalline) were deposited on
substrates by means of microwave plasma-assisted chemical vapor deposition method and
investigated using 11B NMR [74].

11B is usually the nuclide choice in NMR since it is more sensitive and yields a sharper
signal compared to the other boron nuclei, but when boron is doped in the diamond film,
the signal intensity is directly affected by the amount of doped boron. Therefore, 11B is
the measured nuclei unless the sample is enriched with 10B. Figure 1 shows a 11B NMR
spectrum at 4.2 K and 34.887 MHz for the (111) diamond film [74]. The spectrum consists
of 2 overlapped peaks for different boron-doped sites in the diamond films, a narrow
peak located around ∆f = 0 with a linewidth of 5 kHz and a broad one extended between
∆f = −40 and 20 kHz. The narrow peak (blue shade) was assigned for high symmetry boron
sites placed in substitutional positions of the carbon ones, and the broader peak (green
shade) was assigned for boron sites in lower local symmetry, including boron–hydrogen
complexes, interstitial boron sites, boron–boron occupied sites and boron sites located near
lattice defects. Boron–hydrogen complexes are considered the dominant species in the
broad peak (green shade) due to the synthetic process utilized, which includes using a
mixed gas of CH4, (CH3)3B and H2.
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Figure 1. 11B NMR spectrum for the (111) film, the fitted red curve shows 2 boron sites, which are
identified as B(1) blue and B(2) green, respectively. Reproduced with permission [73]. Copyright
2006, Taylor & Francis. www.tandfonline.com. (accessed on April 2021).

Moreover, it is worthwhile to pinpoint that resolving the solid–solid interface on an
atomic scale is a major obstacle facing different fields of material sciences. Complex oxide
heterostructures are a combination of two or more different phases where the solid–solid
interface enhances the functional properties. Preparing complex oxide heterostructure as
thin films and, in particular, as vertically aligned nanocomposite films have promising
applications in different fields, including superconductors and data storage media. In
contrast to the conventional planar multi-layered heterostructures, the interfaces are aligned
perpendicular to the layout of the substrate. A deep analysis of the interfacial surface is
required for better understanding and optimizing the thin film designs [76].

17O NMR is a valuable technique for studying the presence of motion and the local
structural distortions caused mainly by defects over the interface in heterostructures [106].
However, acquiring useful information from 17O NMR requires the isotopic enrichment
of 17O nuclei, which is done mainly by labeled 17O2 gas state or H2

17O in an aqueous
state [107]. Figure 2a shows the 17O NMR spectrum of the CeO2–SrTiO3 vertically aligned
nanocomposite lift-off thin films, enriched with 17O at 450 ◦C and spun at 50 kHz in a
1.3 mm rotor [76]. From the deconvolution of the obtained 17O spectrum, the CeO2 signal
observed at 879 ppm shows several components overlapped, including a narrow peak at
877 ppm for bulk CeO2 located near the core of the nanopillars and a broad CeO2 envi-
ronment closer to the interface. Furthermore, upon analyzing the CeO2 signal in terms of
symmetry, the signal appears to be asymmetric, and additional peaks are detected at 837
and 1000 ppm corresponding to the CeO2-like interfacial environment. Additional to the
CeO2 environment, SrTiO3 and ZrO2 (from NMR rotor) signals appear at 466 and 377 ppm,
respectively. Between the CeO2 and SrTiO3 environments, a broad resonance centered be-
tween the different environments appears clearly at 680 ppm and another at a smaller one at
575 ppm ascribed to SrTiO3 interfacial environment. Figure 2b, c shows isotropic chemical
shifts as a function of distance from the interface for several predicted interfacial structures
using DFT calculations. Figure 2b shows nine DFT calculated lowest energy 0◦ interfaces
(A–I), where the layer linked to the CeO2 side shows a wide spread of values centered close
to the bulk CeO2 side around 820 ppm and some other environments predicted at different
frequencies at around 560 and 1000 ppm, which arise from the layer on the SrTiO3 and
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three-fold coordinated CeO2. Inversely to the formal interface, Figure 2c shows the 45◦

interfaces where the missing 680 ppm signal in the 0◦ interfaces appears and corresponds to
the shared anionic layer. Further calculations show the presence of two interfaces forming
the signal at 680 ppm where the first corresponds to the anion layer arranged according to
the SrTiO3 structure with 14 O2− ions and the second according to the CeO2 structure with
20 O2− ions. From the calculated shifts the interfacial oxygen’s intermediate between the
CeO2 and SrTiO3 structures, some modifications appear on the local oxygen environment
adjacent to the SrTiO3 interface as fewer oxygen ions are available to coordinate with all
the Ce4+ ions, leading to the withdrawal of more electron density from the adjacent oxygen
ones, thus deshielding them and perturbing the chemical shift. On the other hand, the
20 O2− ion CeO2 interface shows a predicted range of 660–700 ppm consistent with the
experimental results at 680 ppm, thus showing tetrahedrally coordinated oxygen ions
adjacent to two Ce4+ ions and one Ti4+ and Sr4+ ions [76].

2.2. Organic Films

Organic semiconducting thin films have promising applications in different industrial
fields, such as organic light-emitting diodes [108], organic solar cells [109] and organic
thin-film transistors [110]. For obtaining the highest performance of a film-based device,
the molecular orientation of the organic thin films should be studied. Solid-state NMR,
contrary to X-ray diffraction, is capable of extracting structural information and molecular
orientation from amorphous compounds, but the amount of information that could be
extracted is limited to the sensitivity of hardware and nuclei. Therefore, in order to
obtain the desired sensitivity, the maximum amount of sample should be packed in a
bulk form, or polarization enhancement techniques should be used in the case of thin
films. Static dynamic nuclear polarization (DNP) enhanced solid-state NMR was chosen to
enhance the sensitivity of phenyldi(pyren-1-yl) phosphine oxide (POPy2), a semiconducting
organic material frequently used in organic light-emitting diodes for its electron transport
properties. In the selected DNP experiments, a microwave irradiates dispersed radicals in
the sample, which leads to an electron polarization transfer from the polarized electrons
towards the 1H population in the sample. This polarization is further transferred into other
nuclei by means of cross-polarization (CP), resulting in the sensitivity enhancement for the
31P nuclei in these samples [111].

Amorphous POPy2 thin layers were deposited on (SiO2 or polytetrafluoroethylene)
substrates using vacuum-deposited and drop-cast techniques. The thin layers were doped
with a polarizing agent (bisnitroxide radical), and the concentration of radicals (0.25 wt%)
was chosen to avoid electron-electron exchange couplings, which decrease the DNP effi-
ciency. 31P CP DNP solid-state NMR experiments under static conditions were performed
on perpendicularly aligned POPy2 thin layers with respect to the external magnetic field
to obtain conformational information on 31P=O from the chemical shift anisotropy (CSA).
Figure 3 shows the 31P CSA spectra for amorphous POPy2 thin layers deposited on glass
substrates in the presence and absence of DNP enhancement [111]. Additional to the
presence and absence of DNP enhancement, different layer deposition techniques were
compared in Figure 3a,b and a different number of sheets were compared, leading to the
calculation of the DNP enhancement factor according to the integral signal intensity of the
CSA in the presence and absence of DNP enhancement in Figure 3a,c. The DNP enhance-
ment factor was affected by several factors, including the type of substrate and the number
of sheets used, where using only one POPy2 thin layer gave the highest enhancement,
which could be attributed to the cooling efficiency of the thin film. The CSA patterns for
both samples were axially symmetric and covered a wide range of the chemical shift (−100
to 100 ppm) depending on the P=O orientation. P=O axis of POPy2 having an orientation
parallel to the external magnetic field is around −100 ppm, while the perpendicular orien-
tation is around 100 ppm. The CSA pattern of the vacuum deposited POPy2 shows a higher
intensity around 100 ppm compared to that of the drop cast sample, and this indicates
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a greater contribution for the parallel aligned P=O orientation in the vacuum-deposited
POPy2 film [111].

Figure 2. (a) 17O NMR spectrum for CeO2-SrTiO3 nanopillar lift-off isotopically enriched films.
(b,c) DFT-calculated isotopic chemical shifts as a function of distance from the interface of different
interfacial structures. Three structure interfaces of the simple model and a low-energy structure were
found from random structure searching in 0◦ interface (b) and 45◦ interface (c). Reproduced with
permission. [76] Copyright 2020, American Chemical Society.
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Figure 3. 31P CSA NMR spectra for POPy2 film with (black) and without (gray) DNP enhancement:
(a) vacuum-deposited on SiO2 (12 sheets), (b) drop-cast on SiO2 (15 sheets) and (c) vacuum-deposited on
SiO2 (1 sheets). Reproduced with permission. [111] Copyright 2017, Angewandte Chemie, Wiley-VCH.
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Conjugated polymers offer significant advantages over different materials when used
in printable and flexible semiconductors due to their cheap, sustainable and solution-
processable properties. The high mobility in these materials comes from the partial electron
charge transfer between the donor and acceptor groups, which depends on the chemical
properties for these groups, such as the polymeric backbone conformations and molecular
level stacking arrangement of the adjacent polymer chains. However, challenges face
the development of these materials in both their bulk and thin film forms since few
characterization techniques are able to probe the atomic level in the presence of disorder
and provide structural, conformational and packing information. Therefore, solid-state
NMR with its MAS and DNP techniques offer the ability to characterize the polymeric
backbone conformations and packing arrangement for the high-mobility donor-acceptor
copolymer diketopyrrolo-pyrrole-dithienylthieno[3,2-b] thiophene (DPP-DTT) [112].

Figure 4 shows the DNP enhanced 13C CP MAS NMR spectra for (a) 1D spectra for
bulk DPP-DTT polymer with and without microwave irradiation at 263 GHz, where the
enhancement factor reached 130 for the aliphatic part of the polymer [112]. The spectrum
shows low resolution that is demonstrated in broader linewidths due to the presence of a
paramagnetic polarizing agent on one side and the reduction of thermal motional averaging
since the experiment is performed at 100 K on the other side. The 2D 1H-13C HETCOR
spectra for the DPP-DTT polymer in its bulk and thin film form using the drop-cast
technique are shown in Figure 4b,c. Comparing the 2D HETCOR spectra shows that the
structure in both bulk and film forms are highly identical, this is determined based on the
detected weak intermolecular interactions between the quaternary carbons C1 and C2, and
the corresponding hydrogens H6/H9 showing that the expected structure (based on the
simulation model) is preserved even after applying the solution deposition technique. 1D
spectra for DPP-DTT polymer in its thin-film form using the drop-cast and spin-coating
technique are shown in Figure 4d. It is worth mentioning that the DNP experiments provide
high-quality spectra in a relatively short experimental time (hours scale), despite using a
limited amount of sample (1 mg). 13C NMR spectroscopy is not expected to provide useful
information on drop-cast and spin-coated films at natural abundance for such limited
sample amounts (1 mg) without using the DNP technique [112].

Combining several techniques for collecting structural information about DPP-DTT
films provides a great overview of its high-charge carrier mobility ion devices. Two of the
most important factors contributing to the efficiency of intramolecular charge transport are
the degree of backbone planarity, which is based on the torsion energies of the backbone
groups, and the hydrogen bonding located between thiophene and DPP units [112].

The membrane technology has emerged with conventional separation methods, which
are well known and used in industry due to their sustainable production process, simplified
scaling-up and energy cost efficiency [113]. There has been a tremendous amount of time
and effort devoted to design novel membrane materials that are capable of fast and efficient
separation. The three aforementioned benefits were achieved with the development of thin-
film composite membranes, especially when synthesized from sustainable sources [114].
Those materials designed from an ultra-thin selective layer supported on a porous polymer
template, and their applications have ranged from ionic filtration, metal cation separation
and gas permeability [115,116].
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Figure 4. (a) 13C DNP-CPMAS NMR spectra for DPP-DTT bulk polymer with (upper spectrum) and without (lower
spectrum) DNP enhancement. (b) 1H-13C DNP-HETCOR NMR spectra for DPP-DTT bulk polymer. (c) 1H-13C DNP-
HETCOR NMR spectra for the drop-cast film. (d) 13C DNP-CPMAS NMR spectra for DPP-DTT drop-cast (red) and
spin-coated (blue) films. Reproduced with permission. [112] Copyright 2017, The Royal Society of Chemistry.

3. Recent Advancement in NMR Strategies and Hardware Design
3.1. Hardware Advancements (Probe and Coil Design)

Magic angle spinning (MAS) is one of the most essential and valuable techniques in
solid-state NMR [117,118] since it provides high-resolution spectra not only for crystalline
samples but also for amorphous ones. The high resolution is obtained upon mechani-
cally rotating the sample over an axis aligned at the magic angle (54.7◦) to the external
magnetic field. Among the few thin-film samples measured by MAS NMR, all sample
preparation methods used were based on scratching the sample off the substrate previ-
ous to the rotor packing [81,84,85,119,120], lift-off technique, which is mainly composed
of the water-soluble buffer layer method [121], followed by the polymer transfer layer
method [122] and stacking the rotor with proper size pieces of thin films [123]. Solid-state
NMR measurements on thin films were only possible in static mode (without sample
rotation); thus, high-resolution spectra were limited to samples without anisotropic interac-
tions [75,97]. The non-destructive property of MAS NMR leads to the development of new
probe and coil designs capable of measuring thin films, including the disk MAS design
present in Figure 5 [124]. Inspired from the MAS design having a thin capillary tube fixed
on top of the rotor [125–127], the disk MAS design requires the fixing of a circular quartz
substrate glued to an attachment on top of a 4 mm pencil design rotor [124]. Additionally,
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an external probe composed of a silver-wire coil, chip capacitors and trimmer capacitors
was assembled and secured to the spinning module. Radio frequency (RF) amplitude
and inhomogeneity calibration were performed on the disk MAS, and the radio frequency
efficiency was 2.0 folds lower compared to that of the conventional MAS probe. The signifi-
cant advantages of the disk MAS are summarized in its ability to characterize the thin film
under the nondestructive MAS conditions and tracing the identical thin film undergoing
ex situ experiments, such as annealing, discharging/charging and degradation [124].

Figure 5. (a) A schematic description for the disk MAS design, including its fit in the NMR probe (b) a side and front view
of a 4 mm pencil type rotor (Agilent technology, Inc.) with an attached 12 mm quartz disk, and (c) a photograph of the
square quartz substrate. Reproduced with permission. [124] Copyright 2011, Elsevier.
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Several groups were able to produce microcoils using lithographic methods, but
despite all the efforts conducted, these approaches did not reach the mainstream production
in NMR spectroscopy [128–130]. Several microcoil designs were introduced and tested
previously, including the micro helix coil, planar micro helix coil, saddle coil, stripline
design [131] and the microslot design [132]. The latter design has a comparable approach
with the stripline one, which, in turn, alternates from the helical coil design. Planar helices
microcoil designs suffer from several problems, including B1 field homogeneity, increase
in RF shielding currents and windings of the microcoil, thus leading to a severe reduction
in resolution and sensitivity and difficulty in implementing 2D NMR methods [133].

The passage of an RF current through a straight wire leads to the generation of an
electromagnetic RF field encircling the wire. When the wire is in a position parallel to a
static magnetic field, a new magnetic field is generated perpendicular to the static one,
which can be used for the excitation of NMR spins. The homogeneity of the static magnetic
field is barely disrupted from the positioned wire. The stripeline coil is basically a 2D
flat copper wire covered with symmetric ground planes from both sides to confine the
RF radiation, reduce the RF field strength decay and keep it homogeneous. The applied
RF current passes through the flat strip, and a generated RF field encircles the strip. The
local current density is at maximum in the middle of the strip, particularly between the
boundaries of the restriction, which results in a high RF field at the sample placed along
the channel. The signal generated from the sample dominates the overall signal detected
by the coil. Several factors were found to be affecting the resolution and sensitivity of the
stripline coil, including the tapering angle, gap width and the aqueous fluid filling the
gap, as shown in Figure 6 [134]. Compromised parameters were chosen depending on
numerical simulation to obtain the highest resolution and sensitivity [133–135]. The novel
stripline probe technology proved to be valuable in studying thin films where it provided
high sensitivity to detect highly mobile hydrogen species in photochromic thin films [98].

3.2. Sensitivity Detection (MRFM, β-Magnet)

NMR has established its position as an inevitable analytical technique in many areas
of research, but every technique has its limitations and sensitivity, which is the main
issue for NMR. NMR spectroscopy has suffered from relativity low sensitivity, especially in
detection methods due to the extremely low thermodynamic population difference between
the nuclear spin levels. Different methods for improving the detection sensitivity of NMR
have been developed based on mechanical detection, where the first successful application
was called Magnetic Resonance Force Microscopy (MRFM) [136]. The basic principle of
MRFM relies on the use of a mechanical cantilever already known from Atomic Force
Microscopy to detect exerted forces on a spin system in the presence of an inhomogeneous
magnetic field [137]. The force experienced by the nuclear magnetic dipole moment upon
settling in an external gradient field is detected by the atomic force microscope cantilever by
mechanical means, and thus sub-angstrom resolution may be reached from the cantilever
deflection. The inhomogeneous magnetic field is created by introducing a small magnetic
particle in an external magnetic field, which results in the variation of the Larmor resonance
over the sample; thus, particular slices of the sample can be excited through the variation
of the irradiation frequency or the position of the magnetic field gradient source. The
configuration for MRFM is illustrated in Figure 7 [77].

The driving force for developing the MRFM was the possibility to detect a single
spin, which could make it an important tool in quantum computation, the efforts were
successful [138], and MRFM was developed not only to detect electrons [139] but also
protons [140] and latter isotope selective nuclei in organic monolayers [141]. The advance-
ments in MRFM continued with the advanced observation of magnetization, enhanced
resolution and no gradient (BOOMERANG) technique [142], ending with the coupling of
ultrasensitive MRFM with 3D image reconstruction to achieve magnetic resonance imaging
with <10 nm resolution limit [143].
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Figure 6. Parameters that are varied for optimization of the resolution. Reproduced with permis-
sion. [134] Copyright 2009, Elsevier.

Figure 7. (a) A schematic description of the MRFM setup and (b) showing the original cantilever tip where
the sample is deposited (appearing dark). Reproduced with permission. [77] Copyright 2013, Nature.
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Although advanced solid-state NMR techniques and pulse sequences, including
MAS, are not applicable in MRFM, an NMR approach based on force detection method
for chemical investigations using relaxation times or chemical shifts was developed [77].
Quadrupole nuclei and low γ nuclei are the best candidates for high-resolution imaging
since the external field gradient does not have a major sensitivity enhancement effect,
thus leaving this enhancement to be determined by the local structure experienced by the
nuclei [144]. In particular, applications for MRFM includes the fields of coatings, colloids
and semiconductors [77,145].

The implantation of probes (radioactive ions) that are highly spin polarized is an
effective technique to overcome the low number of nuclei for a measurable signal in
nanoscopic systems [146]. Optical pumping is an advanced method for spin polarization,
as it provides reproducible results even with a very high degree of spin polarization
(10–100%). Additionally, the need for extreme cooling of the ions is not compulsory in
optical pumping since it depends on atom/ion interaction with circularly polarized laser
beams. The transfer of polarization from the electron to the nucleus is completed via
hyperpolarization interaction [147,148].

β-NMR spectroscopy depends on the β particles emitted anisotropically during the
decay of spin-polarized nuclei. The configuration for β-NMR is illustrated in Figure 8 [149].
The beam exposed to optical pumping implants into the NMR sample after its passage
through the polarization section. A continuous RF field is applied on the sample leading
to the nuclear sub-level transitions at the resonance frequency, and the decrease in spin
polarization as the change in β-decay asymmetry is recorded. The employment of a highly
spin-polarized radioactive beam with β-NMR creates a novel nuclear method of detection
that has enough sensitivity to detect the presence of a single probe nucleus and build up
a typical spectrum [150]. Due to its novel features such as high magnetic fields and the
ability to control the depth of implantation ranging between 2–200 nm, β-NMR found
many applications in surface science [151], insulators [152], semiconductors [153,154],
antiferromagnetics [155] and thin films [73,149,156–158].

Figure 8. A schematic description of the β-NMR setup where the experiment starts with a 4 s long 8Li+ pulse, followed by
the β particles emitted anisotropically during the decay of spin-polarized nuclei. The β trajectory (orange line) is shown
hitting the detector. Reproduced with permission. [149] Copyright 2017, The Royal Society of Chemistry.
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3.3. Polarization Enhancement (Natural Abundance DNP versus Thin Films)

The transfer of polarization from electrons spins to nuclear ones through hyperfine in-
teractions is called hyperpolarization. Upon the relaxation of the electron spin temperature
back to the thermal equilibrium after its exposure to external microwaves, nuclear spins
are hyperpolarized, leading to a drastic enhancement in the obtained NMR spectra. The
term dynamic nuclear polarization (DNP) was assigned to distinguish this scheme from
alternative hyperpolarization methods [159].

DNP NMR spectroscopy has been successfully applied to materials research more
than to other biological systems due to the fact that the experiments are conducted at cryo-
genic temperatures between 20 K and 110 K. At these cryogenic temperatures, maximum
sensitivity enhancements are obtained since electron relaxation time is long enough for
the polarization to be transferred to the nuclei. In the case of an ideal nuclear polariza-
tion transfer, the NMR signal could match the ESR one, and DNP NMR could find new
applications in surface chemistry [159]. DNP NMR spectroscopy was recently applied on
different types of thin films, including phosphorus-doped silicon [88], organolead halide
perovskites [101] and organic semiconducting ones [111].

4. High-Tech Opportunities beyond Conventional Methods

In recent years, Solid-state NMR has observed significant developments and advance-
ments that potentially revolutionized the field with respect to sensitivity and resolution.
Hereby, we list the recently established techniques in solid-state NMR and explain explicitly
the proper research directions that should be taken with respect to thin-film materials.
The following methods are beyond the conventional known ones and include ultra-fast
spinning, ultra-high magnetic fields, hyperpolarization techniques, pulse-field gradient
NMR diffusion experiments and NMR relaxometry.

4.1. Ultra-Fast MAS Spinning for 1H, 19F and Heavy Spin- 1
2 Nuclei

Spectroscopic sensitivity is a critical parameter upon studying thin-film materials, and
ultra-fast MAS spinning is an elegant method for achieving that. Although 1H and 19F are
expected to provide the highest sensitivity due to their high isotopic abundance and gyro-
magnetic ratios (99.985%, 42.577 MHz·T−1 for 1H and 100%, 40.078 MHz·T−1 for 19F), these
nuclei can benefit from ultra-fast MAS spinning in different ways. For example, conduct a
set of proton-detection experiments (2D COSY, 2D INEPT, 3D INEPT-TOCSY and 2D RFDR
techniques) to assign the resonance and determining the intermolecular packing [160–162],
enable proton-detection of the mobile matrix, filter out the signals of the rigid domain [163],
narrow the line-width so it is comparable to solution-state NMR, assign the resonances
without perdeuteration of the sample [164,165] and measure the 19F-19F/1H distances
beyond 1 nm [166–168] without disrupting the hydrogen bonds and intermolecular pack-
ing of the material by an appropriate sparsely fluorinate labeling [168,169]. Additionally,
several quadrupole nuclei having short longitudinal relaxation times benefit from the
rapid acquisition of proton-detected 2D HETCOR solid-state NMR spectra under MAS
conditions to obtain various chemical information [170].

Heavy spin- 1
2 nuclei in general, and Tin in particular, has extensive use in industry

and academic research. Extracting chemical information about the different positions
of the heavy spin- 1

2 nuclei and the surrounding environments is essential. Ultra-fast
MAS spinning experiments are considered extremely beneficial for their simplification of
ultra-wide line NMR spectra, increased mass sensitivity and the extraction of chemical
information, including chemical shift anisotropy, tensor parameters, and asymmetry [171].

4.2. Ultra-High Magnetic Fields for Quadrupole Nuclei

Recently, new types of ultra-high NMR magnets were revealed, in addition to the
1.3 GHz (30.6 T) hybrid high temperature and low-temperature superconducting mag-
nets [172]. The newly developed series-connected hybrid magnet hits 1.5 GHz (35.2 T) and
is an assembly of a superconducting outset and a resistive insert [173]. The development
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of ultra-high magnetic fields presents a unique opportunity for the investigation of exotic
quadrupole nuclei [174] since quadrupole nuclei show high sensitivity under ultra-high
magnetic fields leading to a dramatic change in the spectral line-width scale [175–177].
Ultra-high magnetic fields resolve to a certain extent the line-broadening associated with
the second-order quadrupole coupling [106]. Applying multi-field experiments is a deci-
sive exploration strategy for extracting structural information and exploring the chemical
environment of exotic quadrupole nuclei such as 2H, 17O, 33S and 35Cl in organic thin films
and 7Li, 11B, 51V, 59Co, 67Zn, 71Ga and 89Yb in inorganic ones.

The greatest challenge for quadrupole nuclei is the extraction of quantitative infor-
mation; the expected route to achieve this is by rapid advancements in computational
methods, which enables the calculation of NMR parameters and spectral interpretation.
Moreover, the development of sensitivity boosting CryoProbes [178] and multichannel
probes that are capable of decoupling multiple quadrupole nuclei for enhancing spectral
resolution in inorganic thin films [59].

4.3. Isotopic Enrichment of NMR Active Nuclei vs. Paramagnetic Doping for Sensitivity Boosting

Isotopic enrichment provides significant spectral sensitivity compared to natural abun-
dance; many NMR active nuclei could be used in their enriched form to grant the necessary
sensitivity needed. Various biological compounds, such as amino acids and sugars, are
13C and 15N labeled, which are used as precursors to produce uniformly or site-specific
enriched proteins. Thin-film materials can also benefit from isotopic enrichment in several
directions, including the 29Si-enriched precursors [179] for the production of organosilicate
thin films, 17O-enriched [107] liquid H2

17O or gaseous 17O for the production of oxides, ce-
ramics and catalysts, 119Sn-enriched strips [180] for the production of thin-film perovskites,
43Ca-enriched [181–183] carbonate thin films and several more opportunities [184].

On the other hand, paramagnetic relaxation reagents are widely used in solution-state
NMR for their reducing relaxation properties and cost effectiveness, where the unpaired
electrons originating from the paramagnetic species interact uniformly with the nuclear
spins, thus enhancing the relaxation process [185,186]. The reduction of the relaxation time
grants the quick accumulation of measuring scans leading to enhanced sensitivity in a time
interval. Paramagnetic dopants are less effective in solid samples since the paramagnetic
species can only interact with the neighboring nuclei but not with distant ones, thus leading
to an inhomogeneous relaxation and partially resolved line-broadening [187,188]. Paramag-
netic dopants were applied on thin organic semiconductors using vacuum-deposition tech-
niques showing promising sensitivity boosting abilities when coupled to cross-polarization
NMR techniques [189].

4.4. Advanced Hyperpolarization Techniques

Hyperpolarization techniques and especially natural abundance DNP ones have
enhanced the NMR sensitivity drastically, but the efficiency of polarization in DNP experi-
ments scales inversely to the external magnetic field, making high-field DNP (>9.4 T) unlu-
crative. Most continuous-wave DNP experiments are operated at cryogenic temperatures
and moderate magnetic fields in order to obtain the desired sensitivity enhancement. The
future development pathways are in the combination of fast MAS and DNP NMR [190,191]
and overcoming the polarization vs. magnetic field/temperature correlation [188] by
developing pulsed DNP techniques [192,193] and new polarization strategies applicable
at ambient temperatures. Several hyperpolarization techniques are available and could
be applied on different thin-film materials depending on their magnetic properties, such
as DNP surface-enhanced NMR spectroscopy for organosilicate materials [159,194–196],
optical pumping used for phosphorus donor nuclei, ENDOR for paramagnetic nuclei and
enhancement effect in magnets for ferromagnetic nuclei [197].
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4.5. NMR Techniques beyond Spectroscopy (NMR Diffusometry, Fast Field Cycle NMR, Zero
Field NMR, Magnetic Resonance Imaging)

NMR techniques are extended beyond spectroscopy limits to reach diffusometry,
relaxometry and imaging techniques. NMR diffusometry is also known as pulse-field
gradient NMR is capable of keeping track of molecular ensembles along their diffusion
pathways for distances ranging between nano- to micrometers. Its unique ability to trace
the rate of molecular transport vs the distance travel makes it an attractive technique to
study not only the molecular displacement as a function of time and distance but also the
diffusion anisotropy, impact of diffusion on chemical conversion in porous materials and
domain size distribution [198]. NMR diffusometry with all the advantages it offers was
barely used in thin-film research, but it has shown valuable applications in organic thin
films, especially in bulk heterojunction organic photovoltaics [199], nafion [200] and liquid
crystal thin films [201].

NMR relaxometry and imaging techniques can offer decisive information about the
composition, nanomorphology and dynamics in thin-film research; these techniques have
well established their foot in different areas of research and proved to be as valuable
as NMR spectroscopy. Magnetic resonance imaging (MRI) has proven to be a versatile
imaging technique. While it is remarkably used in biomedical research, it is also capable
of producing images in material science. Magnetic resonance imaging forms an image of
the measured environment solely depending on the density of protons in specific regions.
Scanning with gradient coils causes the selected region to experience the specific magnetic
field needed to absorb the energy, and the excited spins possess different relaxation be-
havior, which is measured by a receiving coil. Magnetic resonance imaging is a valuable
technique for studying the solvent–matrix interactions not only in biomedical fields but
also in material science and advanced film fields [202]. Meanwhile, Relaxometry refers
to the study of relaxation variables under magnetic resonance and magnetic resonance
imaging, where the relaxation rate of the nuclear spins is dependent on the mobility of
the surrounding microscopic environment. The relaxation properties of the spins are also
dependent on the applied magnetic field, where the sensitivity is enhanced for dynamic
environments in strong magnetic fields and for rigid environments in low magnetic fields.

Solid-state NMR relaxometry has established its position in food science, including
the determination of moisture content, solid fat content and much more [203] and shown to
be complementary to traditional microscopic techniques in studying the phase morphology
of blended materials used in semiconductive polymer-based devices [204].

5. Summary, Concluding Remarks and Future Perspectives

Solid-state NMR has established its position in different fields of science, starting
from inorganic materials such as zeolites [205], inorganic polymers [206] and borane-
phosphane [207] passing through biological [208] and biotechnological systems [209] such
as carbohydrates [210], proteins [211], biomembranes [212] and plant cell wall [213], envi-
ronmental chemistry [214], and ending up with material science, including metal organic
frameworks [215], perovskites [216], organic semiconductors [217] and functional nano-
materials [218]. Solid-state NMR spectroscopy, with its diverse techniques and measured
nuclei, offers a wide range of valuable information on the geometric and electronic structure
of advanced thin-film materials. Solid-state NMR is a promising technique in resolving as
yet missing aspects of the molecular structure, polymorphism, packing and dynamics of
thin films. Sensitivity is a great issue in solid-state NMR, placing it on the border, but recent
technical and hardware advancements brought solutions to this that provided molecular
information beyond expectations. In this article, we have reviewed the most advanced
NMR strategies and hardware design to be used in studying advanced thin-film materials,
but nowadays, there is no single technique capable of providing information on all different
chemical levels. Ideally, the pursuit of integrated methods such as the combination of solid-
state NMR advanced techniques with microscopic analysis and computational approaches
can provide the most valuable information in studying advanced thin-film materials.
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