
Sicyos angulatus ameliorates acute liver injury by inhibiting oxidative stress via
upregulation of anti-oxidant enzymes
Hyun-Yong Kima,c, Jung-Ran Noha, Sung-Je Moona, Dong-Hee Choia, Yong-Hoon Kima,b, Kyoung-Shim Kima,b,
Hong-Sun Yookc, Jin-Pyo And, Won-Keon Ohd, Jung Hwan Hwanga,b and Chul-Ho Lee a,b

aLaboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; bUniversity of
Science and Technology, Daejeon, Republic of Korea; cDepartment of Food and Nutrition, Chungnam National University, Daejeon, Republic of
Korea; dResearch Institute of Pharmaceutical Sciences, College of Pharmacy, Korea Bioactive Natural Material Bank, Seoul National University,
Seoul, Republic of Korea

ABSTRACT
Objective: We aimed to investigate the effect of Sicyos angulatus (SA) ethanolic extracts as
antioxidants and potential treatments for liver disease.
Methods: To establish a mouse model of liver injury, C57BL/6 male mice were injected via the caudal
vein with a single dose of concanavalin A (Con A, 15 mg kg−1). SA extracts were administered once by
oral gavage 30 min before Con A injection.
Results: In vitro studies showed that SA decreased tert-butyl hydroperoxide (t-BHP)-induced reactive
oxygen species (ROS) production. SA administration reduced plasma alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) levels, as well as hepatic ROS levels, in a dose-dependent
manner. Moreover, SA increased the activities of the hepatic antioxidant enzymes superoxide
dismutase, catalase, and glutathione peroxidase in a dose-dependent manner. Furthermore, SA
treatment reduced pro-apoptotic protein levels. Con A-mediated cytosolic release of Smac/DIABLO
and apoptosis-inducing factor (AIF), which are markers of necrosis, were dramatically decreased in
HepG2 cells treated with SA.
Conclusion: SA ameliorated liver injury and might be a good strategy for the treatment of liver injury.
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Introduction

The liver is a major organ that is exposed to bacterial products,
toxins, and food-derived antigens [1]. Its failure causes critical
consequences for metabolite detoxification, protein synthesis,
metabolism, and digestive biochemical production [1]. There
are many diseases that affect the liver, including alcoholic,
fatty, anddrug-induced liver diseases, aswell as viral hepatitis [2].

Reactive oxygen species (ROS) oxidize cellular proteins,
lipids, and nucleic acids, which leads to general cellular
damage and dysfunction and may initiate cell death through
various signaling cascades [3]. ROS generation is a major
factor in the pathogenesis of many liver diseases [4,5]. Hepato-
cytic protein, lipid, and DNA are primarily affected by ROS,
resulting in functional abnormalities in the liver [6]. The first
line of defense against environmental challenges and injury
is the innate immune system, which is activated much more
rapidly than the adaptive immune system [2]. Its excessive acti-
vation is known to induce liver damage by increasing the pro-
duction of cytokines, such as tumor necrosis factor-alpha (TNF-
α) [7]. Liver injury induced by TNF-α has been proposed to
involve the generation of ROS derived from either mitochon-
drial or non-mitochondrial sources [8]. Therefore, antioxidant
therapy alone or in combination with other strategies
appears to be a potential treatment for various liver diseases.

Sicyos angulatus (SA) is a problematic, invasive vine and its
aggressive attacks on summer crops are well-known [9]. We

found that the ethanolic extracts of SA exert protective
effects against atherosclerosis by inhibiting proinflammatory
cytokine production in rodents [10]. In this study, we investi-
gated the antioxidant effect of SA extract and its use as a
treatment for liver injury.

Materials and methods

Animals

Male 8-week-old C57BL/6J mice were maintained at the Korea
Research Institute of Bioscience and Biotechnology (Daejeon,
Korea). The mice were housed in a temperature-controlled
room (22 ± 1°C) and exposed to 12 h light/dark cycle with
unlimited food and water. The mice were randomly divided
into four groups: (1) Normal group; (2) Con A group; (3) Con
A + SA100 group; (4) Con A + SA300 group; (5) SA300 group.
SA extracts were administered once by oral gavage 30 min
before Con A (Sigma-Aldrich, St. Louis, MO, USA) injection.
Mice were injected via the caudal vein with a single dose of
15 mg/kg Con A. Six hours after Con A injection, the mice
were euthanized by cervical dislocation. The livers were
excised, frozen in liquid nitrogen, and stored at –80°C. All
animal experiments were approved by the Institutional
Animal Care and Use Committee (IACUC, KRIBB-AEC-16095)
and were performed in accordance with the institutional
guidelines at KRIBB.
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Preparation of the SA extract

The SA extract was prepared and supplied by the Korea
Bioactive Natural Material Bank (Seoul, Korea). Briefly, the
dried aerial parts of SA were extracted three times with
70% ethanol for 6 h at room temperature. Afterward, the
70% ethanol-soluble extract was filtered and exhaustively
concentrated under reduced pressure to produce a 70%
ethanolic extract. The yield of the SA extract was 11%.
This SA extract was subsequently suspended in 0.5% carbox-
ymethyl cellulose (CMC) to a final concentration of 50 mg/ml
as a stock solution. The working solution of SA was adjusted
to the desired concentrations for use in the in vitro and in
vivo experiments.

ROS measurements

HepG2 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Hyclone, Logan, UT, USA) containing 10%
fetal bovine serum supplemented with 100 U/ml penicillin
and 100 μg/ml streptomycin, and they were incubated at
37°C in an atmosphere with 5% CO2. HepG2 cells were
pretreated with DMSO 100 μg/ml or SA 300 μg/ml for 2 h.
Next, medium in each well was replaced with fresh
medium containing 0.3 mM tert-butyl hydroperoxide
(t-BHP, Sigma-Aldrich) and 50 μM 2,7-dichlorofluorescein
diacetate (DCF-DA, Invitrogen, Eugene, OR, USA), and the
cells were incubated for 30 min. Fluorescence images were
visualized using a fluorescence microscope (Nikon, Eclipse
TE 2000-U, Japan). Fluorescence intensity was measured
using a Victor3 1420 Multilabel Counter (Perkin-Elmer, Palo
Alto, CA, USA) at an excitation of 485 nm and an emission
of 530 nm, and the readings were normalized to the
protein content of the corresponding wells.

For liver extract preparation, liver tissue was fractionated
via homogenization with a tight-fitting pestle in 0.25 mol/l
sucrose buffer. The homogenates were centrifuged at 600 ×
g for 10 min to remove the nuclear fraction, and the remain-
ing supernatant was centrifuged at 10,000 × g for 20 min to
obtain the mitochondria pellet. The remaining supernatant
was centrifuged at 100,000 × g for 1 h to obtain the cytosolic
supernatant for ROS measurements.

To determine total ROS, liver tissue extracts (100 μl) were
incubated with 20 μM DCF-DA and the fluorescence was
recorded. To determine H2O2 level, liver tissue extracts
(100 μl) were incubated with 20 μM amplex red (Sigma-
Aldrich) and 0.1 U/ml horseradish peroxidase (HRP; Sigma-
Aldrich) and the fluorescence was recorded at 530 nm (exci-
tation) and 620 nm (emission). Finally, to determine O−

2

level, liver tissue extracts (100 μl) were incubated with
20 μM dihydroethidium (DHE; Sigma-Aldrich) and the fluor-
escence was recorded at 485 nm (excitation) and 620 nm
(emission). All reactions were incubated at 37°C for
60 min. Fluorescence intensity was recorded using a
Victor3 Multilabel Counter and was normalized to that of
protein content.

Plasma analysis

Blood samples were collected from the retro-orbital venous
sinuses of the mice. Plasma was obtained by centrifugation
of the blood at 10,000 × g for 5 min at 4°C. Alanine amino-
transferase (ALT) and aspartate aminotransferase (AST)

levels were measured using an automatic chemical analyzer
(AU480, Beckman Coulter, Brea, USA).

Antioxidant enzyme assay

The mitochondrial fraction is used for catalase (CAT) and
superoxide dismutase (SOD) assays, and the cytosolic frac-
tion is for glutathione peroxidase (GPx) and glutathione
reductase (GR) assays. CAT activity was measured using
Aebi’s method [11]. GPx activity was assayed using the
Paglia and Valentine method [12]. GR activity was deter-
mined using the method of Pinto and Bartley [13], in
which NADPH oxidation was monitored at 340 nm. SOD
activity was measured using a superoxide dismutase (SOD)
activity assay kit (Biovision, Milpitas, CA, USA).

Histopathology

The livers were removed from the mice and immediately fixed
in a buffer solution containing 10% formalin for pathologic
analysis. Fixed tissues were processed for paraffin embedding,
and 5-μm sections were prepared and stained with hematox-
ylin and eosin (H&E). For the analysis of cell death, apoptotic
cells were detected using a TUNEL staining kit (ApopTag® Per-
oxidase In Situ Apoptosis Detection Kit, Millipore, Billerica,
USA) according to the manufacturer’s protocol. For neutrophil
staining, the sections were incubated with the primary
antiserum (Santa Cruz, CA, USA) against neutrophils. Next,
anti-rat IgG was used as the secondary antibody (Vectastain
Elite HRP ABC kit, Vector Laboratories, Burlingame, CA, USA).
Neutrophils were visualized by 3,3-diaminobenzidine (Peroxi-
dase substrate kit, Vector Laboratories) staining.

Western blotting

HepG2 cells were lysed by adding SDS sample buffer
[62.5 mM Tris-HCl (pH 6.8), 6% (w/v) SDS, 30% glycerol,
125 mM dithiothreitol (DTT), and 0.03% bromophenol blue].
Cell lysates were separated using 10% SDS-polyacrylamide
gel electrophoresis (PAGE) and were transferred to polyvinyli-
dene difluoride (PVDF) membranes. The membranes were
then incubated with primary antibodies against Bax (Bcl-2-
associated X protein, Cell Signaling Technology, Danvers,
MA, USA), Bcl-2 (B-cell lymphoma 2, Cell Signaling Technol-
ogy), Bad (Bcl-2-associated death promoter, Cell Signaling
Technology), and Bim (Bcl-2-like protein 11, Cell Signaling
Technology). The secondary antibodies were HRP-conjugated
goat anti–rabbit IgG and rabbit anti–mouse IgG.

For fractionation, HepG2 cells were homogenized in lysis
buffer [210 mM mannitol, 70 mM sucrose, 1 mM EGTA, and
5 mM Hepes (pH 7.2)]. Lysates were centrifuged at 600 × g
for 10 min at 4°C. The resulting supernatants were centrifuged
at 17,000 × g for 10 min at 4°C to isolate cytosolic proteins.
Total protein was quantified by the Bradford assay. Cytosolic
fractions were used for western blotting using primary antibo-
dies. Smac/DIABLO (second mitochondria-derived activator of
caspase/direct inhibitor of apoptosis binding protein with low
pI, Abcam, Cambridge, MA, USA), cytochrome C (Cell Signaling
Technology), AIF (apoptosis-inducing factor, Cell Signaling
Technology), and β-actin were used as a loading control.
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Statistical analysis

All data are presented as the mean ± standard error of the
mean (SEM). Significant differences between 2 groups were
determined using Student’s t-tests. A value of p < 0.05 was
considered statistically significant.

Results

SA pretreatment lowers t-BHP-induced ROS
production in HepG2 cells

Total ROS production was measured in the HepG2 cells after
0.3 mM t-BHP treatment. An increase in ROS production was
observed in HepG2 cells treated with 0.3 mM t-BHP more
than in the untreated controls. However, the cells pretreated
with SA showed a significantly lower ROS production than
cells treated only with t-BHP (p < 0.05) (Figure 1(A and B)).
These results suggested that SA pretreatment decreased t-
BHP-induced ROS production in HepG2 cells.

SA pretreatment blocks ROS production and lowers
ALT levels in the Con A-induced liver injury model

To examine the effects of SA single dose on ROS produc-
tion, mice were pretreated with 300 mg/kg SA [10] and

hepatic total ROS, H2O2, and O−
2 levels were measured at

6 h after Con A injection. In the livers of mice pretreated
with SA, although the total ROS and H2O2 levels were
not statistically different, both levels were lower than in
the vehicle group (Figure 2(A and B)). Interestingly, the
Con A-induced increased levels of O−

2 was significantly
decreased by SA pretreatment (Figure 2(C)). Next, we
measured ALT and AST levels to determine the dose-
dependent effects of SA on Con A-induced liver injury.
Plasma ALT and AST levels were highly increased by Con
A treatment (Figure 2(D and E)). However, the Con A-
mediated increase in plasma ALT level was dramatically
improved by SA administration in a dose-dependent
manner (Figure 2(D)). These results suggested that the
SA extract exerted a potent antioxidant activity in vitro
and in vivo and attenuated liver injury in Con A-induced
animal models.

Effect of SA pretreatment on antioxidant enzyme
activities in the liver after Con A treatment

Accumulated cellular ROS is eliminated by various antioxi-
dant enzymes to maintain redox homeostasis [14]. There-
fore, we assayed the activities of antioxidant enzymes in
the liver tissues. MnSOD (Figure 3(A)), CAT (Figure 3(B)),
and GPx (Figure 3(C)) activities were significantly increased
in the Con A-SA group more than in the Con A group,
but GR activities (Figure 3(D)) were not significantly
different between the two groups. Moreover, SA-only treat-
ment was not able to affect the activities of antioxidant
enzymes. These results suggested that SA treatment amelio-
rated ROS by activating the antioxidant enzymes SOD, CAT,
and GPx.

SA pretreatment inhibits liver histological alterations
after Con A treatment

To evaluate the protective effects of SA against Con
A-induced liver injury, an in vivo experiment was performed.
Histological abnormalities were detected in the livers of
Con A-treated mice; however, the H&E-stained liver tissues
of the SA-pretreated mice (Figure 4(A)) showed low cell
death. The TUNEL assay (Figure 4(B)) showed that Con
A-induced apoptosis was significantly ameliorated by SA
pretreatment in a dose-dependent manner (p < 0.05).
These findings are consistent with the plasma ALT and
AST levels.

SA pretreatment lowers cell apoptosis markers and
neutrophil infiltration induced by Con A in HepG2 cells

To evaluate the effect of SA against Con A-induced cell
apoptosis, HepG2 cells were pretreated with SA at the
indicated concentrations and cell apoptosis was stimu-
lated with Con A. Con A-induced increase in apoptotic
markers (Bax, Bad, and Bim) levels were decreased by SA
in a concentration-dependent manner. However, the
level of Bcl-2, an apoptosis inhibitor, was not affected by
SA (Figure 5(A)). Next, we confirmed the levels of
necrotic markers because necrosis is a major mode of
cell death in liver injury. Smac/DIABLO and AIF levels
were dramatically induced by Con A treatment. However,
this cytosolic release was completely blocked by SA

Figure 1. Effects of SA on ROS production in t-BHP-treated HepG2 cell. (A) The
effects of SA on ROS production in t-BHP-treated HepG2 cells in 6-well plates
were monitored using a florescence microscope (magnification 100×). (B)
Total ROS production of t-BHP-treated HepG2 cells was measured using a
fluorometer. The data are shown as the means ± SEM of three indicated experi-
ments. *** p < 0.001 (Student’s t-test).
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pretreatment (Figure 5(B)). Subsequently, Con A-induced
neutrophil accumulation was significantly reduced by SA
extract pretreatment in a dose-dependent manner

(Figure 5(C)). These findings suggested that SA inhibited
both Con A-induced apoptosis and necrosis in HepG2
cells.

Figure 2. Effects of SA on ROS production in the liver after Con A exposure. Mice were subjected to Con A (15 mg/kg, IV) treatment with or without SA (IP). (A) Total
production of reactive oxygen species (ROS) in the hepatic cytosolic fractions from vehicle- or SA-treated mice was assayed by measuring the fluorescence produced
by 20 μM DCFH-DA. (B) H2O2 and (C) O2- production were estimated in the hepatic cytosolic fractions of liver from vehicle (n = 5) and SA treated mice (n = 5). *p <
0.05 compared to Con A + Veh mice by Student’s t-test. (D) ALT and (E) AST levels were measured 6 h after Con A injection in mice. Normal: non-treated group (n =
5), Con A + Veh (n = 5): Vehicle- and Con A-treated group (n = 5), Con A + SA100 (n = 5): SA (100 mg/kg)- and Con A-treated group, Con A + SA300 (n = 5): SA
(300 mg/kg)- and Con A-treated group.

Figure 3. Effects of SA on intracellular antioxidant enzyme activities. Mice were treated with 15 mg/kg of Con A with or without SA (100, 300 mg/kg). Six hours after
Con A exposure, liver samples were taken from the mice. (A) MnSOD, Mn superoxide dismutase; (B) CAT, catalase; (C) GPx, glutathione peroxidase; and (D) GR,
glutathione reductase levels, were measured by enzymatic assays. * p < 0.05 or ** p < 0.01 compared with the group treated with Con A-Veh (Student’s ttest).
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Discussion

Hepatitis has many causes, such as viral infection, autoim-
munity, alcohol, and drugs, and this disease is a threat to
human health and is a worldwide problem [15]. The mortal-
ity rate of liver failure is as high as 50% [16] and therapeutic
approaches to recover liver function are still limited. There-
fore, finding novel drugs for the prevention and treatment
of liver injury is of great interest. Many plant extracts
have been examined for their ability to prevent liver injury
[17–19]. In this study, we investigated the effect of SA as a
potent candidate for the treatment of liver injury.

Oxidative stress is one of the prominent causes of liver
injury mediated by various factors, including infection [20],
autoimmunity [21], alcohol [22], free fatty acids [23], and
drugs [24]. ROS may cause damage at the cellular level via
membrane lipid peroxidation, cell degeneration, apoptosis,
and necrosis [25]. In the current study, we investigated
whether the ethanolic SA extract can suppress ROS overpro-
duction. We found that the ethanolic SA extract decreased
the t-BHP-induced increase in ROS production in cultured
cells, which has often been used as a model for investigating
the mechanism of cell injury initiated by acute oxidative stress
[11]. Consistent with the in vitro data, our in vivo study also
showed that in the SA-pretreated group, ROS levels were
lower in the liver more than in the vehicle-treated and Con
A-treated groups. Consistent with this, SA treatment signifi-
cantly attenuated Con A-induced increases in serum ALT
and AST levels, which are common markers of liver injury,

indicating that SA exerted a potent antioxidant activity and
suppressed acute liver injury.

The antioxidant system is essential for cellular responses
to cope with oxidative stress, and antioxidant enzymes, such
as CAT, SOD, and GPx, are used as indexes to evaluate the
level of oxidative stress [22]. In our present study, SA pre-
treatment significantly increased the activities of SOD, CAT,
and GPx, but not GR activity. These findings suggested
that SA treatment reduced oxidative stress by activating
antioxidant enzymes.

Con A is widely used in the investigation of immune-
mediated acute liver injury [26]. Con A-induced hepatitis
mimics many aspects of human acute liver failure, including
severe damage by activated T and natural killer T (NKT) cells
[27]. Con A-stimulated T cells produce TNF-α [28] and TNF-α
induces apoptosis in mouse hepatocytes by stimulating ROS
production [29]. We also observed increased apoptosis in
the liver of mice treated with Con A. Interestingly, Con A-
induced cell death was significantly improved by pretreat-
ment with SA extract. Furthermore, Con A-induced increases
in pro-apoptotic protein (Bax, Bad, and Bim) levels were dra-
matically decreased in SA-treated HepG2 cell lines in a
concentration-dependent manner. Furthermore, the cytosolic
release of Smac/DIABLO and AIF was decreased by pretreat-
ment with SA. These findings suggested that SA extract inhib-
ited Con A-induced cell death by suppressing ROS.

There were some limitations in this study. First, this study
lacked any specific information of the active compounds in

Figure 4. Effect of SA on histological alterations and apoptosis in the liver after Con A exposure. Histological assessments were performed by H&E (magnification:
200× or 400×) (A) and TUNEL staining to detect apoptotic cells (magnification: 100×) (B). Scale bars, 100 μm or 200 μm. *p < 0.05 compared to Con A + Veh mice by
Student’s t-test. Injury area and necrotic area presented as the percentage of liver section.
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the SA extracts. Second, we were unable to evaluate the
underlying mechanism how SA extracts regulate anti-oxida-
tive enzymes and improve Con A-induced liver injury. Pre-
vious study on chemical constituents from SA reported that
some flavonoids were contained in this plant [30]. Flavonoids
are a large group of natural componds with phenol rings
found in foods and beverages of plant origin. It has been
reported that this compounds have an anti-oxidant activity
and prevent human diseases [31]. However, in current
states, we need to investigate the effect of active compounds
for the anti-oxidant property of SA.

In summary, the current study highlighted the hepatopro-
tective effects of SA on Con A-induced acute liver injury by
reducing liver injury markers, cell death, and cell death-
related protein levels. This beneficial effect of SA was initially
mediated through ROS inhibition by enhancing hepatic anti-
oxidant enzyme activity, which led to the prevention of cell
death and neutrophil infiltration. Although further research
should be performed to identify and characterize the active
compounds of SA extracts, the current findings have shown
that SA extract administration might be a potential therapeu-
tic strategy for patients with liver injury.
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