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Abstract: The skin permeability of steroids, as investigated in this study, is important because some
of these compounds are, or could, be used in preparations applied topically. Several models of skin
permeability, involving thin layer chromatographic and calculated descriptors, were generated and
validated using Kp reference values obtained in silico and then tested on a group of solutes whose
experimental Kp values could be found (log Kp

exp). The study established that the most applicable
log Kp model is based on RP-18 thin layer chromatographic data (RM) and the calculated descriptors
VM (molar volume) and PSA (polar surface area). Two less efficient, yet simple, equations based on
PSA or VM combined with HD (H-donor count) can be used with caution for rapid, rough estimations
of compounds’ skin permeability prior to their chemical synthesis.

Keywords: steroids; skin permeability; thin layer chromatography; calculated physicochemical de-
scriptors

1. Introduction

Steroids are an important class of pharmaceutical actives which may be administered
by different routes, including transdermal delivery [1]. Their skin permeation has been a
subject of interest for a relatively long time [2–4]. In addition to experimental studies of
steroids’ ability to cross the skin barrier, attempts have been made to predict this property
in silico. However, due to their polyfunctionality and relatively large molecular volumes,
steroids are significantly different from many substances whose skin permeability has been
studied, and not all the known algorithms of skin permeability are suitable for this group
of solutes [4].

The rate of a molecule’s permeation through skin is expressed as the flux (J), which is
the amount of substance permeated per unit area and unit time. The flux depends on the
permeability of the skin to the permeant (Kp) and the gradient of permeant concentration
across the skin (∆c):

J = Kp · ∆c

For passive diffusion, the permeability coefficient Kp depends, in turn, on the partition
coefficient P, the diffusion coefficient D and the diffusional path length h:

Kp =
P·D

h

Transdermal permeation of drugs may be studied using many techniques, including
in vitro permeation experiments on excised human skin [5], animal skin, cultured human
skin cells or synthetic membranes [5,6]. It is also known that skin permeation correlates with
some easily obtained physicochemical parameters of a molecule, including log Pow, which
is the partition coefficient between octanol and water and a well-established predictor of a
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compound’s lipophilicity and biological activity [7]. However, it has been demonstrated
that log Pow is not applicable as a single measure of log Kp across a very wide range of
chemical families, so molecular weight (Mw) or volume (VM), hydrogen bond donor and
acceptor activity (Hd and Ha, respectively), and melting point (MPt) values are incorporated
as additional descriptors [8–14]. Different computational skin permeability models have
been reviewed and compared by several authors [3,15–20].

Liquid chromatography is frequently used to investigate physicochemical properties
and biological activity of solutes, including their skin permeability. The chromatographic
techniques used to predict the ability of molecules to cross the skin barrier include normal
and reversed-phase thin layer chromatography [21,22], immobilized artificial membrane
(IAM) column chromatography [23–26], RP-18 column chromatography [24,25], column
chromatography on a unique stationary phase based on immobilized keratin [27], and
biopartitioning micellar chromatography (BMC) [28–30]. The skin permeability coefficient
Kp is connected with the chromatographic retention parameters log k or RM

0 (obtained
for column and thin layer chromatography, respectively) via linear or reverse parabolic
relationships [22,26]. Chromatographic retention parameters are used either as sole skin
permeability predictors, or they are combined with additional descriptors (log Pow, VM,
Mw or MPt) [23,24,28,30].

Transdermal drug delivery is an important strategy employed to improve the bioavail-
ability of drugs whose administration by other routes suffers from limitations such as
poor drug stability in the gastrointestinal tract, poor permeability through the intestinal
membrane or problems caused by first pass metabolism [31]. Although oral delivery
remains to date the preferred method of drug administration, transdermal drug delivery
systems are gaining in popularity [18,32]. Skin permeability, expressed by the coefficient
Kp, is an important parameter affecting the systemic uptake of drugs after transdermal
delivery. The objective of this study was to examine the relationships between the skin
permeability coefficient Kp and calculated and RP-18 TLC-chromatographic descriptors
for a group of steroid drugs acting upon different therapeutic targets. Descriptors derived
from the RP-18 thin layer chromatographic system used in this study have appeared in
previous works on blood-brain barrier (BBB) permeability [33–35] and skin permeation [36]
and, according to [37], in some instances the RP-18 TLC retention parameters are better
predictors of biological activity than the RP-18 HPLC data.

2. Results and Discussion

The skin permeability coefficient (Kp) is an important parameter that helps in the
assessment of a compound’s epidermal permeability; however, the experimentally deter-
mined values of Kp are available for only some of the drugs within the studied group. For
this reason, it was decided that models of skin permeability based on thin layer chromato-
graphic and calculated descriptors should be generated and validated using Kp values
obtained in silico, then tested on a group of solutes whose experimental Kp values could
be found (log Kp

exp). The estimation methodology used in this study is based on the
approaches A to C (Table 1).
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Table 1. Calculated and experimental log Kp values for compounds 1 to 46.

logKp
EPI logKp

pre logKp
exp logKp

(1) logKp
(3) logKp

(4) logKp
(5) logKp

(6) logKp
(7) logKp

(8) logKp
(9) logKp

(10)

1 −3.72 −3.88 −4.19 −3.55 −3.75 −3.57 −4.06 −3.57 −3.47 −3.30 −3.46 −3.56
2 −3.77 −4.71 −4.79 −3.62 −3.65 −3.45 −4.22 −3.39 −3.35 −3.10 −3.46 −3.44
3 −2.00 −2.15 −1.36 −1.47 −1.87 −1.48 −2.04 −1.57 −1.48 −1.51 −1.33 −1.68
4 −3.75 −4.24 −4.35 −3.25 −3.63 −3.41 −4.29 −3.33 −3.31 −3.03 −3.46 −3.39
5 −2.24 −2.49 −2.44 −1.75 −2.49 −1.80 −2.64 −1.94 −1.73 −1.82 −1.44 −1.84
6 −4.11 −4.42 −4.41 −3.54 −3.07 −2.76
7 −3.46 −4.23 −3.26 −2.98 −2.75 −2.86
8 −1.78 −2.35 −2.82 −1.62 −1.44 −2.30
9 −2.55 −2.97 −3.22 −2.23 −2.04 −2.26

10 −2.20 −3.42 −3.22 −2.38 −2.15 −2.88
11 −2.74 −3.42 −3.34 −2.15 −2.04 −2.27
12 −2.22 −2.54 −2.65 −1.78 −1.44 −2.03
13 −2.70 −3.90 −4.12 −3.29 −2.75 −4.07
14 −1.67 −2.72 −2.21 −1.91 −1.56 −2.45
15 −2.80 −4.05 −4.39 −2.68 −2.26 −3.04
16 −3.85 −4.54 −5.00 −3.38 −3.35 −2.83
17 −4.44 −4.42 −4.59 −4.90 −5.18 −4.61
18 −4.20 −4.24 −4.17 −4.35 −4.38 −3.67
19 −3.75 −3.53 −3.68 −4.27 −4.59 −3.54
20 −4.00 −3.63 −3.20 −4.59 −4.98 −3.95
21 −3.47 −2.45 −2.74 −4.43 −4.98 −4.33
22 −4.10 −3.43 −3.05 −4.26 −4.38 −4.05
23 −3.63 −3.11 −3.04 −4.13 −4.38 −4.23
24 −3.29 −3.26 −2.47 −3.49 −3.67 −3.26
25 −3.26 −2.35 −2.27 −4.12 −4.59 −3.92
26 −2.41 −1.82 −1.74 −3.24 −3.67 −3.64
27 −1.90 −1.35 −1.21 −3.08 −3.67 −3.90
28 −1.28 −2.33 −1.71 −1.25 −1.63 −2.07 −1.58 −1.51 −1.28 −1.77 −2.51
29 −3.62 −4.13 −3.57 −3.69 −3.42 −4.24 −3.30 −3.46 −3.15 −3.67 −3.14
30 −2.85 −2.81 −2.10 −2.67 −2.19 −2.79 −2.21 −2.30 −2.25 −2.25 −1.96
31 −3.67 −3.35 −3.34 −3.89 −3.24 −4.30 −3.11 −3.40 −3.14 −3.56 −2.52
32 −1.58 −2.03 −1.69 −1.56 −1.48 −2.19 −1.44 −1.49 −1.32 −1.66 −1.85
33 −2.27 −2.19 −1.70 −1.99 −1.74 −2.18 −1.87 −1.63 −1.68 −1.44 −2.16
34 −0.58 −1.28 −1.36 −0.72 −1.36 −1.46 −1.30 −1.31 −1.07 −1.66 −2.36
35 −3.64 −3.68 −2.31 −3.53 −2.81 −3.76 −2.73 −3.05 −2.86 −3.14 −2.05
36 −4.10 −4.19 −3.34 −4.09 −2.96 −3.70 −3.04 −3.20 −3.27 −2.90 −1.89
37 −6.35 −4.98 −7.56 −6.34 −7.54 −5.15 −7.68 −7.44 −7.35 −7.25 −7.57
38 −1.95 −1.32 −1.70 −2.16 −1.83 −2.17 −2.01 −1.73 −1.85 −1.44 −2.17
39 −1.44 −2.39 −1.60 −2.99 −1.64 −1.54 −1.48 −1.44 −1.59
40 −4.05 −4.69 −3.73 −5.31 −3.55 −3.86 −3.53 −4.05 −2.71
41 −2.14 −3.63 −2.08 −4.80 −1.88 −2.18 −1.86 −2.37 −1.11
42 −2.04 −3.20 −1.71 −4.23 −1.60 −1.73 −1.53 −1.77 −0.99
43 −2.84 −2.91 −1.77 −4.79 −1.47 −1.70 −1.19 −2.15 −1.41
44 −3.67 −3.29 −2.56 −3.62 −2.55 −2.62 −2.51 −2.58 −2.13
45 −3.81 −3.13 −2.68 −5.72 −2.04 −2.76 −1.75 −3.92 −2.29
46 −2.54 −2.94 −1.89 −3.48 −1.90 −1.88 −1.82 −1.77 −1.52

A. Equation (1), developed and validated in our earlier research [36]:

log Kp
(1) = −1.39 (±0.18) − 0.35 (±0.03) (N + O) + 0.15 (±0.04) log D − 0.23 (±0.06) HD

(n = 60, R2 = 0.83, R2
adj. = 0.82, F = 92.3, p < 0.01, se = 0.44) (1)
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B. EpiSuite software (DERMWIN v. 2 module) (log Kp
EPI), recommended by the US

Environmental Protection Agency and related to the widely recognized Potts’ model
of skin permeability [10]:

log Kp = −2.80 + 0.66 log Pow − 0.0056 Mw (R2 = 0.66) (2)

C. PreADMET 2.0 software [38] (log Kp
pre)

Initially, attention was turned to partition phenomena in the human stratum corneum.
It was noted that Equation (1) may be a source of valuable information on solute partition-
ing between water and the stratum corneum. The process of skin absorption of topically
applied compounds is relatively complex and consists of three steps: (i) penetration of the
stratum corneum (SC), either by polar or lipid transport pathways; (ii) permeation through
deeper skin layers and (iii) resorption, i.e., the uptake of a substance into the vascular
system [39]. The SC is the rate-limiting skin layer [39,40] and good partition between water
and the SC is an important prerequisite for effective skin absorption. Skin permeability
coefficients calculated according to Equation (1) were correlated with experimental val-
ues of SC/water partition coefficients for lipid and protein domains (log Ksc/w

lip and log
Ksc/w

prot, respectively) determined by Anderson et al. [40]. The correlations obtained for a
group of hydrocortisone esters (compounds 17 to 27) were moderate (R2 = 0.70 for lipid
and 0.41 for protein domain, respectively). A group of 14 other steroid compounds (2,
3, 5 to 16), whose SC/water and lipid/water partition parameters were studied by other
authors [2,41], showed good correlations between log Ksc/w and log Kp

(1) (R2 = 0.80, n = 14).
For compounds 3, 6, 7, 12 and 14, the correlation between log Ksc/w

lip and log Kp
(1) was

also linear (R2 = 0.85, n = 5).
Equation (1) was applied to a group of 27 steroid drugs whose experimental skin

permeability coefficients are available (Table 1). It was discovered that these drugs formed
two subgroups (Figure 1): compounds 1 to 16 (log Kp

exp taken from Refs. [2,4,42–44]) and 17
to 27 (log Kp

exp given by Anderson et al. [40]). The skin permeability coefficients calculated
for these compounds according to Equation (1) (log Kp

(1)) were in good agreement with
the experimental values (log Kp

exp) (linear relationships within the subgroups, R2 = 0.81
for compounds 1 to 16 and 0.74 for compounds 17 to 27, respectively). The correlation
between calculated (Equation (1)) and experimental values of log Kp for compounds 17 to
27 was even better (R2 = 0.84) once two ionic molecules that contain free carboxyl groups
(20 and 21) were removed as outliers.
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A similar situation arose when log Kp
EPI values were considered; thus, compounds 1

to 27 again formed two subgroups (1 to 16 and 17 to 27) whose experimental log Kp values
gave reasonable correlations with log Kp

EPI (R2 = 0.69 and 0.86, respectively), although
the subgroups partially overlapped (Figure 2). The reasons for discrepancies between
experimental log Kp

exp values for compounds 1 to 16 and 17 to 27 are unclear. However,
because the log Kp

exp values for compounds 17 to 27 were taken from a single source [40],
the differences in experimental methodology may have had more influence on log Kp

exp

values obtained by different authors than the physicochemical properties of the studied
compounds. Related problems with the “Anderson’s dataset” (with a similar explanation)
were described by Abraham et al. [4].
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The results of log Kp calculations using preADMET software seemed more consistent
(Figure 3); compounds 1 to 27 gave a single group whose calculated (log Kp

pre) and
experimental (log Kp

exp) values were in good agreement (R2 = 0.87, n = 27). However,
since there was no reason to suspect that, for studied compounds, the predicted values
of log Kp

pre were more (or less) reliable than the values calculated by other methods, the
decision was made to consider also log Kp

EPI and log Kp
(1) as reference values in further

investigations.
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One of the key properties responsible for skin permeability of solutes is lipophilic-
ity. Some earlier chromatographic studies of lipophilicity of steroids and steroid ana-
logues [45,46] were based on the linear extrapolation approach. Chromatographic parame-
ters for a single-solvent mobile phase were obtained by using a series of chromatographic
experiments with mobile phases containing different concentrations ϕ of a modifier. Plots
of RM or log k (for TLC and HPLC, respectively) vs. ϕ were extrapolated to zero concen-
tration of the modifier to furnish RM

0 (log k0). The most common method to do so is by
using the linear Soczewiński-Wachmeister equation: RM = RM

0 + Sϕ [47]. Apart from the
RM

0 value, other useful chromatographic descriptors derived from the linear extrapolation
method are the slope S and C0 = −RM

0/S. The extrapolation method, although commonly
used and recognized, has certain drawbacks. Several chromatographic experiments are
required and the extrapolated RM

0 values depend on a modifier and its concentration
range used to generate RM = f (ϕ) plots. In this study, therefore, the single chromatographic
run approach was used. It was established that for the 16 steroids analyzed chromato-
graphically, RM values collected using a single concentration of an organic modifier in a
mobile phase were very closely related to their lipophilicity. For example, for lipophilicity
calculated using ACDLabs v. 8.0 software, the relationship between log P and RM was
linear (R2 = 0.92, Figure 4).
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ues were linear, with R2 = 0.97, 0.94 and 0.98, respectively. However, when eight addi-
tional, nonsteroid compounds (mainly drugs of low to medium lipophilicity, not particu-
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Figure 4. Correlation between calculated log P and RM.

Based on log Kp reference values obtained by methods A to C, Equations (3)–(5) were
developed for compounds 1 to 5 and 28 to 38, whose RP-18 thin layer chromatographic
retention data are available: (Figure 5)

log Kp
EPI = −1.66 (±0.24) − 0.011 (±0.005) PSA + 0.24 (±0.05) HD − 0.0036 (±0.0017) VM + 2.01 (±0.24) RM

(n = 16, R2 = 0.99, R2
adj = 0.98, RMSECV = 0.21, F = 229.0, p < 0.01, se = 0.18)

(3)

log Kp
(1) = 0.17 (±0.31) − 0.011 (±0.006) PSA − 0.14 (±0.06) HD − 0.0065 (±0.0022) VM + 1.01 (±0.30) RM

(n = 16, R2 = 0.99, R2
adj. = 0.78, RMSECV = 0.31, F = 174.8, p < 0.01, se = 0.22)

(4)

log Kp
pre = −3.77 (±0.61) − 0.043 (±0.012) PSA + 0.18 (±0.13) HD + 0.011 (±0.004) VM + 0.027 (±0.600) RM

(n = 16, R2 = 0.90, R2
adj.= 0.86, RMSECV = 0.60, F = 23.6, p < 0.01, se = 0.45)

(5)
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The selection of independent variables in Equations (3)–(5) is a logical consequence of
the influence on skin permeability of molecules of lipophilicity, polarity, molecular size
and ability to form hydrogen bonds. For example, in Equation (3) the variables were
selected by stepwise regression in the following order: RM (which accounts for 89% of
total variability), VM, HD and PSA. Equations (3) to (5) were also tested on a subgroup
of five compounds analyzed in this study whose chromatographic data and log Kp

exp

values were available. The resulting dependences between the calculated and experimental
log Kp values were linear, with R2 = 0.97, 0.94 and 0.98, respectively. However, when
eight additional, nonsteroid compounds (mainly drugs of low to medium lipophilicity, not
particularly bulky molecules, with moderate ability to form H-bonds) 39 to 46 (ibuprofen,
salicylic acid, indomethacin, naproxen, methylparaben, aspirin, piroxicam, and ranitidine)
were incorporated in a test set, the correlations between the calculated and experimental
log Kp values remained linear only for Equation (4), with R2 = 0.85 (for Equation (3) and
Equation (5) R2 = 0.53 and 0.30, respectively).

The result obtained for Equation (4) (as compared to Equations (3) and (5)) confirms
the versatility of Equation (4) which was tested on a set of compounds of different physic-
ochemical properties. It is stressed here that the coefficients for PSA, HD and VM in
Equation (4) are negative (as opposite to Equations (3) and (5)) which (as already observed,
e.g., by Lien and Gaot [48]) suggests that excessive hydrogen bonding, polar surface area
and molecular size are obstacles to epidermal permeability.

Equation (4), efficient as it may be, seems somewhat over-parameterized. In search for
a simpler, yet efficient model, Equations (6)–(10) were considered: (Figure 6)

log Kp
(1) = 0.43 (±0.30) − 0.17 (±0.07) HD − 0.010 (±0.001) VM + 1.48 (±0.17) RM

(n = 16, R2 = 0.98, R2
adj. = 0.97, RMSECV = 0.42, F = 195.2, p < 0.01, se = 0.24) (6)

log Kp
(1) = 0.20 (±0.35) + 1.09 (±0.34) RM − 0.0063 (±0.0025) VM − 0.015 (±0.007) PSA

(n = 16, R2= 0.98, R2
adj. = 0.97, RMSECV = 0.41, F = 176.0, p < 0.01, se = 0.26) (7)

log Kp
(1) = 0.58 (±0.35) + 1.80 (±0.14) RM − 0.011 (±0.001) VM

(n = 16, R2 = 0.97, R2
adj.= 0.96, RMSECV = 0.31, F = 201.5, p < 0.01, se = 0.29) (8)

log Kp
(1) = −0.14 (±0.16) − 0.035 (±0.002) PSA.

(n = 16, R2 = 0.96, R2
adj. = 0.96, RMSECV = 0.40, F = 327.3, p < 0.01, se = 0.32) (9)
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log Kp
(1) = 0.60 (±0.78) − 0.61 (±0.12) HD − 0.0079 (±0.0026) VM

(n = 16, R2 = 0.85, R2
adj. = 0.83, RMSECV = 0.69, F = 37.5, p < 0.01, se = 0.64) (10)
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Figure 6. Equation (7) predicted vs. observed values.

Equations (6)–(10) were tested on a set of 13 compounds whose log Kp
exp values were

available (compounds 1 to 5 and 39 to 46), giving correlations of different quality (R2 = 0.75,
0.83, 0.67, 0.79 and 0.74, respectively). Equation (7), which is a simplified version of Equa-
tion (4) (with one independent variable (HD) omitted), gave the best fit with experimental
log Kp data. However, Equations (9) and (10), unlike other equations developed in this
study, do not require access to compound samples, so they have the benefit of applicability,
e.g., to new drugs at the design stage. Equation (9), which contains only one independent
variable (PSA), is somewhat similar to the blood and brain barrier (BBB) permeability and
human intestinal absorption (HIA) models developed by Clark [49,50], which strengthens
the notion that physicochemical properties associated with good penetration of different
biological barriers are interrelated.

Equations (9) and (10) were tested on a group of all compounds (steroids and nons-
teroids) whose log Kp

exp values were available, including solutes that had not been used
for validation of other equations because of the lack of chromatographic data. It was estab-
lished that log Kp values calculated according to these equations (log Kp

(9) and log Kp
(10))

were in moderate agreement with experimental data for a dataset containing 24 compounds
(1 to 16 and 39 to 46) (R2 = 0.65 and 0.62), but correlations were poorer for the group of
hydrocortisone esters 17 to 27 studied by Anderson [40]. It was, therefore, concluded that
Equations (9) and (10) should be used with caution for rapid, rough estimations of skin
permeability of compounds before they are synthesized. In other situations, predictions
based on more sophisticated models (e.g., Equations (1) or (7)) are recommended.

3. Materials and Methods
3.1. Chemicals

The 16 steroid drugs analyzed experimentally during these investigations (1 to 16:
cortisol, hydrocortisone acetate, methyltestosterone, progesterone, testosterone propi-
onate, testosterone heptanoate, cortisone acetate, prednisolone, estrone, estradiol benzoate,
desoxycorticosterone acetate, tibolone, spironolactone, eplerenone, digoxin and dexam-
ethasone) were donated as free samples by Polfa-Pabianice or isolated from pharmaceutical
preparations. Nonsteroid compounds 39 to 46 (ibuprofen, salicylic acid, indomethacin,
naproxen, methylparaben, aspirin, piroxicam, and ranitidine) were also donated as free
samples by Polfa-Pabianice or isolated from pharmaceutical preparations. The purity
of solutes isolated from pharmaceutical preparations was assessed by thin layer chro-
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matography and densitometry. All isolated compounds gave single chromatographic spots
(densitometric peaks) and were used without further purification. Compounds obtained
from Polfa-Pabianice were of analytical or pharmacopeial grade. Distilled water used for
chromatography was obtained from an in-house distillation apparatus. Analytical grade
acetonitrile and methanol were obtained from Avantor Performance Materials (formerly
Polskie Odczynniki Chemiczne, Gliwice, Poland). pH 7.4 phosphate buffered saline was
obtained from Sigma-Aldrich.

3.2. Thin Layer Chromatography

Thin layer chromatography was performed according to [33] on 10 × 20 cm glass-
backed RP-18 F254s TLC plates from Merck, Germany (layer thickness 0.25 mm). Before use,
the plates were prewashed with methanol-dichloromethane 1:1 (v/v) and dried overnight
in ambient conditions. Solutions of compounds 1 to 16 in methanol (1 µg·µL−1, spotting
volume 1 µL), were spotted with a Hamilton microsyringe 15 mm from the plate bottom
edge, starting 10 mm from the plate edge, at 8 mm intervals. The chromatographic
plates were developed in a vertical chromatographic chamber lined with filter paper and
previously saturated with the mobile phase vapor for 20 min. The mobile phase consisted
of acetonitrile/pH 7.4 phosphate buffered saline 70:30 (v/v). The development distance
was 95 mm from the plate bottom edge. After development, the plates were dried at
room temperature and examined under UV light (254 nm) and with the Desaga CD60
densitometer (Multiwavelength Scan, 200–300 nm at 20 nm intervals). All chromatograms
were repeated in duplicate, and the mean Rf values were used in further investigations.
The chromatographic parameter RM considered in these investigations was defined by
Bate-Smith and Westall: RM= log (1/Rf−1) [51]. The chromatographic data are presented
in Table 2.

3.3. Calculated Molecular Descriptors

The molecular descriptors for compounds investigated during this study (octanol
water partition coefficient log Pow; molecular weight MW; distribution coefficient logD;
polar surface area PSA; H-bond donors count HD; H-bond acceptors count HA; freely
rotatable bonds count FRB; molar volume VM; polarizability α; molar refractivity R) were
calculated using ACD/Labs 8.0 software. Total oxygen and nitrogen atom count (N + O)
was calculated from molecular formulae. The calculated molecular descriptors are given
in Table 2. Statistical analysis was done using Statistica v.13 or StatistiXL v. 2. Equations
(3)–(10) were tested using leave-one-out methodology.
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Table 2. Physicochemical and chromatographic descriptors for compounds 1 to 46.

log P MW PSA FRB HD HA R VM α N + O logD RM

1 Dexamethasone 1.87 392.5 94.8 5 3 5 100.2 296.2 39.7 5 1.87 −0.35
2 Hydrocortisone (HC) 1.43 362.5 94.8 5 3 4 95.6 281.4 37.9 5 1.43 −0.33
3 Progesterone 4.04 314.5 34.1 1 0 2 91.0 289.0 36.6 2 4.04 0.60
4 Prednisolone 1.49 360.4 94.8 5 3 5 95.5 274.7 37.9 4 1.49 −0.33
5 Estrone 3.69 270.4 37.3 1 1 2 78.1 232.2 30.9 2 3.69 0.09
6 Aldosterone 0.46 360.4 83.8 4 2 5 93.7 272.1 37.1 5 0.46
7 Corticosterone 1.76 346.5 74.6 4 2 4 94.0 284.3 37.3 4 1.76
8 Pregnenolone 4.52 316.5 37.3 2 1 2 92.4 290.0 36.6 2 4.52
9 17-α-Hydroxyprogesterone 2.89 330.5 54.4 2 1 3 92.6 286.1 36.7 3 2.89

10 17-α-Hydroxypregnenolone 3.38 332.5 57.5 3 2 3 93.9 287.2 37.2 3 3.38
11 Deoxycorticosterone 3.41 330.5 54.4 3 1 3 92.5 286.3 36.7 3 3.41
12 Testosterone 3.48 288.4 37.3 1 1 2 83.1 257.0 33.0 2 3.48
13 Cortexolone 1.74 346.5 74.6 2 4 2 94.1 283.4 37.3 4 2.74
14 Estradiol 4.13 272.4 40.5 2 2 2 79.5 232.6 31.5 2 4.13
15 Estriol 2.94 288.4 60.7 3 3 3 81.1 229.6 32.2 3 2.94
16 Cortisone 1.44 360.4 91.7 4 2 5 94.2 280.3 37.3 5 1.44
17 HC succinamate 1.45 461.6 144.0 9 4 8 118.2 351.8 46.8 8 1.45
18 HC N,N-dimethylsuccinate 2.05 489.6 121.2 9 2 8 127.7 386.8 50.6 8 2.05
19 HC methylsuccinate 2.53 476.6 127.2 10 2 8 120.9 370.4 47.9 8 2.53
20 HC hemisuccinate 2.13 462.5 138.2 9 3 8 116.1 345.6 46.0 8 1.95
21 HC pimelate 3.07 504.6 138.2 12 3 8 130.0 393.9 51.5 8 2.99
22 HC pimelamate 2.61 531.7 121.2 12 2 8 141.6 435.0 56.1 8 2.61
23 HC 6-hydroxyhexanoate 2.63 476.6 121.1 12 3 7 125.2 381.0 49.6 7 2.63
24 HC propionate 3.05 418.5 100.9 7 2 6 109.8 335.4 43.5 6 3.04
25 HC methylpimelate 3.53 518.6 127.2 13 2 8 134.8 418.7 53.4 8 3.53
26 HC hexanoate 4.64 460.6 100.9 10 2 6 123.7 383.7 49.0 6 4.64
27 HC octanoate 5.70 488.7 100.9 12 2 6 132.9 415.9 52.7 6 5.70
28 Estradiol benzoate 6.24 376.5 46.53 4 1 3 109.3 317.6 43.3 3 6.24 0.91
29 HC acetate 2.51 404.5 100.9 6 2 6 105.2 319.3 41.7 6 2.51 −0.12
30 Deoxycortisone acetate 4.53 372.5 60.4 4 0 4 102.1 324.3 40.5 4 4.53 0.41
31 Cortisone acetate 2.53 402.5 97.7 5 1 6 103.8 318.2 41.1 6 2.53 −0.12
32 Testosterone propionate 4.90 344.5 43.4 3 0 3 97.3 311.2 38.6 3 4.90 0.85
33 Methyltestosterone 4.02 302.5 37.3 1 1 2 87.8 273.0 34.8 2 4.02 0.41
34 Testosterone enanthate 7.03 400.6 43.4 7 0 3 115.9 375.9 45.9 3 7.03 1.38
35 Spironolactone 3.12 416.6 85.7 2 0 4 112.7 335.8 44.7 4 3.12 0.14
36 Eplerenone 1.05 414.5 78.9 2 0 6 106.1 315.7 42.1 6 1.05 −0.21
37 Digoxin 0.85 780.9 203.1 13 6 14 196.4 572.3 77.9 14 0.85 −0.91
38 Tibolone 4.02 312.5 37.3 1 1 2 90.0 274.2 35.7 2 4.02 0.33
39 Ibuprofen 37.3 1 200.3 0.08
40 Ranitidine 111.6 2 265.5 −0.66
41 Aspirin 63.6 1 139.6 −0.50
42 Methylparaben 46.5 1 124.8 −0.41
43 Salicylic acid 57.5 2 100.4 −0.37
44 Indomethacin 69.6 1 269.6 −0.07
45 Piroxicam 108 2 212.0 0.00
46 Naproxen 46.5 1 192.3 −0.16

4. Conclusions

The skin permeability of steroids, as investigated in this study, is important because
some of these compounds are, or could be used in preparations applied topically. Pre-
dicting skin permeability of steroids is a difficult task because steroid drugs have very
different physicochemical properties and may cross the skin barrier by a variety of mecha-
nisms [4]. Experimental skin permeability data exist only for a part of the studied group
and they form three mutually incompatible steroid datasets [1,4], with experimental values
given by Anderson et al. [40] distinctively higher than expected, as already reported by
Abraham et al. [4]. Due to the limited availability of consistent experimental data for the
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studied solutes, the reference skin permeability coefficients log Kp were calculated using
three methods: log Kp

EPI based on log Pow and Mw as proposed by Potts and Guy [10];
Equation (1) developed earlier [36] and based on (N + O), HD and log D; and by preADMET
software [38]. It was established that Equation (1), proposed for structurally unrelated,
nonsteroid drugs was also applicable to the group of studied steroids, as shown using a
subset of compounds whose experimental log Kp data were available. It is also a useful
tool to study the partition between the stratum corneum (especially the lipid domain) and
water. However, the solutes from the so-called “Anderson dataset” [40] form a separate
subgroup, parallel to the correlation line obtained for compounds studied by other au-
thors [1,2] (Figures 1 and 2). Skin permeability models developed earlier (Equation (1) [36])
or in this study (Equations (4), (7), (9) and (10)) were found to predict log Kp of steroids
fairly well (especially Equations (1) and (7)) and have the benefit of being based only on
calculated descriptors (Equations (1), (9) and (10)). It was established that the applicability
of equations proposed in this study ((7), (9) and (10)) extend beyond steroid compounds.
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