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Abstract: (1) High-fat (HF) diet leads to gut microbiota dysbiosis which is associated with systemic
inflammation. Bacterial-driven inflammation is sufficient to alter vagally mediated satiety and induce
hyperphagia. Promoting bacterial fermentation improves gastrointestinal (GI) epithelial barrier
function and reduces inflammation. Resistant starch escape digestion and can be fermented by
bacteria in the distal gut. Therefore, we hypothesized that potato RS supplementation in HF-fed
rats would lead to compositional changes in microbiota composition associated with improved
inflammatory status and vagal signaling. (2) Male Wistar rats (n = 8/group) were fed a low-fat
chow (LF, 13% fat), HF (45% fat), or an isocaloric HF supplemented with 12% potato RS (HFRS)
diet. (3) The HFRS-fed rats consumed significantly less energy than HF animals throughout
the experiment. Systemic inflammation and glucose homeostasis were improved in the HFRS
compared to HF rats. Cholecystokinin-induced satiety was abolished in HF-fed rats and restored
in HFRS rats. HF feeding led to a significant decrease in positive c fiber staining in the brainstem
which was averted by RS supplementation. (4) The RS supplementation prevented dysbiosis and
systemic inflammation. Additionally, microbiota manipulation via dietary potato RS prevented
HF-diet-induced reorganization of vagal afferent fibers, loss in CCK-induced satiety, and hyperphagia.
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1. Introduction

Prevalence of obesity has soared to 93.3 million people in the United States [1]. Obesity has been
characterized as a low-grade inflammatory state, and inflammation plays a critical role in both the
exacerbation of obesity and the development of co-morbidities such as diabetes [2].

There is accumulating evidence that the chronic low-grade inflammation characteristic of obesity
is at least partially controlled by the gut microbiota [3]. The gastrointestinal (GI) tract is home to over
1014 microorganisms, primarily bacteria, and microbiota makeup can influence host physiology and
behavior [4]. Microbiota composition changes with diet and is especially responsive to/can be modulated
by dietary fats [5,6], sugars [7], and fibers [5,8]. An abnormal microbiota composition, or dysbiosis,
has been associated with increased adiposity in both humans [9,10] and animal models [7,11].
Obesity-associated microbiota is characterized by an increase in its pro-inflammatory potential [12,13]
Additionally, dysbiosis alters GI epithelial barrier function, allowing bacterial by-product to exit
the gut into the circulatory system [6,13,14]. Chronic administration of pro-inflammatory bacterial
lipopolysaccharide (LPS) is sufficient to increase food intake [15] and induce weight gain [15,16] and
insulin resistance [16], showing a direct relationship between bacterial products and development of
obesity and associated comorbidities.
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The GI microbiota composition can alter gut–brain communication, potentially affecting
vagally-mediated post-ingestive feedback and intake regulation. Gut originating satiety signals,
such as cholecystokinin (CCK), are released in response to feeding and act on vagal afferents to
promote meal termination [17]. Animals fed high-fat (HF) or high-sugar diets displayed marked
dysbiosis associated with reduction in isolectin B4 (IB4)-positive fibers at the level of the nucleus of
solitary tract (NTS) where vagal afferents terminate [7]. Isolectin B4 binds to unmyelated c-fibers
which, in the medial NTS, are predominantly of vagal origin [18]. Gut–brain vagal remodeling may
be linked to bacterial-driven inflammation as antibiotic administration in HF-fed rats normalizes
microbiota composition, NTS IB4 staining, and the accompanying immune cells activation observed in
the NTS [19].

In addition, to affect energy homeostasis, chronic inflammation can promote the development of
metabolic disorders, especially insulin resistance. Pro-inflammatory cytokines, such as tumor necrosis
factor (TNF)-α and interleukin (IL)-1β, can promote insulin receptor substrate-1 (IRS1) phosphorylation
at serine 307 (p-IRS1, Ser307), inhibiting insulin action [20,21].

Therefore, preventing dysbiosis and/or preserving the gut epithelial barrier integrity may inhibit
systemic inflammation and prevent weight gain and insulin resistance.

Treatments with prebiotics [16] and antibiotics [22] can restore epithelial barrier function.
In humans, prebiotic supplementation has been associated with an increase in markers of
bacterial fermentation [23]. Short-chain fatty acids (SCFAs) are the main products of bacterial
fermentation; acetate, propionate, and butyrate are the predominant SCFAs found in the
intestine [24]. Short-chain fatty acids stimulate the production and differentiation of enterocytes,
improving mucus production and epithelial health [25,26]. In animal models, supplementation with
soluble fibers increases SCFA production, decreases inflammation, and positively affects glucose
homeostasis [16,22,27].

Similar to fibers, resistant starch (RS) is a naturally occurring compound that escapes digestion in
the proximal gut and can reach the distal GI (ileum and colon) and be fermented by gut microbiota [28,29].
Starch can resist digestion due to the fact of entrapment within a food (RS1), their chemical structure
(RS2), or retrogradation during cooking (RS3) [28]. In humans, supplementation with RS has been shown
to increase fecal SCFA [28]. Consumption of RS2 enhances acetate production, and RS3 drives propionate
production [28]. There is evidence that RS consumption is associated with positive health outcomes:
in piglets, supplementation with 10 g/day of potato improves insulin resistance [30], while in humans,
corn RS consumption (24 g/d) is associated with lower fasting glucose levels [31]. Additionally, maize
RS2 supplementation in rodents has been shown to alter gut microbiota composition [32] and improve
inflammatory status [33].

Americans consume on average 4.9 g of RS daily [34]. Among commonly consumed foods,
potatoes are a good source of RS, providing 2 to 5 g of RS per 100 g. The RS contents in potatoes vary
with cooking method and temperature but are fairly constant among commonly consumed varieties
of potatoes [35]. Raw potatoes are particularly rich in RS2; potato starch granules contain highly
phosphorylated amylopectin and amylose that are not easily hydrolyzed [36]. Higher amounts of RS
in raw potatoes have been shown to increase digestion time, potentially providing similar benefits as
fermentable fibers [29].

There is limited knowledge on the potential protective effects of potato RS supplementation on
gut microbiota composition, inflammatory status, and gut–brain signaling in diet-induced obesity
models. In this study, we hypothesized that potato RS supplementation would prevent the onset of
diet-driven microbiota dysbiosis, preserving gut–brain communication and preventing weight gain
and metabolic dysfunctions associated with HF feeding.
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2. Materials and Methods

2.1. Animals and Diets

Twenty-four male Wistar rats were procured from Envigo (Indianapolis, IN, USA) and
single-housed in wired-hanging cages in a temperature-controlled animal facility with a 12 h light–dark
cycle. Following three days of habituation, animals were divided into three groups (n = 8 per group)
and fed either a regular control chow diet (13% kcal from fat), HF diet (45% kcal from fat), or a HF diet
supplemented with potato RS (HFRS) for 8 weeks. Animals were randomly assigned to groups and
there were no differences in body weight at baseline among groups.

The chow control diet was ordered from Lab Supply (Fort Worth, Texas, PicoLab (5053), USA).
The HF and HFRS diets were custom-made by Research Diets (New Brunswick, NJ, USA) and matched
for energy density, macronutrient, and fiber contents (Table 1). The cornstarch and a portion of the
maltodextrin in the 45% fat HF diet (D12541) were replaced with raw, unmodified potato starch in
the HFRS diet (D17101605) (Bob’s Red Mill, Milwaukie, OR, WI, USA). Calculations were originally
made based on the assumption that raw potato starch contains 50% RS [37]. Energy density for RS
was calculated at 2.8 kcal/gram [38]; energy density for the 50% digestible portion of the potato starch
was estimated at 4 kcal/gram. To make up for the lower overall energy density of the potato starch
powder, maltodextrin contents were increased in the HFRS diet (Table 1). The HFRS diet was designed
to contain 10% potato RS; this supplementation dose was based on previous data from our lab [27]
and past research [39]. We verified the RS contents of the raw potato starch using a commercially
available assay (Megazyme, Chicago, IL, USA) and determined that Bob’s Red Mill potato starch
contains approximately 60% RS (Supplementary Tables S1 and S2), bringing our final supplementation
level to approximately 12% and the HFRS energy density to 4.6 kcal/g (Table 1).

Table 1. Macronutrient composition of chow, HF, and HFRS as percent grams and energy.

CHOW HF HFRS

Gram % kcal % Gram % kcal % Gram % kcal %

Fat 4.5 13.1 24 45 23 45
Protein 20 24.5 24 20 23 20

Carbohydrates 53.5 62.4 41 35 43 35
Sucrose 3.2 3.2 20.1 17 20.1 17

Fiber 6 0 5.8 0 5.8 0
RS 1.4 0 0.1 0 11.9 0

Energy Density (kcal/g) 3.4 4.7 4.6

Note: Maltodextrin was added to the HFRS diet to match energy density. Diets prepared by Research Diets, Inc.
HF = high-fat diet, HFRS = high-fat resistant starch, RS = resistant starch, kcal = calories.

After 8 weeks on their respective diets, animals were fasted for 2 h and euthanized via CO2

inhalation. The sacrifice order was evenly distributed among groups and all tissues were collected
within 6 h of light onset. Blood was sampled by cardiac puncture and rested on ice for 30 min before
centrifugation at 4 ◦C at 8000 rpm for 10 min for serum collection. The GI tissues (i.e., duodenum, ileum,
cecum, and feces) and visceral fat pad were collected, snap frozen, and stored at −80 ◦C. Brains were
extracted and immediately placed in 4% paraformaldehyde solution (PFA) until brains sunk to the
bottom of the tubes. Brains were then moved into 30% sucrose solution for cryoprotection. All animal
care procedures were approved by the Institutional Animal Care and Use Committee of the University
of Georgia, AUP A2017 08-017-R2.

2.2. Food Intake and Body Weight

Body weight and food intake were measured 3 days a week at the beginning of the light cycle
for the entirety of the 8 week feeding intervention. Food intake (g) was determined by subtracting
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the amount of the remaining diets in the cages from the amount previously provided. Animals were
housed in wired, hanging cages to ensure that food spillage was included.

2.3. Gut Microbiota and SCFA Quantification

Fecal pellets were collected at day 0 and after 8 weeks on the respective diets. Bacterial DNA
were extracted from samples using the ZR Fecal DNA MiniPrep per the manufacturer’s
protocol (Zymo Research, Irvine, CA, USA). The V4–V6 region of the 16S rRNA gene was
amplified with the following primers: F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) and RNextera
(5′-CGACRRCCATGCANCACCT-3′) and targeted for sequencing by Ilumina MiSeq (University of
Georgia Genomics Facility). Bacterial 16S sequences were processed with QIIME. The OTUs were
picked based on 97% sequence similarity via the UCLUST algorithm. The OTUs were assigned
to taxa through the Greengenes database. Chao index was calculated to determine α-diversity.
The METAGENassist platform was used to assess β-diversity. Taxonomic abundances were log
transformed for non-parametric tests. Multivariate analysis was conducted using the Galaxy platform
linear discriminant analysis effect size (LEfSe) to identify taxonomic features discriminating of one or
more groups.

The SCFAs in fecal samples were quantified using gas chromatography mass spectrometry at
Mayo Clinic Laboratories (Rochester, MN, USA) as previously described [40].

2.4. GI Function

2.4.1. GI Morphology and Goblet Cell Proliferation

Sections of distal small intestine (ileum) were cryosectioned (8µm, Leica CM1900, Leica Biosystems,
Wetzlar, Germany) and stained with alcian blue and nuclear fast red (Sigma–Aldrich, St. Louis, MO,
USA). Villus length and the number of goblet cells (per crypt) were measured manually in well-oriented
sections (5 measurements per ileal section) using a light microscope (BX40, Olympus) equipped with a
digital camera (DP25, Olympus) and analysis software (DP2-BSW, Olympus).

2.4.2. GI Permeability

Circulating LPS levels were measured as a proxy for intestinal barrier integrity. They were
determined in serum using a pyrochrome lysate mix, a quantitative chromogenic reagent, diluted in
Glucashield buffer which inhibits cross-reactivity with (1→3)-β-D-Glucans (Associates of Cape Cod,
East Falmouth, MA, USA). Samples were diluted 1:10 in pyrogen-free water and heated for 10 min at
70 ◦C. Samples and reactive solution were incubated at 37 ◦C for 30 min, and absorbance was read at
405 nm on a Spectramax microplate reader (Molecular Devices, Sunnyvale, CA, USA).

2.4.3. Real-Time PCR

The mRNA was extracted from ileum samples using the RNeasy Mini Kit (Qiagen, Valencia, CA,
USA). The cDNA was synthesized using the RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Franklin, MA, USA). The RT-PCR was run on a StepOnePlus real-time PCR system
(Thermo Fisher Scientific) using SYBR Green PCR master mix (Thermo Fisher Scientific) and GLP-1
and Muc2 primers purchased from Integrated DNA Technologies. Data were analyzed according to
the 2−∆∆Ct method [41].

2.5. Sensitivity to Satiety Peptide CCK

After 6 weeks on their respective diets, animals were fasted for 12 h before receiving an
administration of CCK (i.p., 0.22 nmL/kg, Bachem, Torrance, CA, USA) or saline (i.p., 400 µL,
vehicle). A control experiment was conducted in which rats did not receive any injections. Food intake
was measured 30, 60, and 120 min post-injection.
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2.6. Glucose Homeostasis

Glucose Tolerances Test

After 7 weeks on respective diets, rats were fasted for 5 hours before oral gavage of 20% glucose
solution (2 g/kg body weight). Glycemia was measured using a glucometer (Freestyle, Alameda, CA,
USA) before oral gavage (0 min) and 15, 30, 60, 90, and 120 minutes after. Blood samples were collected
at each time point and centrifuged as described above for insulin, glucagon, and GLP-1 analysis by
multiplex ELISA (Meso Scale Diagnostics, Rockville, MD, USA).

2.7. Serum Inflammatory Markers

Serum collected at sacrifice was frozen at −80 ◦C and inflammatory markers were assessed using
the FirePlex Rat Inflammation Immunoassay Panel (Abcam, Cambridge, MA, USA, ab235665) by the
Abcam Fireplex Service Lab.

2.8. Immunohistochemistry

Hindbrains were cryosectioned (20 µm, Leica CM1900 from the caudal to the rostral region of
the NTS (between bregma −14.16 and −12.93 mm). Sections were stained for IB4 (Novus Biologicals,
Littleton, CO, USA) to visualize unmyelinated c-fibers and for ionized calcium binding adaptor
molecule 1 (IBA1, Wako Chemicals, Richmond, VA, USA) which stains microglia.

After blocking with 10% goat serum in phosphate buffered saline (PBS), sections were incubated
with primary antibody against IBA1 or with IB4 biotin conjugated overnight at 4 ◦C. Negative controls
received 10% goat serum in PBS instead of primary antibody. Following washing, sections were
incubated with secondary Goat anti-Rabbit IgG Alexa Fluor 488 conjugate (Invitrogen, Carlsbad, CA,
USA) or ExtrAvidin-Cy3 (Sigma–Aldrich, St. Louis, MO, USA) for 1 h at 37 ◦C. Sections were mounted
with fluoro gel (Electron Microscopy Sciences, Hartfield, PA, USA). Images of the NTS were captured
at 20×magnification and stitched via a Nikon 80i imaging photomicroscope (Nikon, Tokyo, Japan)
with a Nikon Digital Sight DS-Qi1Mc digital camera and filters for Alexa 488 and Extravidin-CY3.
The IB4 and IBA1 fluorescence positive staining was quantified at the level of the area postrema as
previously described [7] using binary imaging analysis based on principles described in Reference [42].
Analysis was completed using the Nikon Elements AR 3.0 Imaging software (Nikon).

2.9. Statistical Analysis

Unless stated otherwise (microbiota analysis), statistical analysis was performed using Prism
software (Prism 6.0; GraphPad Software, La Jolla, CA, USA). Two-way repeated measures ANOVA was
used to analyze body weight, energy intake, and OGTT with Tukey’s post-hoc test. One-way ANOVA
was performed to analyze biochemical analyses. Non-normal datasets were analyzed with
non-parametric methods. Differences were considered significant if p < 0.05. Data are presented as the
mean ± SEM.

3. Results

3.1. Potato RS Reduces Weight Gain and Prevents Hyperphagia

The HF fed animals gained significantly more weight than the chow control group over the course
of the study (Figure 1A). They weighed significantly more starting at week 2 (chow 303.1 ± 6.8 g versus
HF 334.7± 10.3 g, p < 0.05) and stayed heavier throughout the rest of the study. The RS supplementation
led to a significant reduction in weight gain (HF 492.1 ± 16.2 g versus HFRS 445.1 ± 12.2 g, p < 0.01) but
did not fully prevent a diet-induced increase in body weight as HFRS rats still weighed significantly
more than the chow-fed control animals (chow 397.5 ± 6.7 g versus HFRS 445.1 ± 12.2 g, p < 0.01).

The HF-fed rats consumed more kcal than the chow control group for the entire duration of the
study (Figure 1B) with the exception of week 2. The RS supplementation led to a significant decrease
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in diet-induced hyperphagia. The RS-supplemented rats initially displayed hyperphagia when first
exposed to the diet (chow 82.6 ± 0.8 versus HFRS 93.76 ± 2.7 kcal/day, p < 0.001), although this first
hyperphagic phase was significantly reduced compared to the HF group (HF 105.2 ± 5.3 versus HFRS
93.76 ± 2.7 kcal/day, p < 0.001). Throughout the rest of the experiment, the HFRS-fed rats’ intake
was fairly similar to the chow-fed animals’ intake with the exception of week 4 (chow 84.3 ± 2.0
versus HFRS 91.5 ± 3.6 kcal/day, p < 0.05). Overall, over the 8-week period, HF rodents consumed
significantly more kcal in total than either chow or HFRS rats (Figure 1C) (HF 2652 ± 295 versus chow
2260 ± 105 kcal, p < 0.01 and versus HFRS 2373 ± 216 kcal, p < 0.05). While chow and HFRS rats’ intake
did not significantly differ (p = 0.56).
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Figure 1. Potato RS reduces weight gain and prevents hyperphagia. (A) HF feeding led to a significant
increase in body weight compared to control chow-fed conditions. The RS supplementation partially
normalized weight gain. (B) The HF feeding led to a significant initial increase in energy intake in both
HF and HFRS rats. The HF-fed rats’ intake was significantly higher than chow-fed animals throughout
the study with the exception of week 2. After initial hyperphagia, HFRS rats’ energy intake normalized
to the level of chow-fed rats, with the exception of week 4. (C) Overall energy intake was significantly
higher in HF rats compared to both HFRS and chow control. Data are presented as the mean ± SEM;
a, b, c different letters indicate statically significant (p < 0.05) differences among groups. HF = high fat,
HFRS = high-fat resistant starch, n = 8 per group.

3.2. Potato RS Improves HF Diet-Driven Microbiota Dysbiosis

The HF-fed rats displayed an overall dysbiotic microbiota profile that was significantly different
from the chow-fed rats (Figure 2 and Supplementary Figure S1). The HF feeding led to marked
changes in microbiota composition, characterized by an increase in the Firmicutes:Bacteriodetes ratio
(chow 2:1 versus HF 8.6:1) and abundances of Clostridia (chow 54.28 ± 3.2 versus HF 76.18 ± 1.9,
p < 0.0001). The increase in Clostridia abundances was driven by a bloom in families Dorea (p < 0.001)
and Peptococcaceae (p < 0.001). The LEfSe showed that the Firmicutes classes Clostridia and
Erysipelotrichi were characteristic of HF fed rats, in particular the order Clostridiales (Family, Dorea)
and Erysipelotrichiales (Family, Erysipelotrichaceae) (Figure 2E).

Potato RS supplementation normalized the Firmicutes:Bacteriodetes ratio (HF 8.6:1 versus HFRS
1.7:1) along with reductions in the abundance of class Clostridia (HF 76.18± 1.9 versus HFRS 38.70 ± 7.3,
p < 0.001) and the genera Lactococcus (p < 0.01), Facklamia (p < 0.05), Peptococcus (p < 0.05), Dorea (p < 0.05),
and Rothia (p < 0.05). The RS supplementation also normalized abundances of Bacteroidetes (p < 0.001),
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particularly Prevotella (p < 0.001). The RS supplementation led to a significant increase in Actinobacteria
(p < 0.001) abundances compared to both chow-fed control and HF-fed rats. Probiotics Bifidobacterium
are Actinobacteria, and RS supplementation specifically increased abundances of genera Bifidobacterium
(p < 0.01) and Collinsella (p < 0.01). The LEfSe showed that Actinobacteria, in particular Bifidobacterium,
were particularly characteristic of the HFRS-fed rats (Figure 2). Overall profile cluster analyses and
PCA determined a strong relationship between diet and microbiota profile composition. Analysis at
all taxa levels determined significant differences among all three diet groups (Figure 2A,B), with the
strongest differences between the HF and HFRS groups. Potato RS supplementation resulted in a
microbiota composition more closely related to chow than HF (Figure 2A,B,C) and a specific increase
in Bifidobacterium spp.Nutrients 2019, 11, x FOR PEER REVIEW 7 of 18 
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Figure 2. Potato RS improves microbiota dysbiosis. Microbiota abundance for chow, HF, and HFRS
diet groups (A). The graph represents all abundances >1% at all phylogenic levels. Phyla: B:
Bacteroidetes, F: Firmicutes, T: Tenericutes, P: Proteobacteria, A: Actinobacteria, V: Verrucomicrobia
Class: B: Bacilli, B: Bacteroidia, C: Clostridia, E: Erysipelotrichia; M: Mollicutes, N: Negativicutes, D:
Deferribacteres, A: Actinobacteria, V: Verrucomicrobiae, B: Betaproteobacteria. Order: B: Bacteroidales,
C: Clostridiales, L: Lactobacillales, E: Erysipelotrichiales, B: Burkholderiales, B: Bifidobacteriales. Family:
C: Clostridiaceae, L: Lachnospiraceae, R: Ruminococcaceae, L: Lactobacillaceae, E: Erysipelotrichaceae,
D: Desulfovibrionaceae, B: Bifidobacteriaceae, V: Verrucomicrobiaceae, (A): Acidaminococcaceae.
The PCA plot (run with all phylogenic levels, 121 normalized taxa abundances) shows similarities
in overall microbiota profiles between chow and HFRS, while HF-fed rats displayed a distinct
microbiota profile (B). The metagene heat-map displays microbiota characteristics among diet groups (C).
RS supplementation developed a significantly different microbiota profile than HF. RS supplementation
significantly improved fecal SCFA content (D). GALAXY cladogram highlights taxa characteristic
of diet intervention, including Bifidobacterium bloom in HFRS (E). The LDA of 4.0 was used for the
GALAXY cladogram. Data are presented as the mean ± SEM; a, b, c different letters indicate statically
significant (p < 0.05) differences among groups. HF = high fat, HFRS = high-fat resistant starch, n = 8
per group.
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3.3. Potato RS Increases Fecal SCFA Content

The HF feeding led to a significant decrease in fecal acetate contents compared to the chow diet
(chow 198.3 ± 12.8 versus HF 55.9 ± 5.9 nmol/5 g feces, p < 0.0001) and fecal propanoic acid contents
(chow 47.3 ± 6.7 versus HF 6.2 ± 1.2 nmol/5 g feces, p < 0.01). The RS supplementation prevented an
HF diet-driven decrease in acetate (HFRS 202.3 ± 26.1 nmol/5 g versus HF, p < 0.0001, versus chow,
p = 0.77) and propionate (HFRS 51.2 ± 10.5 nmol/5 g versus HF, p < 0.001, versus chow, p = 0.77).
Lastly, chow feces contained significantly more butyric acid than the HF animals (chow 52.3 ± 7.0
versus HF 6.6 ± 1.3, p < 0.01) and HFRS animals (chow 52.3 ± 7.0 versus HFRS 19.9 ± 4.4, p < 0.05)
(Figure 2D).

3.4. Potato RS Attenuates Hypertrophy and Inflammation

The HF feeding led to a significant increase in villus height compared to the chow control group
(chow 476 ± 24.3 versus HF 667 ± 19.8 µm, p < 0.0001). The RS supplementation partially normalized
villus height (Figure 3A). Villi high in the ileum of HRS-fed rats were significantly reduced compared
to HF-fed animals (p < 0.05) but sill significantly higher than chow-fed rats (p < 0.01). There were no
differences in goblet cell counts among the groups.
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Figure 3. Potato RS attenuates GI hypertrophy and systemic inflammation. The HF diet increased
villi length compared to chow control which were reduced in RS supplemented rats (A). The HF
feeding led to a significant increase in pro-inflammatory LPS circulating levels, which was normalized
by RS supplementation (B). Similarly, HF-diet driven increases in circulating TNFα (C) and IL-6
(F) were reduced in HFRS rats. Both HF and HFRS animals display a significant decrease in circulating
IL-10 (D). There were no differences among groups in serum IL-1β (E). LPS = lipopolysaccharides,
TNFα = tumor necrosis factor-a, IL-10 = interleukin 10, IL-6 = Interleukin 6, IL-1β = Interleukin 1 Beta,
HF = high fat, HFRS = high-fat resistant starch, all significance determined at p < 0.05. n = 8 per group.
Data are presented as the mean ± SEM; a, b, c different letters indicate statically significant differences
among groups.

Serum LPS levels were elevated in the HF-fed rats compared to the chow control animals
(Figure 3B) (chow 0.33 ± 0.07 versus HF 0.56 ± 0.08, p = 0.016). This was normalized by RS
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supplementation. Serum TNFα levels in HF animals were significantly elevated compared to the
chow control (Figure 3C) (chow 2.22 ± 0.19 versus HF 3.93 ± 0.59 pg/mL, p < 0.01). This was partially
reduced by RS supplementation (HF versus HFRS 2.95 ± 0.25, p = 0.1). Similarly, serum IL-6 levels
were significantly increased in the HF animals (chow 1.41 ± 0.32 versus HF 3.45 ± 0.58 pg/mL, p < 0.01)
and this was normalized in the HFRS rats (HF versus HFRS 1.84 ± 0.26 pg/mL, p < 0.05) (Figure 3F).
Interestingly, serum IL-10 levels were significantly elevated in the chow animals compared to both
HF (chow 7.6 ± 0.62 versus HF 5.0 ± 0.27 pg/mL, p < 0.01) and HFRS (chow versus HFRS 5.7 ± 0.46,
p < 0.05) (Figure 3D). Serum IL-1B levels were not significantly different among groups (Figure 3E).

3.5. Potato RS Improves Glucose Tolerance

An OGTT was conducted after 7 weeks on the respective diets. There was a significant increase
in baseline glycemia in both HF- and HFRS-fed rats compared to chow-fed controls (Figure 4A).
Glycemia increased in all groups following an oral glucose challenge and staid elevated throughout
the sampling period. The HF and HFRS glycemia was significantly higher than the chow control
group at 15, 30, 45, and 60 min post challenge. The HFRS rats recovered faster than HF rats from this
high glycemic episode, and the HFRS rats’ circulating glucose levels were significantly lower than
HF-fed rats at 90 and 120 min post challenge (90 min HF 159.1 ± 11.4 versus HFRS 139.7 ± 4.1 mg/dL,
p < 0.05 and 120 min HF 144.2 ± 11.0 versus HFRS 123.2 ± 4.0 mg/dL, p < 0.01) but stayed elevated
compared to the chow control rats (90 min chow 112.9 ± 6.2 mg/dL versus HFRS, p < 0.001 and 120 min
chow 104.4 ± 1.5 mg/dL versus HFRS, p < 0.05). The overall glycemic response (area under the curve,
AUC) was significantly altered in HF-fed rats which was partially but not fully improved by RS
supplementation (Figure 4A,B).
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Figure 4. Potato RS improves glucose homeostasis. There was a significant increase in glycemia in all
HF rats compared to chow animals in response to glucose, but HFRS rats recovered faster than HF;
glycemia was significantly lower at 90 and 120 min in HFRS compared to HF (A). A significantly higher
AUC was observed in HF than chow, which was partially improved in HFRS (B). Insulinemia was
significantly higher in HF rats compared to both chow and HFRS animals at 15 and 30 min post-oral
gavage (C,D). There was a significant decrease in circulating GLP-1 in HF-fed rats after 8 weeks on the
diet compared to chow and HFRS rodents (E). OGTT = oral glucose tolerance test, AUC = area under
the curve, HF = high fat, HFRS = high-fat resistant starch. Data are presented as the mean ± SEM;
a, b, c different letters indicate statically significant (p < 0.05) differences among groups, n = 8 per group.
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Insulin levels were increased in all groups in response to the glucose challenge. Insulinemia peaked
at 15 min post gavage. Insulin levels in HF-fed rats were significantly higher than in the chow control
group at 15 (chow 683 ± 201 versus HF 2597 ± 330 pg/mL, p < 0.0001) and 30 min (chow 542 ± 91
versus HF 1711 ± 247 pg/mL, p < 0.0001). The RS supplementation normalized glucose-induced insulin
release; there was no significant differences in insulinemia between the HFRS rats and chow animals
throughout the OGTT time course (Figure 4C,D).

Lastly, GLP-1 levels were measured in serum collected at sacrifice, and HF-fed rats displayed
significantly reduced circulating GLP-1 levels compared to chow animals (chow 16.2 ± 0.9 versus HF
10.1 ± 0.8 pg/mL, p < 0.01); this was normalized by RS supplementation (Figure 4E).

3.6. Potato RS Prevents HF Diet-Driven Loss in CCK Satiety

A CCK-sensitivity test was conducted after 6 weeks on respective diets. After a 12 h fast, food
intake was recorded for 2 h following no injection (control) or an i.p. injection of saline (400 µL) or CCK
(0.22 nmol/kg). For all groups, there were no significant differences in food intake between control
and saline injection conditions (data not shown). In chow-fed rats, CCK injections led to a significant
reduction in food intake compared to the saline conditions (saline 9.6 ± 0.3 versus CCK 7.9 ± 0.6 g,
p < 0.05). This CCK-induced satiety response was lost in HF-fed rats; animals consumed as much food
when they administered CCK as when they received saline (saline 6.6 ± 0.4 versus CCK 6.6 ± 0.6 g,
p = 0.97). RS supplementation prevented HF-diet driven loss in CCK-induced satiety; there was a
significant reduction in intake following CCK administration compared to saline in HFRS rats (saline
8.8 ± 0.7 versus CCK 7.5 ± 0.5 g, p < 0.05) (Figure 5).
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Figure 5. Potato RS prevents HF-driven loss in CCK sensitivity. Two hours post i.p. injection, chow and
HFRS animals significantly decreased food intake when injected with CCK; compared to saline injection,
HF rodents did not significantly decrease food intake with CCK injection. CCK = cholecystokinin, i.p.,
= intraperitoneal, HF = high fat, HFRS = high-fat resistant starch, * indicates significance determined
as p < 0.05. n = 7–8 per group. Data are presented as the mean ± SEM.

3.7. Potato RS Reduces NTS Microglia

We quantified IBA1-positive staining at the level of the medial NTS. The HF feeding led to a
significant increase in IBA1-positive staining intensity in the NTS compared to HFRS (HF 0.065 ± 0.024
versus HFRS 0.011 ± 0.003, p < 0.05), but this did not reach significance when compared to chow
controls (chow 0.025 ± 0.007 versus HF, p = 0.127) (Figure 6). Increased intensity of IBA1 revealed a
seemingly increased microglia presence and/or activation in HF animals whereas RS supplementation
attenuated this neuroinflammatory response (Figure 6).
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Figure 6. Fluorescent staining for IBA1 quantification showed a significant increase in positive staining
in the NTS of HF-fed rats compared to HFRS animals (right). Representative images showing positive
staining and morphology of microglia in chow, HF, and HFRS NTS sections (left). NTS = nucleus tractus
solitarius, IBA1 = isolection B-alpha 1, HF = high fat, HFRS = high-fat resistant starch, a, b different
letters indicate statically significant (p < 0.05) differences among groups, n = 6–7, scale bar = 50 µm.

3.8. Potato RS Prevents Vagal Remodeling

We quantified IB4-positive staining at the level of the medial NTS. The HF diet significantly
reduced IB4 staining in the NTS compared to the chow control (chow 0.37 ± 0.05 versus HF 0.06 ± 0.09
binary area fraction, p < 0.0001). Potato RS prevented the diet-induced loss in c-fibers positive staining.
There was significantly more IB4 positive fluorescence in the NTS of HFRS rats compared to HF-fed
animals (HF versus HFRS 0.35 ± 0.04 binary area fraction, p < 0.001). The c-fiber innervation in the
NTS was comparable in the chow- and HFRS-fed rats (Figure 7).
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Figure 7. Potato RS prevented vagal remodeling. Representative NTS sections showing IB4 in
chow, HF, and HFRS animals; the medial NTS at the level of the area postrema is outlined in white
dashes (right), positive staining was quantified in the marked area (left). NTS = nucleus tractus
solitarius, IB4 = isolectin B4, HF = high fat, HFRS = high-fat resistant starch. Data are presented as the
mean ± SEM; a, b, c different letters indicate statically significant (p < 0.05) differences among groups,
n = 8. Scale bar = 250 µm.
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4. Discussion

Our study found that potato RS supplementation reduced weight gain and prevented
HF-diet-induced hyperphagia. Expectedly, RS supplementation improved microbiota dysbiosis
and increased fecal SCFA content. Compared to HF rodents, the HFRS rats exhibited lower levels of
inflammation. Functionally, the HFRS rodents improved glucose homeostasis, and RS supplementation
prevented HF diet-driven loss in CCK satiety. For the CCK signals, predominantly through activation
of the vagus nerve, we found that potato RS prevented vagal remodeling and recruitment of immune
cells at the level of the NTS, potentially preserving vagally mediated satiety signaling.

Potato RS supplementation successfully attenuated weight gain associated with a HF diet.
Although, HFRS rodents gained significantly more weight than chow controls despite no overall
significant difference in energy intake. While HFRS did consume more energy on a certain week,
the difference in body weight may not be solely due to kcal intake. Other factors could include energy
expenditure (which was not measured), microbiota composition and fecal energy harvest, and dietary
macronutrient composition. Specifically, adiposity in rats has previously been shown to be proportional
to dietary fat contents [43]. Additionally, HFRS rodents’ meal patterns may also have been different
from the chow-fed rats, which can influence body weight [44,45].

Potato RS supplementation led to a marked improvement in diet-driven microbiota dysbiosis.
The microbiota is the community of commensal, symbiotic, and pathogenic microorganisms that
coexist in the human body [46]. In the GI microbiota alone, there are more than 1014 bacteria and over
400 bacterial species [46]—more than 10 times bacterial cells than human cells. Ninety-five percent
of the gut microbiota is composed of two major phyla: Firmicutes and Bacteroidetes [6,9,47]. In our
study, the HF diet increased the Firmicutes:Bacteriodetes ratio, a consistent finding in response to a
HF diet [47]. Within Firmicutes, the classes Clostridia and Erysipelotrichia bloomed in the HF-fed
rats, while the abundances of the Bacteroidales (order, Bacteriodetes) were significantly decreased
compared to chow-fed animals, again consistent with previous findings [7,27]. These changes were
associated with a significant decrease in SCFA content in the feces of HF-fed rats.

Around 100–200 mmol of SCFAs are produced daily in the human colon [48].
Diets higher in insoluble fibers promote SCFA production by colonic anaerobic bacteria [48].
These microbiota-accessible carbohydrates—fructooligosaccharides, cellulose, and resistant
starches—are degraded by “primary degraders”, such as Bifidobacterium spp., Bacteriodes spp.,
and Ruminococcus Bromii [49], and broken down into propionate, acetate, and glucose. In our
study, we found that the microbiota of potato RS-supplemented rats were significantly enriched in
Bifidobacterium spp. and Bacteroidales, the order of bacteria containing the previously mentioned
Bacteriodes spp. Previous studies have found similar increases in Bifidobacterium in response to fiber
and/or RS supplementation [50–53]. These changes were associated with higher levels of SCFAs
in the distal gut, particularly acetate and propionate. Interestingly, propionate and acetate have
been shown to play opposite roles in hepatic lipogenesis. Propionate appears to prevent liver lipid
accrual [54], while acetate promotes it [55]. Increased acetic acid levels in HFRS rats may explain
the lack of differences in liver lipid levels between HFRS and HF rodents. Critical in gut health,
SCFAs promote mucus secretions, cell survival, and tight junction proteins’ integrity [56]. The HF-fed
rats had significantly longer villi in the ileum than chow-fed animals. Increased villi length has been
found with abnormal cell proliferation in GI disease states [57], supporting a decrease in gut function in
HF-fed rats. The RS supplementation prevented HF diet-driven villi hypertrophy. Additionally, both
acetate and propionate are activators of G-protein coupled receptors ffar2 and ffar3, which increases
peptide YY (PYY) and GLP-1 release when activated [58]. In our study, the HFRS rats displayed an
increase in circulating GLP-1 compared to the HF-fed animals.

Improvements in gut function were associated with reduced systemic inflammation and improved
glucose homeostasis in potato RS-supplemented rats. Diet-driven dysbiosis combined with impaired
gut epithelial function allows for translocation of bacterial factors such as pro-inflammatory LPS to the
circulation [13]. Chronic elevation in circulating LPS is sufficient to promote hyperphagia [15] and
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insulin resistance [23]. Notably, LPS promotes cytokines release [59]. In this study, RS supplementation
decreased circulating serum levels of LPS and several pro-inflammatory cytokines compared to HF-fed
rats. This effect may be mediated via SCFAs, as propionate supplementation has been found to
decrease LPS-induced inflammatory response [60]. Chronic inflammation is a key triggering factor in
the development of insulin resistance; pro-inflammatory cytokines can notably impair insulin receptor
substrate-1 (IRS-1) signaling [61]. As previously reported [62], a HF diet led to an increase in serum
TNF-α which was reduced in HFRS rats (p = 0.07). Similarly. The IL-6 circulating levels were elevated
in the HF-fed rats which was normalized in the HFRS animals. The RS supplementation led to a
decrease in the overall inflammatory tone which may explain why HFRS rats required less insulin
to clear the same amount of glucose than the HF-fed rats. Increased circulating GLP-1 may also be
linked to improved insulin sensitivity [63]. The GLP-1 receptor agonists have been found to decrease
LPS-induced secretion of inflammatory cytokines such as TNF-α [64]. Positive effects of RS in glycemic
control have been reported across species: RS supplementation in obese dogs is more effective in
controlling glucose responses than soluble starches [65] and supplementation with RS has been shown
to decrease fasting glucose, pro-inflammatory markers, cholesterols, waist circumferences, and percent
body fat in humans with signs of metabolic syndrome [66].

Along with insulin resistance, bacterial inflammation also affects gut–brain signaling.
Post-ingestive signals originating from the GI tract are relayed via the vagus nerve to the NTS
to control meal size [67]. High-fat feeding alters gut–brain signaling resulting in overeating [68].
We previously found that chronic LPS administration is sufficient to impair vagally mediated satiety
and increased intake [15], pointing towards a causal link between dysbiosis and diet-driven alteration
in gut–brain communication. In addition to affecting vagal function, HF feeding leads to structural
changes in vagal innervation. The vast majority of unmyelinated c-fibers at the level of the medial
NTS level are of vagal origin [69] and can be labeled with IB4. The HF feeding leads to a reduction
in NTS IB4 staining [7], potentially affecting vagal function. Bacterial inflammation may play a key
role in diet-driven vagal remodeling; a decrease in IB4 staining is accompanied by an increase in
microglia recruitment along the gut–brain axis [7] and antibiotic administration prevents dysbiosis,
microglia recruitment, changes in vagal structure, and hyperphagia in HF-fed rats [19]. Data from this
study support a role for the microbiota in driving vagal maladaptation. Potato RS supplementation
prevented diet-driven dysbiosis and maintained vagal NTS innervation pattern and sensitivity to
gut satiety peptide CCK. Reduced sensitivity of post-ingestive negative feedback may explain the
maintenance of hyperphagia in HF but not HFRS rodents [4].

Impaired vagal signaling may play a role in altering insulin release in response to glucose.
Our results are consistent with previous studies that have found that HF diets increased serum insulin
concentration immediately following glucose stimulus [70]. Interestingly, HF diet rats who underwent
vagotomy prior to glucose tolerance test do not exhibit a large release of serum insulin [70].

5. Conclusions

Targeting the microbiota in obesity maybe an effective non-invasive therapeutic approach.
Microbiota modulation through resistant starch supplementation, specifically from raw potato starch,
may prove to be an effective preventive and treatment strategy for obesity through the development of
functional foods. Composition of the gut microbiota is ever changing in relation to diet composition
and other environmental factors. In HF diet models, gut microbiota dysbiosis decreases intestinal
barrier function and initiates inflammatory responses. Increased SCFA production as a result of
RS supplementation may attenuate the effects of a HF diet by improving gut barrier function,
reducing systemic LPS levels, and increasing GLP-1 levels. Functionally, potato RS supplementation
prevented hyperinsulinemia and maintained glucose homeostasis compared to HF feeding alone.
The RS supplementation also prevented diet-driven inflammation and remodeling of the gut–brain
signaling, preserving vagally mediated satiety.
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