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Abstract
Patients with major depressive disorder (MDD) display affective and cognitive impairments. Although MDD-associated 
abnormalities of brain function and structure have been explored in depth, the relationships between MDD and spatio-
temporal large-scale functional networks have not been evaluated in large-sample datasets. We employed data from Interna-
tional Big-Data Center for Depression Research (IBCDR), and comparable 543 healthy controls (HC) and 314 first-episode 
drug-naive (FEDN) MDD patients were included. We used a multivariate pattern classification method to learn informative 
spatio-temporal functional states. Brain states of each participant were extracted for functional dynamic estimation using an 
independent component analysis. Then, a multi-kernel pattern classification method was developed to identify discriminative 
spatio-temporal states associated with FEDN MDD. Finally, statistical analysis was applied to intrinsic and clinical brain 
characteristics. Compared with HC, FEDN MDD patients exhibited altered spatio-temporal functional states of the default 
mode network (DMN), the salience network, a hub network (centered on the dorsolateral prefrontal cortex), and a relatively 
complex coupling network (visual, DMN, motor-somatosensory and subcortical networks). Multi-kernel classification models 
to distinguish patients from HC obtained areas under the receiver operating characteristic curves up to 0.80. Classification 
scores correlated with Hamilton Depression Rating Scale scores and age at MDD onset. FEDN MDD patients had multiple 
abnormal spatio-temporal functional states. Classification scores derived from these states were related to symptom sever-
ity. The assessment of spatio-temporal states may represent a powerful clinical and research tool to distinguish between 
neuropsychiatric patients and controls.

Keywords Depression · First-episode drug-naive · Functional magnetic resonance imaging · Spatio-temporal states · Multi-
kernel classification

Introduction

The impact of depressive disorders as leading causes of 
global disease burden was exacerbated during the COVID-
19 pandemic (Liao et al., 2021; Renaud-Charest et al., 2021; 
Santomauro et al., 2021). Patients with major depressive 
disorder (MDD) display affective and cognitive impair-
ments (Li et al., 2022). As one of the most prevalent of the 
severe psychiatric diseases, MDD has been studied in depth. 
Various etiologies have been proposed, such as monoamine 
neurotransmitter deficiency, altered neuroplasticity and neu-
rogenesis, and structural and functional brain changes (Al 
Shweiki et al., 2019). However, no single model can explain 
all aspects of MDD during serial depressive episodes. There-
fore, a focus on first-episode drug-naive (FEDN) MDD may 
better inform the understanding of the pathophysiology of 
MDD (Lin et al., 2021; Yanmei et al., 2020).
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Novel imaging techniques have facilitated neurophysi-
ological research. Functional magnetic resonance imaging 
(fMRI) may elucidate the etiologic roles of specific brain 
connectivity networks in the pathogenesis of MDD. For 
example, MDD patients have exhibited decreased reward 
network connectivity within the prefrontal-striatal regions 
(Gong et al., 2017); hyposensitivity in a fronto-parietal net-
work suggestive of altered attention mechanisms (Zweerings 
et al., 2019); and reduced activation of the left dorsolateral 
prefrontal cortex (dlPFC), inferring impaired processing of 
negative emotional stimuli (Trettin et al., 2022). fMRI has 
been widely used to study both the spatial functional con-
nectivity (FC) and dynamic characteristics of MDD patients. 
Altered functional dynamics of multiple cortical regions, 
and aberrant connections between the default mode network 
(DMN) and the frontoparietal network have been observed 
in MDD (Demirtaş et al., 2016; Wohlschläger et al., 2018; 
Zheng et al., 2018; Zhi et al., 2018). In addition, a few EEG 
and MRI studies have provided insights into dysfunctional 
spatio-temporal connectivity in MDD (Holmes & Pizzagalli, 
2008; Kong et al., 2021; Sheng et al., 2018). However, most 
studies have yielded varying results regarding the properties 
of functional networks in MDD. Small datasets, heteroge-
neous clinical presentations, and evaluations during both 
initial and recurrent episodes have confounded the replica-
tion of results regarding changes of whole brain networks in 
patients with MDD. Recently, a few studies obtained signifi-
cant results about FEDN MDD (Wu et al., 2016; Yang et al., 
2018; Zhang et al., 2022). The excessive temporal variations 
of brain FC reflecting abnormal communications between 
large-scale brain networks over time were present in FEDN 
MDD (Long et al., 2020). Interestingly, FEDN MDD was 
not related to abnormalities in the topological architecture of 
functional brain networks instead of recurrent MDD (Yang 
et al., 2021). Meanwhile, biomarkers of brain FC have been 
identified primarily through group-level statistics, which 
limit their utility in the diagnosis of MDD (Shi et al., 2021).

Compared to traditional statistical analysis, recent stud-
ies of large-scale intrinsic functional networks based on 
machine learning have also demonstrated that disease-
specific patterns may diagnose MDD in individual patients 
(Kong et al., 2021; Patel et al., 2016; Sen et al., 2019; Shi 
et al., 2021; Wang et al., 2017). Pattern classification tech-
niques applied to large-scale brain networks can distinguish 
MDD patients from healthy controls (HC) at the individual 
level.

Consequent to these successful pattern classification stud-
ies, we proposed a spatio-temporal machine learning method 
to identify altered spatio-temporal state patterns of FEDN 
MDD patients based on resting-state fMRI. Group infor-
mation guided independent component analysis (GIG-ICA) 
(Du & Fan, 2013; Du et al., 2017) can identify subtle altera-
tions of disease and can characterize functional networks 

reliably (Du et al., 2015, 2016; Zhi et al., 2018). In this 
study, GIG-ICA was used to estimate subject-specific spatio-
temporal states of dynamic FCs in a relatively large sam-
ple size. A multivariate pattern classification method was 
used to identify informative intrinsic states and build sup-
port vector machine (SVM) classifiers based on informative 
spatio-temporal states to distinguish FEDN MDD patients 
from HC. We hypothesized that altered intrinsic networks 
are changed with corresponding temporal characteristics in 
FEDN MDD patients. We examined the predictive power of 
spatio-temporal brain patterns, which might capture more 
time-varying information and interactions among intrinsic 
networks.

Methods

Participants

Resting-state fMRI scans were acquired from a big dataset 
included 543 HCs and 314 FEDN patients from the Interna-
tional Big-Data Center for Depression Research (IBCDR) 
database supported by the members of REST-meta-MDD 
Consortium in China (http:// yanlab. psych. ac. cn/ IBCDR) 
based on the following selection criteria: 1) subjects in 
the age range of 18 to 50 years were included; 2) subjects 
with excessive head motion (mean FD > 0.5 mm or max 
FD > 2 mm) were excluded. The details of demographic 
and clinical information are summarized in Table 1. Full 
details of dataset and its preprocessing pipeline have been 
described previously (Yan et al., 2019), and some important 
details about clinical information in each site are summa-
rized in the supplemental material. In addition, data of two 
sites were assigned to Dataset V for validation, and the data 
from remaining sites were incorporated into Dataset M for 
establishing models.

Identification of spatio‑temporal states

We computed whole-brain dynamic connectivity matrices 
for each subject between all pairs of regions based on Pow-
er's 264 functional ROIs (Power et al., 2011) using a sliding 
time window method (window length = 60 s) (Allen et al., 
2014; Du et al., 2017). All connections were expressed as z 
scores using Fisher’s z transformation.

GIG-ICA was adopted to window-direction concatenated 
dynamic connectivity matrices to estimate group-level inde-
pendent components using an independent healthy dataset 
(details in the supplemental material), and to extract sub-
ject-specific components of the individuals with group-level 
components as guidance information (Du & Fan, 2013; Du 
et al., 2017). The number of components was determined 
to be 50 for exploring fine details of component structures. 

http://yanlab.psych.ac.cn/IBCDR
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Each subject-specific independent component was a 
264 × 264 connectivity network designated as a spatial state. 
The time-varying weights course reflecting the importance 
of the corresponding component was designated as a tem-
poral state. Finally, the dynamic FC of each subject was 
characterized by 50 spatial–temporal state patterns.

The elimination of site-related effects such as protocol-
specific variability is especially important when combin-
ing multi-site data for analysis. Consequently, we utilized 
ComBat-GAM to harmonize the spatial states of subjects to 
remove site-related effects (Pomponio et al., 2020). ComBat-
GAM harmonization was performed using the python pack-
age https:// github. com/ rpomp onio/ neuro Harmo nize.

Supervised feature selection to identify informative 
states based on spatio‑temporal state patterns

A computational wrapper feature selection method (Jing 
et al., 2019, 2020) that assessed spatio-temporal state utility 
with respect to a multi-kernel SVM classification algorithm 
was used to identify the most discriminative combination of 
states for distinguishing FEDNs from HCs using Dataset M. 
Similarity measures of spatial states in the SVM model were 
defined as Riemannian distance on the Grassmann manifold 
between subjects computed based on their spatial states (Jing 
et al., 2019, 2020).

Although the informative spatial states were critical for 
distinguishing patients and HC in previous studies (Jing 
et al., 2019, 2020; Li et al., 2017), the temporal evolution of 
MDD might also alter classification. We used the synchro-
nization matrix as a temporal pattern, which was calculated 
by partial correlation analysis between all pairs of tempo-
ral states based on their corresponding temporal weights 
course, to quantify the temporal characteristic of multiple 
states. These synchronization matrices were symmetric and 
positive definite (SPD) matrices, and the collection of SPD 

matrices forms a cone-shape of a Riemannian manifold as 
an SPD manifold. Operations to consider whole temporal 
patterns performed better on the SPD manifold than on 
Euclidean geometric structures. The distance between two 
temporal patterns on an SPD manifold can be measured by 
a Riemannian distance metric.

With a fusion coefficient to combine spatial and temporal 
pattern, we can build multi-kernel SVM classifiers for spa-
tio-temporal state patterns using nested cross-validation. To 
avoid bias of the classification, we applied a tenfold cross-
validation procedure to optimize the parameters of kernel 
SVMs.

The details of the approach were shown in the supple-
mental material.

On the whole, we applied 10-repeated-hold-out cross-val-
idation to identify the discriminative spatio-temporal states 
with the forward component selection algorithm. In each 
hold-out cross-validation, we selected 200 patients and 200 
controls randomly as the training dataset for balancing clas-
sification, and the remaining 255 individuals as the testing 
dataset. Then, we applied a nested tenfold cross-validation 
procedure for distinguishing FEDN patients from HC based 
on each training dataset. Since different states might be 
selected in different selection procedures due to inter-subject 
variability, informative spatio-temporal states of FEDN were 
identified as those that were selected with higher frequency.

Classification between FEDN and HC based 
on spatio‑temporal state patterns

Similarly, the multivariate pattern classification method 
using nested cross-validation based on informative spatio-
temporal states was adopted to FEDN patients and HCs. 
Similarity measures were defined on the Grassmann and 
SPD manifolds between subjects computed from their 

Table 1  Demographic and 
clinical data

All of the statistics are from the comparison between the FEDN MDD and healthy control groups
Abbreviations:
HC healthy control;
FEDN MDD first-episode drug-naive major depressive disorder;
HAMD Hamilton Depression Rating Scale;
HAMA Hamilton Anxiety Rating Scale

Dataset Dataset M Dataset V

HC FEDN MDD p HC FEDN MDD p

N 419 236 125 78
Age (years) 37.58 ± 14.44 34.02 ± 11.51 0.03 28.78 ± 10.13 27.35 ± 10.09 0.30
Gender(M/F) 157/262 83/153 0.58 61/64 30/48 0.15
Illness duration(months) - 16.43 ± 30.85 - - 16.02 ± 26.28 -
HAMD - 21.89 ± 4.66 - - 23.56 ± 8.93 -
HAMA - 23.13 ± 8.15 - - 18.02 ± 9.58 -

https://github.com/rpomponio/neuroHarmonize
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informative spatio-temporal states. In each hold-out cross-
validation, the multi-kernel SVM classifier generated a 
classification score that was a median value of classifica-
tion scores of its nested tenfold classifiers, with a positive 
value to indicate FEDN or a negative value to indicate HC.

Nonparametric permutation tests were adopted to esti-
mate statistical significance of the classification results 
based on the informative spatio-temporal states. Particularly, 
multi-kernel SVM classification models using disrupted 
labeled individuals were built to estimate classification 
performance. This procedure was repeated 200 times. The 
informative spatio-temporal states were further validated in 
terms of their classification performance based on individu-
als from Dataset V.

Comparisons of spatial and temporal characteristics

FC strength differences of the informative spatial states and 
synchronization coefficients in informative temporal states 
between FEDN and HC were quantified by using pseudo-
two-sample t-tests (permutation test, age, sex and site as 
covariates).

Correlation analysis between classification scores 
and clinical responses

A general linear model with outliers removed at 95% confi-
dence intervals was used to investigate correlations among 
the classification scores, age at onset, and measures of cogni-
tive function (Hamilton Depression Rating Scale [HAMD] 
and Hamilton Anxiety Rating Scale [HAMA]) in groups, 
with age, sex, and site as covariates. We excluded subjects 
with missing clinical information and error classification.

Results

Informative spatio‑temporal states in FEDN MDD 
identified by pattern classification

Informative spatio-temporal states (STSs) included 3 
multi-network-coupled states (feature selection fre-
quency > 0.6, Figs. 1, 2A). STS1 featured inter- or intra- 
FCs located in the default mode network (DMN) and sali-
ence network (SAN). STS2 was a hub network centered 
on the dlPFC and was connected primarily to the DMN, 
visual, subcortical, and motor-somatosensory networks. 
STS3 was a relatively complex coupling network, which 
principally included the visual, DMN, motor-somatosen-
sory and subcortical networks. In STS3, the connections 
between the DMN or subcortical regions and visual net-
works were generally negative, while the connections 
linking DMN and motor-somatosensory networks were 

positive. Brain connectivity maps weighted by the net-
work degree of these states were mapped into 10 defined 
common networks based on previous studies (Fig. 1) (Cole 
et al., 2013; Evan et al., 2016; Power et al., 2011).

The average accuracy of the multi-kernel SVM classi-
fiers built upon these 3 STSs was 73.3% (specificity 74.0%, 
sensitivity 69.0%) with an area under the receiver operating 
characteristic curve (AUC) of 0.80 (Figs. 2B). Nonparamet-
ric permutation tests showed that the classification results 
were statistically significant (p < 0.001) as indicated by the 
histogram of permuted AUCs (Fig. 2C). Furthermore, the 
classification accuracy of the independent dataset (Dataset 
V) was 70.2% (specificity 72.9%, sensitivity 66.2%) with 
an AUC of 0.74.

Statistical comparisons of spatial and temporal 
characteristics of FEDN MDD and HC

Pseudo-two-sample t-tests were conducted to compare the 
differences of functional connectivity (permutation test 
n = 1000, p = 0.01, Fig. 3) and synchronization coefficients 
(permutation test n = 10,000) of informative spatio-tempo-
ral states. For STS1, patients had stronger connectivities 
between DMN and SAN (precuneus to anterior cingulate 
cortex) than HC. Relevant complex changes were found in 
STS2 and STS3. Strengths of the connectivities in STS2 
between dlPFC and DMN (precuneus and cingulate cor-
tex) were increased in patients, with other connectivities 
to dlPFC decreased. In STS3, connectivities to the visual 
network were generally weaker in patients compared to HC. 
However, patients exhibited higher inner-connectivities in 
the motor-somatosensory network and weaker connectivities 
between the motor-somatosensory and other networks. For 
temporal patterns, the synchronization coefficient between 
STS1 and STS3 increased (p = 0.02) in patients compared 
to HC.

Relationship between classification scores 
and clinical responses

As shown in Fig. 4, patient classification scores were nega-
tively correlated with HAMD (Pearson correlation: r = -0.31, 
p < 0.00049, sex, age at onset, and site as covariates) and 
the age at onset (Pearson correlation: r = -0.22, p < 0.011, 
sex, and site as covariates). No significant association was 
observed between classification scores and HAMA. Moreo-
ver, age at onset was positively related to HAMD (Pearson 
correlation: r = 0.19, p < 0.026, sex and site as covariates) 
and HAMA (Pearson correlation: r = 0.34, p < 0.011, sex and 
site as covariates). Unfortunately, the corrected comparisons 
after Bonferroni correction were not significant.
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Discussion

In the present study, altered dynamic functional patterns esti-
mated by spatio-temporal brain states in FEDN MDD were 
explored by disease discrimination in a large dataset. FCs 
and dynamic synchronizations differed significantly between 
patients and HC. The classification scores of patients cor-
related with clinical characteristics. Our results suggest that 
the predictive power of spatio-temporal brain patterns might 
capture more time-varying information and interactions 
among intrinsic networks than standard fMRI. We propose 
that the assessment of spatio-temporal states might repre-
sent an insightful clinical and research tool to distinguish 
between neuropsychiatric patients and HC.

To understand the pathophysiology of MDD, we focused 
only on FEDN patients. This study adopted an unbiased 
design for computing group-level intrinsic states in ICA 
based on 343 HC who were not included in pattern classi-
fication. Head motion artifact was minimized by excluding 
subjects with large degrees of head motion, and by the use 

of ICA. Instead of evaluating the entire fMRI scan time data 
assuming stationary FCs (or networks), we applied dynamic 
FC matrices to capture non-stationary patterns for a better 
interpretation of the influence of MDD on large-scale brain 
networks (Miller et al., 2016; Yu et al., 2015). GIG-ICA 
was used to extract subject-specific brain states based on 
dynamic FC matrices with stronger independence and bet-
ter spatial correspondence across subjects (Du & Fan, 2013; 
Du et al., 2017).

Multivariate pattern classification identified informa-
tive spatio-temporal states that differentiated FEDN MDD 
patients from HC with an AUC of 0.80. ROCs and non-
parametric permutation tests demonstrated that the multi-
kernel classifiers performed well in distinguishing patients 
from HC. Validation based on an independent dataset dem-
onstrated that the informative spatio-temporal states were 
generalizable.

Informative spatio-temporal states included the DMN 
with SAN (STS1), the dlPFC-hub network (STS2), and 
a relatively complex coupling network (visual, DMN, 

Fig. 1  Functional connectivity maps of selected informative spatio-temporal states (STS). Gray lines represent the positive connections, and blue 
lines represent negative connections
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motor-somatosensory and subcortical network [STS3]), 
consistent with previous findings. All three STSs engaged 
the DMN, which has been associated with various cognitive 
functions and is preferentially disrupted in MDD (Hamilton 
et al., 2015; Li et al., 2021; Sambataro et al., 2014). Potential 
DMN-pattern-based subtypes of MDD have been explored 
to parse its clinical heterogeneity (Liang et al., 2020). Promi-
nent functional and structural changes have been found par-
ticularly in the DMN and SAN; interactions between the 
SAN and the DMN may be important for cognitive control 
(Jilka et al., 2014; Shao et al., 2018). We extracted STS1 
by a data-driven method, which demonstrated that the 
DMN-SAN state was critical for dynamic cognitive con-
trol in FEDN MDD. The dlPFC region was a component of 
the cingulo-opercular network and played a key role in the 
executive control network. Previous studies have indicated 
that the cingulo-opercular and executive control networks 
participate in a broad range of cognitive processes in neu-
ropsychiatric disorders (Becker et al., 2021; Coste & Klein-
schmidt, 2016; Culbreth et al., 2021; Wu et al., 2016; Zhao 
et al., 2019). DlPFC dysfunction has also been associated 
with MDD (Grimm et al., 2008; Meyer et al., 2019; Webler 
et al., 2022). Moreover, altered connections between dlPFC 
and DMN may suggest recovery from MDD (Meyer et al., 

2019), and circuits connecting the prefrontal cortex and the 
basal ganglia via the thalamus may represent neuroanatomi-
cal substrates of executive processing (Heyder et al., 2004; 
Menon & D’Esposito, 2022).

Our results described connections between the dlPFC and 
other brain networks including the DMN, visual, subcor-
tical, and motor-somatosensory networks. These findings 
illustrate the essential role of the dlPFC in brain dynamic 
functional patterns. The last informative state (STS3) com-
prised a more complex coupling network, which primar-
ily included the visual, DMN, motor-somatosensory and 
subcortical networks. In contrast to the findings of previous 
studies, the negative connections between the DMN and 
visual network were decoupled, suggesting that the two net-
works are anti-correlated in intrinsic functional states. Apart 
from the DMN, the FCs of the visual, motor-somatosensory 
and subcortical networks were also consistent with previous 
findings in MDD (Chen et al., 2019; Kang et al., 2018; Lu 
et al., 2020; Luo et al., 2021; Yun & Kim, 2021).

The group comparison of FC maps demonstrated that 
disrupted connectivity was coupled with informative states. 
For STS1, patients had stronger connectivities between 
the precuneus and anterior cingulate cortex than HC. The 
anterior cingulate cortex and the precuneus have been 

Fig. 2  (A) Selected frequencies 
of all states. The top 3 states 
were informative spatio-
temporal states (STS). (B) The 
receiver operating characteristic 
curves (ROC) and area under 
ROCs (AUC) of repeated 
hold-out cross-validations. (C) 
Distribution histogram of the 
classification AUCs of permuta-
tion tests and the real AUCs of 
repetitions of cross-validation 
results
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reported to play important roles in the pathophysiology of 
MDD, although with poor reproducibility of results (Con-
nolly et al., 2013; Lai, 2018; Zheng et al., 2018). For STS2, 
strengths of the connectivities between dlPFC and DMN 
were significantly increased in patients, similar to previous 
results (Ye et al., 2012; Zhang et al., 2022). Notably, there 
were also a few altered connections between the dlPFC and 
other regions (superior temporal gyrus in the ventral atten-
tion network, inferior occipital gyrus in the visual network, 
and bilateral superior temporal gyrus in the auditory net-
work); which demonstrated widespread alterations of dlPFC 
connectivity in patients’ dynamic functional patterns. For 
STS3, decreased connections exceeded enhanced pathways 
in MDD. Similar to the findings of earlier studies (Chen 
et al., 2019; Lu et al., 2020), connectivities associated with 
the visual network were generally weaker in FEDN patients 
than in HCs. These findings indicate decreased inter-network 
FC of the visual network in MDD that suggests a pathogenic 
role of visual systems (Chen et al., 2019). Our results also 

suggest decreased FC between the visual and other networks 
in MDD, and a consequently increased internal role of visual 
systems. In addition, patients exhibited higher inner-connec-
tivities in the motor-somatosensory network (Kong et al., 
2018), as well as weaker connectivities between the motor-
somatosensory and other networks.

While some of our results were consistent with those of 
previous reports, this study had the obvious advantage of 
using a large multi-site dataset and a data-driven method. 
Furthermore, we also investigated the group difference of 
synchronization coefficients between informative states. 
STS1 and STS3 showed significant differences, and MDD 
patients had higher synchronization characteristics than HC. 
The comparison results indicated that the functional spe-
cialization of brain networks is disrupted in MDD, and that 
the inter-network synchronization of DMN-related complex 
brain states is more vulnerable in neuropsychiatric disorders.

In the present study, classification scores reflected the 
affinity of fMRI dynamic patterns to FEDN MDD (positive 

Fig. 3  Differences in functional connectivity of informative spatio-temporal states (STS) between FEDN MDD and HC (p < 0.01). Gray lines 
represent the increased connectivity compared to HC, and blue lines represent decreased connectivity compared to HC
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value) or a healthy state (negative value). Because of their 
association with clinical characteristics, classification scores 
might serve as useful indicators of altered spatio-temporal 
FC in MDD. In particular, FEDN MDD patients with higher 
classification scores had earlier age at onset, suggesting that 
younger FEDN patients might suffer more severe spatio-
temporal functional alterations, and that older patients might 
experience a mixture of senile neurologic and psychotic dis-
orders in addition to MDD. Notably, age at onset was posi-
tively related to HAMD and HAMA scores. Patients with 
earlier onset MDD tended to have milder symptoms during 
initial depressive episodes. As a result, classification scores 
were negatively related to HAMD, which seemed counter-
intuitive, but was nonetheless empirically demonstrated.

The present study had several limitations. Clinician-
administered assessment scales were limited to the HAMD 
and HAMA, and clinical information was missing for some 
individuals from multiple sites. Moreover, no validated ques-
tionnaires were applied to assess the symptoms or mental 

states of either MDD patients or HC. Thus, the assessment 
scales were not comprehensive enough to explore the intrin-
sic relationships between informative states and clinical 
characteristics. The window length and number of compo-
nents were set empirically with potential impact. Another 
limitation is that we compared the spatio-temporal states of 
HCs and FEDN patients at only one time point. A compari-
son of dynamic functional states of MDD at serial stages of 
disease progression would be of further interest.

Conclusions

In conclusion, this study applied a multivariate multi-ker-
nel pattern classification method to investigate large-scale 
spatio-temporal functional brain networks in FEDN MDD. 
Large-scale dynamic states that included DMN with SAN, a 
dlPFC-hub network, and a relatively complex coupling net-
work (DMN, visual, motor-somatosensory and subcortical 

Fig. 4  Correlation between 
the SVM scores and clinical 
characteristics with sex and 
site as covariates. Scatter plots 
show that classification scores 
are negatively correlated with 
HAMD (A) and age of onsets 
(B) in the FEDN MDD patients, 
and age of onsets are positively 
correlated with HAMD (C) and 
HAMA (D)
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networks) might be altered in MDD. Our results suggest that 
aberrant spatio-temporal states are informative and predictive 
in FEDN MDD, and may capture more time-varying informa-
tion and interactions among intrinsic networks. The assess-
ment of these spatio-temporal states may represent a powerful 
tool for exploring neuropsychiatric diseases.
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