
Citation: Bicci, E.; Nardi, C.;

Calamandrei, L.; Pietragalla, M.;

Cavigli, E.; Mungai, F.; Bonasera, L.;

Miele, V. Role of Texture Analysis in

Oropharyngeal Carcinoma: A

Systematic Review of the Literature.

Cancers 2022, 14, 2445. https://

doi.org/10.3390/cancers14102445

Academic Editor: Jan Egger

Received: 29 March 2022

Accepted: 10 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Systematic Review

Role of Texture Analysis in Oropharyngeal Carcinoma:
A Systematic Review of the Literature
Eleonora Bicci 1,* , Cosimo Nardi 1 , Leonardo Calamandrei 1, Michele Pietragalla 1 , Edoardo Cavigli 2 ,
Francesco Mungai 2 , Luigi Bonasera 2 and Vittorio Miele 2

1 Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of
Florence—Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
cosimo.nardi@unifi.it (C.N.); leonardo.calamandrei@unifi.it (L.C.); michelepietragalla2@gmail.com (M.P.)

2 Department of Radiology, University of Florence—Azienda Ospedaliero-Universitaria Careggi,
Largo Brambilla 3, 50134 Florence, Italy; edoardocavigli@yahoo.it (E.C.); f.mungai@gmail.com (F.M.);
luigi.bonasera72@gmail.com (L.B.); vmiele@sirm.org (V.M.)

* Correspondence: eleonora.bicci92@gmail.com

Simple Summary: The incidence of squamous cell carcinomas of the oropharynx has rapidly in-
creased in the last two decades due to human papilloma virus infection (HPV). HPV-positive and
HPV-negative squamous cell tumours differ in radiological imaging, treatment, and prognosis; there-
fore, differential diagnosis is mandatory. Radiomics with texture analysis is an innovative technique
that has been used increasingly in recent years to characterise the tissue heterogeneity of certain
structures such as neoplasms or organs by measuring the spatial distribution of pixel values on
radiological imaging. This review delineates the application of texture analysis in oropharyngeal
tumours and explores how radiomics may potentially improve clinical decision-making.

Abstract: Human papilloma virus infection (HPV) is associated with the development of lingual and
palatine tonsil carcinomas. Diagnosing, differentiating HPV-positive from HPV-negative cancers,
and assessing the presence of lymph node metastases or recurrences by the visual interpretation of
images is not easy. Texture analysis can provide structural information not perceptible to human
eyes. A systematic literature search was performed on 16 February 2022 for studies with a focus on
texture analysis in oropharyngeal cancers. We conducted the research on PubMed, Scopus, and Web
of Science platforms. Studies were screened for inclusion according to the preferred reporting items
for systematic reviews. Twenty-six studies were included in our review. Nineteen articles related
specifically to the oropharynx and seven articles analysed the head and neck area with sections
dedicated to the oropharynx. Six, thirteen, and seven articles used MRI, CT, and PET, respectively,
as the imaging techniques by which texture analysis was performed. Regarding oropharyngeal
tumours, this review delineates the applications of texture analysis in (1) the diagnosis, prognosis,
and assessment of disease recurrence or persistence after therapy, (2) early differentiation of HPV-
positive versus HPV-negative cancers, (3) the detection of cancers not visualised by imaging alone,
and (4) the assessment of lymph node metastases from unknown primary carcinomas.

Keywords: radiomics; texture analysis; tonsil; oropharynx; head and neck; squamous cell carcinoma

1. Introduction

Head and neck cancers represent around 3% of all malignancies and squamous cell
carcinoma is the most frequent histotype (85%) [1,2].

The incidence of squamous cell carcinomas of the oropharynx (OPSCC) has been
rapidly increasing in the last two decades due to human papilloma virus (HPV) infection
that is associated with the development of carcinomas that primarily involve lingual and
palatine tonsils [3].
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HPV-positive (HPV+) squamous cell tumours mainly affect males with a mean age of
40–60 years, and independent of risk factors such as tobacco exposure or alcohol consump-
tion. Some HPV genotypes are considered oncogenic including genotypes 16 and 18. These
are the most frequent ones [4].

The diagnosis of OPSCC is confirmed by a pan-endoscopy with multiple biopsies to
search for the primary lesion [5]. Histological examination is the gold standard tool for the
characterisation of the lesion and the detection of viral DNA or transcription products [6].

HPV-negative (HPV−) tumours occur more frequently in the elderly population (over
70 years of age). The most significant risk factors for these types of cancer are smoking and
alcohol consumption [7,8].

HPV+ and HPV− squamous cell tumours differ in radiological imaging, treatment,
and prognosis; therefore, differential diagnosis is mandatory [9]. At computed tomography
(CT) and magnetic resonance imaging (MRI) HPV+ primary tumours are more likely to
show enhancement with well-defined borders and exophytic growth, whereas HPV−
tumours often show ill-defined borders [10–12].

Cervical cystic and necrotic nodal metastases are associated with HPV+ and HPV−
OPSCC, respectively [11]. MRI is the best technique to depict cystic or necrotic lymph node
metastases and to evaluate soft tissues, tumour margins, and nerve involvement [13–17].

Some degree of overlap between HPV+ and HPV− cancers can be found, therefore
distinguishing one from the other by the visual interpretation of images is not often
easy [18,19].

Radiomics with texture analysis is an innovative technique that has been used increas-
ingly in recent years to characterise the tissue heterogeneity of certain structures such as
neoplasms or organs through the extraction of features obtained from the analysis of a
region of interest (ROI) on CT, MRI, or positron emission tomography (PET-CT) images by
measuring the spatial distribution of pixel values [20–27].

Texture analysis can provide more precise structural information not perceptible to
the human eye and not affected by interindividual variability [28–33].

Texture analysis is based on the extraction of first, second and higher-order parameters.
The first order uses the histogram to study the gray-level distribution frequency within the
ROI in order to evaluate the single pixel and not its interactions with adjacent pixels. The
second order evaluates how often the intensity of one pixel has a specific relationship to
that of another pixel through gray-level co-occurrence matrix (GLCM) measurements. A
further way to derive second-order parameters is the gray-level run length matrix (GLRLM)
that analyses consecutive pixels with the same intensity in a defined direction.

The higher orders assess differences between pixels and voxels in the context of the
entire ROI using a neighborhood gray-tone-difference matrix (NGTDM) by identifying
variations within the examined space in gray-level intensity [34–37].

The application of texture analysis in oropharyngeal tumours may be helpful in the
diagnosis, prognosis, and assessment of disease recurrence or persistence after therapy. Its
use could lead to the early differentiation of HPV+ versus HPV− cancers, as well as the
detection of tonsillar cancer not easily visualised by imaging alone and in patients with
lymph node neck metastases from unknown primary squamous cell carcinomas.

2. Materials and Methods
2.1. Pico Question

The systematic review was based on the following PICO question [38]:
Does the implementation of texture analysis (I) yield more accurate results in the

diagnosis and prognostic evaluation (O) of OPSCC (P) than morphological and functional
imaging alone (C)?

Literature searches were planned by identifying keywords based on the PICO question
above-mentioned.
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2.2. Literature Searches

We performed literature research in accordance with preferred reporting items for a
systematic reviews (PRISMA) statement (registration number 321983) for studies with a
focus on texture analysis in oropharyngeal cancers. We conducted the research based on
articles written in English-language on PubMed, Scopus, and Web of Science platforms [39].
The following combined terms were investigated: texture analysis, oropharynx, radiomics,
squamous cell carcinoma, and head and neck (Table 1). The detailed search strategy is
presented in Appendix A.

Table 1. Search strategy.

Indexing Terms Publications (N)

Pubmed
#01 Head and neck carcinoma 60,209

#02 Head and neck carcinoma [MeSH terms] 44,169
#03 Oropharynx carcinoma 14,310

#04 Oropharynx carcinoma [MeSH terms] 9420
#05 Tonsil carcinoma 1716

#06 Tonsil carcinoma [MeSH terms] 1171
#07 Radiomics 5415

#08 Texture analysis 19,649
#09= #01 OR #02 OR #03 OR #04 OR

#05 OR #06 68,885

#10= #07 OR #08 24,155
#11= #09 AND #10 228

Web of Science
#01 Oral * 959,363

#02 Oropharyn * 30,346
#03= #01 OR #02 979,026

#04 Cancer * 3,463,149
#05 Carcinoma * 959,434
#06 Neoplasm * 211,729

#07= #04 OR #05 OR #06 3,849,511
#08 radiomic * 7657

#09 Texture analysis 79,538
#10= #08 OR #09 85,527

#11= #03 AND #07 AND #10 241
Scopus

#01 Oropharynx 28,764
#02 Oral 1,263,096

#03 Oropharyngeal 25,707
#04= #01 OR #02 OR #03 1,292,826

#05 Cancer 3,486,977
#06 Carcinoma 1,251,963
#07 Neoplasm 1,073,234

#08= #05 OR #06 OR #07 4,127,810
#09 Radiomic * 6629

#10 “Texture Analysis” 14,579
#11= #09 OR #10 20,693

#12= #04 AND #08 AND #11 132
The research in Pubmed included both MeSH and free-text terms, whereas the searches in Scopus and Web of
Science included only free-text terms or terms ending with an asterisk (*) which represents any number of letters
(truncation). An additional manual search was performed using the reference lists of the examined studies. The
searches were conducted on 16 February 2022.

2.3. Inclusion and Exclusion Criteria

Our search included articles published in international peer-reviewed journals based
on texture analysis and radiomics of the oropharynx. We also included studies on the head
and neck region that contained sections dedicated to the oropharynx. Original articles, case
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reports, short communications, and letters to the editor were also included. The exclusion
criteria were:

- articles that did not deal with oropharyngeal tumours;
- articles on the oropharynx not concerning cancer pathology;
- articles on oropharyngeal carcinomas that did not mention texture analysis

and/or radiomics.

2.4. Study Selection and Data Extraction

Two reviewers (CN and MP) independently evaluated the titles and abstracts of the
articles selected to assess their eligibility. When the abstract was not sufficient to evaluate
the content of the article, the entire text was reviewed, as well as in cases where the
article was considered eligible for inclusion. Two authors (EB and LC) independently
assessed the risk of bias for all included studies in seven different domains: random
sequence generation (selection bias), allocation concealment (selection bias), the blinding
of participants and personnel (performance bias), the blinding of outcome assessment
(detection bias), incomplete outcome data (attrition bias), selective reporting (reporting
bias), and other forms of bias, according to the Cochrane method for risk of bias as detailed
in the Cochrane Handbook for systematic reviews. Figures A1 and A2 (Appendix B) detail
the results [40]. The inter-reader reliability for the selection of the papers and the assessment
of risk of bias were calculated using the Cohen kappa value. The extracted data from each
study were as follows: (1) anatomic area; (2) number of patients; (3) tumour histotype;
(4) imaging technique; (5) type of segmentation—2D or 3D—used for feature extraction;
(6) type of software; and (7) features found to be significant. In case there was no agreement
among the selected articles, a discussion between the two reviewers was carried out to
evaluate their inclusion.

3. Results

Twenty-six studies met our eligibility criteria. The steps for selecting and excluding
articles are shown in Figure 1. Screening of articles using the different search engines
revealed 38 potentially eligible articles for the full-text review. After examining the full text,
twelve papers did not meet the inclusion criteria.

The Cohen kappa values showed almost perfect (k = 0.86) and substantial (k = 0.78)
agreement between the two readers for the selection of the papers and the assessment of
risk of bias, respectively. Overall risk of bias assessment did not highlight specific domains
of bias as critical. However, the allocation concealment (selection bias) was the domain
at highest risk of bias (7 studies deemed “high risk”) whereas incomplete outcome data
(attrition bias) and selective reporting (reporting bias) were the domains of bias at lowest
risk (22 studies in both domains were deemed “low risk”) (Figures A1 and A2).

Among the 26 selected papers (Table 2), the largest number were from the USA [41–51]
and Korea [52–55], whereas the rest of them were from Switzerland [56,57], the Nether-
lands [58,59], Italy [19,60], Canada [61], Japan [62,63], Taiwan [64,65] and China [45].
Fourteen articles [19,41,43–47,49,52,53,55,57,58,62] had the oropharynx as the anatomic
area of interest and seven articles [42,48,54,56,59–61] analysed the head and neck district
with sections dedicated to the oropharynx. Six, thirteen, and two articles, respectively,
used MRI [53–55,58,59,61], CT [19,41–47,52,56,57,60,62], and PET-CT [48,49] as imaging
techniques on which texture analysis was performed (Table 3). Among the 26 studies,
eleven of them used free software to extract textural data [19,44,50–55,58,60,62,63]; five
studies used licensed software [43,49,52,61,64], whereas the remaining ten papers used in
house developed software not available to the public. Furthermore, ten studies focused
on the distinction between HPV+ and HPV- neoplasms [19,41–44,46,52,57,58,64]. While
no specific textural trend could be identified, most studies found histogram features, en-
tropy, and gray-level co-occurrence to be the features more frequently present in radiomic
signatures correlated to HPV positivity. Six studies focused on the diagnosis of oropha-
ryngeal neoplasms [49–51,54,55,62] developing different complex models that allowed to
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infer the nature of a lesion with varying levels of sensibility and specificity. However,
no specific trend or cutoff emerged from the evaluation of the aforementioned studies.
Eleven studies [45–48,52,56,58–61,64,65] focused on the development of new prognostic
scoring methods that included analysis of textural features. Such studies produced the
most complex models, with radiomic signatures composed of up to 2074 different features,
consisting of traditional image analysis, clinical features, and radiomics. [51]. Finally, two
studies [53,63] focused on the ways to distinguish between squamocellular cancer and lym-
phoma through differences in textural features. Both studies elaborated models including
both texture analysis features and image analysis techniques.
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Figure 1. Flowchart consistent with preferred reporting items for systematic reviews
(PRISMA 2020) statement.
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Table 2. Studies included in the systematic review. SCC: squamous cell carcinoma, HNSCC: head
and neck squamous cell carcinoma, OPSCC: oropharyngeal squamous cell carcinoma, NHL: non-
Hodgkin’s Lymphoma.

Study Sample Size HNSCC Type Histologic Type Imaging Technique Scans Therapy

Kim T-Y et al.,
2021 [49] 64 OPSCC SCC of the

Palatine tonsil F-FDGPET/CECT \ \

Buch K et al.,
2015 [41] 40 OPSCC HPV+ SCC CECT \ \

Fujita A et al.,
2015 [42] 46 OPSCC HPV+ SCC CECT \ \

Bogowicz M et al.,
2017 [56] 93 HNSCC HPV+ SCC CECT \ RTCT

Ranjbar S et al.
[43] 107 OPSCC HPV+ SCC CECT \ \

Leijenaar RTH
et al., 2018 [57] 778 OPSCC HPV+ SCC CECT \ RTCT

Yu K et al.,
2017 [44] 315 OPSCC HPV+ SCC CECT \ \

Choi Y et al.,
2020 [52] 86 OPSCC SCC CECT \ Untreated

Mungai F et al.,
2019 [19] 50 OPSCC HPV+ SCC CECT \ RT

Dang M et al.,
2015 [61] 16 OPSCC HPV+ SCC MRI

Axial fast spin-echo
T2-weighted

imaging with fat
saturation, axial fast

spin-echo T1W1
with gadolinium,

axial
diffusion-weighted

imaging

\

Bos P et al.,
2021 [58] 153 OPSCC HPV+ SCC MRI

T1 weighted post
contrast; post

contrast 3dT1W
\

Bae S et al.,
2020 [53] 87 OPSCC HNSCC and

lymphoma MRI Contrast-enhanced
T1 and T2 \

Park J-H et al.,
2019 [54] 36 HNSCC Nodal metastases

of SCC MRI ADC data of
msEPI-DWI \

Tomita H et al.,
2021 [62] 23 OPSCC Nodal metastases

of SCC CECT \ \

Lee J-H et al.,
2021 [55] 39 OPSCC SCC of the

Palatine tonsil MRI
T1, T2,

Contrast-enhanced
T1, ADC

\

Rich B et al.,
2021 [45] 225 OPSCC Locally advanced

HPV+ SCC FBCT \
Curative

intentive RT
or CT

Song B et al.,
2021 [46] 582 OPSCC HPV+ SCC CECT \ RT

Miller et al.,
2019 [47] 38 OPSCC HPV+ SCC CT \ Induction CT

Mes et al.,
2020 [59] 323 HNSCC SCC MRI

T1 for feature
extraction, STIR for

segmentation
\

Kuno H et al.,
2017 [48] 62 HNSCC SCC F-FDGPET/CECT \ CT

Cozzi L et al.,
2019 [60] 110 HNSCC SCC CECT \ RT

Cheng N. M.
et al., 2013 [64] 70 OPSCC SCC HPV+ F-FDGPET/CECT \ CTRT

Cheng N. M.
et al., 2015 [65] 88 OPSCC SCC F-FDGPET/CECT \ \

Haider S. P. et al.,
2020 [50]

435 primary
lesions

741 lymph
nodes

OPSCC SCC F-FDGPET +
non contrast CT \ \

Haider S. P. et al.,
2020 [51] 311 OPSCC SCC F-FDGPET/CECT \ \

Mitamura K.
et al., 2021 [63]

27 SCC
25 NHL

OPSCC
NHL SCC + NHL F-FDGPET/CECT \ \
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Table 3. Significant features and extraction methods. DSS: disease-specific survival; GLCM: grey
level co-occurence matrix; GLNU: Gray level non-uniformity; GLRLM: Gray-level run-length matrix;
IQR: interquartile range; LRE: long run emphasis; LRLGE/LRHGE: long-run low/high gray level
emphasis; LRLGLE: Long-run low gray-level emphasis; LZE: level zone emphasis feature value;
LZHGE: large zone high gray level emphasis; LZLGE: large zone low gray level emphasis; MTV:
metabolic tumour volume; NGLDM: neighbourhood gray level difference matrix; OS: overall survival;
PFS: progression free survival; SD: standard deviation; SRHGLE: short run high gray level emphasis;
SSF: spatial scaling factor; TLG: total lesion glycolysis.

Study Segmentation Relevant Texture Information Software or
Analysis Type Free Software

Kim T-Y et al., 2021 [49] ROI CT, VOI PET
Tumor side showed lower mean value for

SSF 2-6, higher SD and entropy, lower
skewness with SSF 0-4, higher kurtosis.

TexRAD and MIM
software (software

version unavailable)
No

Buch K et al., 2015 [41] ROI CT
Histogram feature and histogram feature

entropy show significant difference
between HPV+ and − tumors.

In-house-developed
using Mathlab

(software version
unavailable)

\

Fujita A et al., 2015 [42] ROI CT

Mean, median, entropy, geometric mean,
IQR; contrast, correlation, energy; LRHGE,

skewness, kurtosis; L2, L5, L6, L7, L8
showed significant differences between

HPV+ and – tumors.

In-house-developed
(software version

unavailable)
\

Bogowicz M et al.,
2017 [56] GTV defined for RT

A radiomic signature that correlate
significantly with an increased local control
was identified, while a more heterogeneous
ct density distribution correlates with less

local control.

In-house-developed
(software version

unavailable)
\

Ranjbar S et al., [43] ROI CT
Histogram mean and entropy and GLCM
entropy significantly differentiate between

HPV+ and HPV− tumors.
OsiriX 6.5 No

Leijenaar RTH et al.,
2018 [57] GTV defined for RT Radiomic analysis of images could help

infer the molecular information of OPSCC
In-house-developed
using Matlab 2014 \

Yu K et al., 2017 [44] ROI CT MeanBreadth and SphericalDisproportion
correlate with HPV positivity in OPSCC

IBEX
(software version

unavailable)
Yes

Choi Y et al., 2020 [52] Semiautomated ROI
definition

Identification of a radiomic signature that
correlates with HPV positivity; radiomics

score and T staging associated with
survival rate and prognosis

Syngo.via frontier
software (software

version unavailable)
No

Mungai F et al., 2019 [19] VOI CT

Mean value; second order GLRLM (LRE,
LRLGE, LRHGE, GLNUr, SRHGE); LZE,

LZLGE, LZHGE, GLNUz, NGLDM
PARAMETERS show variably significant

correlation with HPV positivity in OPSCC.

LIFEx 3.40 Yes

Dang M et al., 2015 [61] ROI MRI

Average value of local spectrum, SD of
local spectrum, maximum value of local
spectrum correlate significantly with p53

status of tumor.

OsiriX+ FTFT-2D
tool (software

version unavailable)
No

Bos P et al., 2021 [58] ROI Clinical evaluation and radiomic study
correlate significantly with HPV positivity. PyRadiomics 2.2.0 Yes

Bae S et al. 2020 [53] Semiautomated ROI
definition

There were 19 radiomics features selected
as valuable for the distinction between

HNSCC and lymphoma.
R software 3.5.1 Yes

Park J-H et al., 2019 [54] ROI MRI
Complexity, energy and roundness features

help discern reactive nodes from
metastases in HNSCC.

IBEX (software
version unavailable) Yes

Tomita H et al., 2021 [62] ROI CT
GLCM entropy, GLCM energy and

diameter help discern reactive nodes from
metastases in HNSCC.

LIFEx (software
version unavailable) Yes
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Table 3. Cont.

Study Segmentation Relevant Texture Information Software or
Analysis Type Free Software

Lee J-H et al., 2021 [55] semiautomated VOI
definition

The representative values of shape features,
fractal analyses and moment features on

ADC scans allow for a diagnostic
performance of OPSCC of the palatine

tonsil that is comparable to that of
F-FDG-PET/CT

PyRadiomics 1.0 Yes

Rich B et al., 2021 [45] GTV defined for RT
The model identified at a level of

excellence the patients who went on to
develop distant metastases.

SMOTE, ADASYN,
borderline SMOTE
(software version

unavailable)

Yes

Song B et al., 2021 [46] Manual ROI and GTV
There were 15 features that predicted HPV

correlation; A 3 feature signature
predicted DFS.

\ \

Miller et al., 2019 [47] Manual ROI
Skewness and entropy features increase

accuracy in progression prediction in
patients treated with CT.

In-house-
Developed

(software version
unavailable)

\

Mes et al., 2020 [59] Semiautomated ROI
definition

The integration of radiomic and clinical
models outperforms the standard clinical

prognostic model for HNSCC.

Velocity AI and
In-house-developed
software (software

version unavailable)

\

Kuno H et al., 2017 [48] Semiautomated ROI

Significant predictors of outcome of
chemotherapy in patients with SCC were 3

histogram features and 4 gray-level
run-length features.

In-house-developed
MATLAB based

software (software
version unavailable)

\

Cozzi L et al., 2019 [60] GTV defined for RT

A signature with 3 features was identified
as predictive of overall survival in HNSCC;

a 2 feature signature was predictive for
local control.

LIFEx (software
version unavailable) Yes

Cheng N. M. et al.,
2013 [64]

Semiautomated VOI
selection

Age, tumor TLG, and uniformity
independently associated with PFS and

DSS; TLG, uniformity, and HPV positivity
significantly associated with OS. New

prognostic scoring system based on TLG
and uniformity.

PMOD 3.3 No

Cheng N. M. et al.,
2015 [65]

Semiautomated VOI
selection

ZSNU identified as an independent
predictor of PFS and DSS. Prognostic
stratification system based on TLG,

uniformity and ZNSU

In-House-
Developed matlab

based software
(software version

unavailable)

\

Haider S. P. et al., 2020 [50] Manual ROI selection

PET-based radiomics signatures yield
similar classification performance to

CT-based models with a trend suggesting
improved predictive performance

when combined.

3D-Slicer
version 4.10.1 Yes

Haider S. P. et al., 2020 [51] Manual ROI selection

1037 PET and 1037 CT radiomic features
quantifying lesion shape, imaging intensity,
and texture patterns from primary tumors

and metastatic cervical lymph nodes
integrated to devise novel

machine-learning models for OPSCC
PFS and OS.

3D-Slicer
version 4.10.1 Yes

Mitamura K. et al.,
2021 [63]

Semiautomated VOI
selection

SUVmax, MTV, and TLG did not differ
significantly between the SCC and NHL
groups. LGZE and HGZE significantly

different between the SCC and NHL; LGZE
the most discriminative (55.6% sensitivity,

88.0% specificity)

LIFEx (Software
version unavailable) Yes



Cancers 2022, 14, 2445 9 of 19

4. Discussion

The use of texture features analysis on CT and MRI images in the diagnosis and
pre-therapy evaluation of oropharyngeal cancer has become increasingly interesting. Many
studies have evaluated whether these innovative techniques can play a role in the differ-
entiation between malignant and benign lesions and in the characterisation of tumour
histotypes. Furthermore, given the tremendous prognostic difference between HPV+ and
HPV− tumours, great importance could also be obtained in evaluating HPV status and,
therefore, in predictive assessment and therapy response.

4.1. Use of Texture Analysis in the Evaluation of HPV Status

HPV+ OPSCC generally has a better prognosis than HPV− OPSCC since it is more
responsive to radio-chemotherapy. Therefore, these two cancers need to be considered as
distinct entities from an epidemiological, histopathological, prognostic, and therapeutic
point of view [66–69].

Recently, in the eighth edition of its Cancer Staging Manual, the American joint commit-
tee of cancer (AJCC) introduced a new differentiation between HPV+ and HPV− tumour
types in terms of both T (primary lesion) and N (lymph nodes) parameters, as well as their
stages, in regard to their respective classifications [70].

The presence of p16 and viral DNA is strongly suggestive of HPV+ oropharyngeal
cancer [71].

Primary tumours tend to grow submucosally and most often show an expansive
and exophytic growth with sharper margins. These features can be found on both CT
and MRI images and are related to the histopathological features of the lesion, which
are characterised by the growth of basaloid cells with a poor extracellular matrix and
no keratinization. On MRI, HPV+ primary lesions have a slightly hyperintense signal
in T2-weighted fat-sat sequences and a more homogeneous enhancement after contrast
media intravenous injection, compared to HPV− OPSCC. HPV+ lymph node metastases
usually appear as a cystic lesion on both CT and MRI images. In addition, HPV+ lym-
phadenopathies have a homogeneously hypodense central portion and regular margins on
CT images [72].

The cystic appearance with homogeneous fluid content is even more evident on MRI,
especially on T2-weighted TSE sequences [73].

HPV− oropharyngeal tumours are keratinizing tumours that often present with ulcera-
tive and necrotic changes. Associated lymphadenopathies are solid and show enhancement
after intravenous contrast media administration. Areas of intranodal necrosis and wall
thickening are also common [74].

Lesion characterisation is still based on histopathological examination, but recent
alternative tools such as texture analysis may become helpful not only in the detection of
lesions, but also in the characterisation of their HPV status.

Several studies were carried out to discriminate the HPV status of OPSCC by using
texture analysis on CT imaging.

In a study by Choi et al. [52], 86 untreated patients were recruited to assess whether a
specific texture shape feature named spherical disproportion correlated to HPV positivity
on CT imaging. Spherical disproportion is the indicator of shape irregularity since it is
the ratio of the ROI surface to the surface of a sphere with the same volume as the ROI.
HPV+ tumours were found to show lower values of spherical disproportion due to their
physiological greater roundness. Yu et al. [44] selected two features with MeanBreadth,
an index of ROI width (closely related to tumour size) and, as in the previous study,
SphericalDisproportion. They assessed how HPV+ tumours in relation to their smaller size
had a lower MeanBreadth value than HPV−. The study also showed that HPV+ tumours
have lower SphericalDisproportion values than HPV− tumours due to their less complex
tumour shape.

In the study by Leijenaar et al. [57], selected features were higher in HPV+ than HPV−
tumours, especially low-gray-level-large-size-emphasis, representing a lower contrast
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uptake into the lesion. Instead, other features were lower in HPV+ than HPV−, including
GLSZM and small-zone-emphasis, for a possible greater homogeneity of the lesion and
GLCM inverse variance, related to more significant intensity variability in adjacent voxels.

The study conducted by Bogowicz et al. [56] on 93 patients with OPSCC also resulted in
a good performance in discriminating HPV status in both the training (AUC = 0.85) and the
validation cohort (AUC = 0.78) thanks to four features corresponding to standard deviation,
small zone high gray-level emphasis, difference entropy, and coefficient of variation.

Ranjbar et al. [43] also assessed histogram features (median and entropy) and GLCM
entropy as statistically significant.

Comparable results were obtained by Fujita et al. [42]. They found statistically sig-
nificant differences in the distinction of HPV+ status in histogram features (mean, me-
dian, entropy, skewness, and kurtosis) and in three GLCM features (contrast, correlation,
and energy).

Histogram features (entropy and median) and GLCM entropy were also statistically
significant in the study by Buch et al. [41] in differentiating HPV status.

In a study by Mungai et al. [19], several higher order parameters were statistically
significant. All parameters derived from a neighbouring gray-level tone dependence
matrix (NGLDM) analysis showed lower values in HPV+ than HPV− OPSCC, whereas
those derived from a gray-level run-length matrix (GLRML) and gray-level zone-length
matrix (GLZLM) were higher than in HPV−. In particular, the lower values of NGLDM,
representing the intrinsic heterogeneity of the tumour, may be correlated with the micro-
and macroscopic aspects of HPV+ primary tumours since they are non-keratinizing lesions
with more defined margins and regular growth. In contrast, higher values in HPV+
OPSCC of parameters belonging to the GLRML and GLZLM categories correlated with the
high homogeneity.

Haider et al. [50] analysed 435 primary tumours and 741 cervical lymph node metas-
tases using FDG-PET and CT images. They found that the extrapolated data from the
individual methods were almost comparable with the highest predictive performance
achieved when PET and CT radiomic features were combined (an AUC of 0.78, and 0.77
for the prediction of HPV association using primary tumour lesion features in a cross-
validation and independent validation, respectively). Predictive performance was also
higher when PET radiomic markers derived both from the primary tumor and metastatic
cervical nodes [50].

Regarding MRI, Dang et al. [61] conducted a study to evaluate a predictive model of
HPV status based on T1–T2 weighted and DWI sequences on MRI images, evaluating how
texture analysis has an accuracy of approximately 80% in predicting the status of OPSCC.

A study by Bos et al. [58] on MRI of 153 patients showed that radiomics is also valuable
for the differentiation between HPV+ and HPV− OPSCC due to their different biology.
HPV+ primary tumours, being more regular in shape, tend to have radiomic features able
to evaluate their rounder appearance as well as lower maximum intensity values and
texture homogeneity. In contrast, HPV− primary tumours are more irregular with different
grades of intra-lesional differentiation represented by their texture heterogeneity.

4.2. Use of Texture Analysis in the Diagnosis of Oropharyngeal Cancer

The study conducted by Kim et al. [49] aimed to look for a correlation between
texture parameters in the differentiation between tonsillar cancer and normal tonsillar
tissue and to correlate them with 18F-FDG PET/CT, in order to investigate the relationship
between texture analysis and metabolic parameters. Neoplastic tonsil is characterized by
asymmetric enlargement with increased enhancement after contrast media intravenous
injection. Conversely, during the early stages of the disease, the radiological appearance
of the lesion may be similar to the healthy tissue. In this study, entropy, described as the
randomness of pixel intensity, was considered a marker of tissue heterogeneity. Therefore,
entropy was the most useful parameter in the differentiation between pathological and
healthy tissues and it especially helped to differentiate even the earliest forms of OPSCC.
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The paper highlights how these analyses could have an important role in the evaluation of
lesions not yet clearly visualizable by conventional radiological imaging.

Radiomics has also been used to discriminate OPSCC from other tumours that may
affect oropharynx and tonsils, such as lymphoma. Compared to OPSCC, lymphoma
shows very low apparent diffusion coefficient (ADC) values (0.4 − 0.7 × 10−3 mm2/s) on
diffusion-weighted MR imaging because of the high cellular density due to the reduced
extracellular space. Lymphoma also shows lower volume transfer coefficient (Ktrans) and
extracellular volume ratio (Ve) values than OPSCC on dynamic contrast-enhanced perfusion
MR imaging, due to the lower vascular permeability and extravascular-extracellular space.
However, the diagnosis of lymphoma or OPSCC is often challenging to discriminate on
morphological imaging alone [23,75–78].

Given these differences in their microscopic structure, in a study conducted by
Bae et al. [53] it has been postulated that radiomics may show potential in discriminating
between lymphoma and OPSCC. They identified on T1 post-contrast and T2 MRI sequences
19 features, 10 first-order features and 9 texture features capable of differentiating these
two entities. More specifically, the diffuse heterogeneity of OPSCC is a characteristic that
can be assessed with texture analysis. It is not found in lymphoma, given the general
absence of areas of necrosis or colliquation in this latter type of tumour. The study by
Mitamura et al. [63] evaluated low gray-level zone emphasis (LGZE) as the best feature
(p = 0.004) on 18F-FDG PET/TC images to differentiate between SCC and non-Hodgkin’s
lymphoma with a sensitivity of 55.6% and specificity of 88.0%, respectively.

For the staging of head and neck cancers, as well as those of the oropharyngeal area,
the assessment of lymph node involvement is essential for correct loco-regional and distant
staging. Although PET-CT is the first-line examination in the detection of pre-treatment
lymphadenopathy, false positives due to inflammatory states and false negatives secondary
to small lymph node sizes can occur [18,79,80].

Radiomics has also been used to provide supplementary information in addition to
purely morphological imaging to distinguish benign lymph nodes from those with neoplas-
tic infiltration in a study conducted by Park et al. [54] on the texture features of 204 lymph
nodes. In this study, MRI, including ADC maps reconstructed by diffusion weighted
sequences, showed that first and second level features (including those representatives of
heterogeneity and shape) were statistically significant in discriminating between benign
and metastatic nodes. This was attributed to the increased roundness of metastatic lymph
nodes due the typical loss of their physiological ovoid shape. Six features (complexity,
energy, global entropy, roundness, maximum probability, and short- run low gray-level
emphasis) and five features (complexity, energy, global entropy, roundness, and maximum
probability) were found to show statistically significant potential to differentiate all-sized
and sub-centimetre-sized benign lymph nodes from metastatic ones.

CT imaging has also been used for this purpose with results almost comparable to
MRI, underlining that texture analysis may be used to evaluate nodal involvement in
patients with OPSCC tumours. In the study by Tomita et al. [62], 23 patients with a total of
201 cervical lymph nodes who underwent pre-operative CT with contrast medium followed
by cervical neck dissection were evaluated. The lymph nodes, after histological evaluation,
were randomly divided into a training cohort and a validation cohort. Three features,
energy and entropy (GLCM), and zone length non uniformity (GLZLM) were significant in
differentiating pathological lymph nodes. In addition to this, as previously mentioned, the
first manifestation of a neoplasm of the oropharynx is often characterized by the presence
of lymphadenopathy secondary to a primary occult tumour [81]. For this reason, in the
diagnostic workup that follows an initial clinical evaluation, the aid of additional methods
such as texture assessment may be helpful in the detection of occult tumours. A study
by Lee et al. [55] focused on the application of radiomics on MRI imaging with the intent
to study whether this new approach could help broaden the diagnostical possibilities of
MRI. Texture analysis was used to help diagnose cases where clinical tonsillar swelling
or radiological asymmetry were not sufficiently relevant on their own and, as a result
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of this study, shape features, 3D fractal analyses and moment features assessed on ADC
maps were shown to have a diagnostic performance for palatine tonsil carcinomas that was
comparable to F-FDG-PET/CT.

4.3. Use of Radiomics as a Prognostic Evaluation and in the Follow-Up of Oropharyngeal Cancer

Radiomics has also been used to assess which patients with locally advanced HPV+ OPSCC
are at risk of developing distant metastases after radical chemo-radiotherapy. In a study
conducted by Rich et al. [45], patients with primary tonsillar lesions were separated into
two cohorts, restrospectively based on the subsequent development of distant metastases
or not. A model was then produced using texture features related to tumour heterogeneity,
especially a gray-level dependence matrix and a neighborhood gray-tone difference matrix
with the intent of studying how well this model would be able to distinguish the two
cohorts by radiomic signature only. Said model was found to be able to differentiate the
two cohorts at a level of excellency and beyond with a median ROC area under the curve
of 0.90.

Studying the phenotypic characteristics of a tumour can reflect the possible response to
therapy, allowing for the evaluation of those neoplasms at a higher risk of non-response or
recurrence. In the future, this could potentially enable personalised radiotherapy treatment
by previously differentiating patients with the possibility of a good response to therapy
or, on the contrary, at a higher risk of recurrence [82–84]. This task was carried out
in a study performed in the M.D. Anderson Cancer Center, Houston, Texas, USA [85],
in which 465 patients with histopathologically proven OPSCC patients were included.
Texture analysis on the primary lesion was applied on pre-treatment enhanced CT and the
population was divided following favourable or unfavourable clinical prognostic factors.
The analysis of the extracted features—including GLCM, GLRLM, and neighborhood
intensity different matrix—correlated with the distinction between the two risk groups of
recurrence (high risk of recurrence and low risk of recurrence based on clinical factors).
These patients then received follow-up at close intervals of about 2–3 months for the first
two years and 3–6 months for the following years by imaging (contrast-enhanced CT, MRI
or PET-CT scans) and eventual biopsy or reintervention in case of local failure.

The usefulness of radiomics features in regard to intra-tumoural and peritumoural
assessment on CT imaging was also used on a cohort of 462 patients independently from
HPV status to evaluate their prognosis in terms of disease-free survival (DFS) in a study by
Bae et al. [53]. Three main features were selected (median, standard of sum-average, and
median of mean intensity for HPV+ patients; median, skewness of sum-average, and kurto-
sis for HPV− patients) that correlated with a high statistical significance in discriminating
between HPV+ and HPV− tumours. Consequently, through the implementation of a Cox
regression model, a statistically relevant radiomic risk score for DFS in these two classes of
patients was produced.

The prognostic role of radiomics applied to CT images was also evaluated in those
patients who had undergone induction chemotherapy before radiotherapy in association
with the assessment of size change of the primary tumour. Miller et al. [47] showed that the
information gathered using texture analysis, specifically skewness and entropy, when fac-
tored in with the evaluation of percentage of tumour size change, resulted in a more precise
assessment of patient prognosis than size evaluation alone with an estimated area under
the curve (AUC) of 0.80 versus 0.56. A study conducted by Haider et al. [51] based on PET,
CT or combined modality (PET/CT) imaging also evaluated how the use of quantitative
imaging data, tissue density, texture features, lesion size and metabolic activity can be
significant markers in identifying the tumour behaviour and creating prognostic and risk
models for these patients. This study involved 311 patients. In particular, in HPV+ OPSCCs,
the best radiomics-based model obtained a mean Harrell’s C-index ± standard deviation of
0.62 ± 0.05 (p = 0.02) for predicting progression-free survival. On the other hand, the value
was 0.54 ± 0.06 (p = 0.32), using variables from the American Joint Committee on Cancer’s
(AJCC) 8th edition staging scheme for survival prognostication and risk-stratification of
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HPV-associated OPSCC. This highlights how PET/CT analysis can provide complementary
information to the AJCC scheme.

The study by Cheng et al. [65] focused on the assessment of tissue heterogeneity and
therefore its prognostic impact in patients with T3/T4 OPSCC, identifying the feature zone-
size non-uniformity (ZSNU) as an independent predictor of outcome and in particular, of
PFS and DSS in patients with advanced stages of disease.

In another study, Cheng et al. [64] evaluated how lesion uniformity is strongly as-
sociated with survival outcome and differentiates responders from non-responders to
therapy, and how a normalized gray-level cooccurrence matrix (GLCM) is an independent
prognostic predictor in patients with OPSCC.

Some studies have also used MRI images to identify the prognostic value of radiomics
features in assessing the outcome after therapy in patients with OPSCC. Some predictive
models have been proposed based on the association of radiomics, clinical data, and pri-
mary tumour size both in patients with chemo-radiotherapy and surgical treatment [59,86].

By studying CT-based radiomics features, a study by Cozzi et al [60] assessed how
some of them correlate with survival and local control after radiochemotherapy. The
findings of this study reported that grey-level non-uniformity correlated significantly with
the overall survival rate of the patients; that progression-free survival correlated with
max value, compacity, and run-length non-uniformity; and that local control correlated
with max value, volume, and small-zone high gray-level emphasis. According to their
respective radiomic signatures, patients were subsequently divided into two categories of
risk (high-risk and low-risk) to identify candidates for de-intensified therapy with reduced
treatment-related toxicity and morbidity.

The difference in tissue homogeneity of the primary lesion, with hypervascular and
other necrotic or hypovascular areas, may be reflected by the different texture features. This
allowed attributed some of these features—including three histogram features and four
gray-level run-length matrix features—to patients with an increased risk of local failure, as
in the study conducted by Kuno et al. based on contrast-enhanced CT examinations either
independently or combined with a [18F] FDG PET examination [48].

5. Conclusions

Texture analysis may lead to early differentiation between HPV+ and HPV− OPSCC
and the detection of tonsillar lesions that may not be easily visualised by imaging techniques
alone. Radiomics could also be an aid in the assessment of nodal metastases, tumour
recurrences, persistence after combined radio-chemotherapy and prognosis. Based on our
results, texture analysis is a useful additional tool for the detection of OPSCC in combination
with currently used imaging techniques, such as CT, MRI and PET/CT. We believe that it
will be increasingly used in the near future as an important support in diagnostic work-up
and follow-up, potentially improving clinical decision-making.

Author Contributions: Conceptualization, E.B. and C.N.; methodology, M.P. and C.N.; validation,
M.P., F.M. and C.N.; investigation, E.B.; resources, V.M.; data curation, L.C. and E.B; writing—original
draft preparation, E.B., L.C. and C.N.; writing—review and editing, M.P., F.M. and C.N.; visualization
E.C. and L.C.; supervision, L.B. and C.N.; project administration, V.M. and C.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Cancers 2022, 14, 2445 14 of 19

Appendix A

Table A1. Search strings used.

Database Search String

Pubmed

(((“head neck”[Journal] OR (“head”[All Fields] AND “and”[All Fields] AND “neck”[All
Fields]) OR “head and neck”[All Fields]) AND (“carcinoma”[MeSH Terms] OR

“carcinoma”[All Fields] OR “carcinomas”[All Fields] OR “carcinoma s”[All Fields])) OR
((“head neck”[Journal] OR (“head”[All Fields] AND “and”[All Fields] AND “neck”[All

Fields]) OR “head and neck”[All Fields]) AND “carcinoma”[MeSH Terms]) OR ((“palatine
tonsil”[MeSH Terms] OR (“palatine”[All Fields] AND “tonsil”[All Fields]) OR “palatine

tonsil”[All Fields] OR “tonsil”[All Fields] OR “tonsils”[All Fields] OR “tonsilitis”[All Fields]
OR “tonsillitis”[MeSH Terms] OR “tonsillitis”[All Fields] OR “tonsillitides”[All Fields] OR
“tonsills”[All Fields]) AND (“carcinoma”[MeSH Terms] OR “carcinoma”[All Fields] OR

“carcinomas”[All Fields] OR “carcinoma s”[All Fields])) OR ((“palatine tonsil”[MeSH
Terms] OR (“palatine”[All Fields] AND “tonsil”[All Fields]) OR “palatine tonsil”[All Fields]

OR “tonsil”[All Fields] OR “tonsils”[All Fields] OR “tonsilitis”[All Fields] OR
“tonsillitis”[MeSH Terms] OR “tonsillitis”[All Fields] OR “tonsillitides”[All Fields] OR

“tonsills”[All Fields]) AND “carcinoma”[MeSH Terms]) OR (“oropharyngeal
neoplasms”[MeSH Terms] OR (“oropharyngeal”[All Fields] AND “neoplasms”[All Fields])

OR “oropharyngeal neoplasms”[All Fields] OR (“oropharynx”[All Fields] AND
“carcinoma”[All Fields]) OR “oropharynx carcinoma”[All Fields]) OR “oropharyngeal

neoplasms”[MeSH Terms]) AND (“radiomic”[All Fields] OR “radiomics”[All Fields] OR
((“textural”[All Fields] OR “texturally”[All Fields] OR “texture”[All Fields] OR “texture

s”[All Fields] OR “textured”[All Fields] OR “textures”[All Fields] OR “texturing”[All Fields]
OR “texturization”[All Fields] OR “texturize”[All Fields] OR “texturized”[All Fields] OR

“texturizing”[All Fields]) AND (“analysis”[MeSH Subheading] OR “analysis”[All Fields])))

Web of Science Oral * OR Oropharyn * (All Fields) and Cancer * OR Carcinoma * OR Neoplasm * (All
Fields) and Radiomic * OR texture analysis (All Fields)

Scopus (TITLE-ABS-KEY (oropharynx OR oral OR oropharyngeal) AND TITLE-ABS-KEY (cancer
OR carcinoma OR neoplasm) AND TITLE-ABS-KEY (radiomic * OR “texture analysis”))
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