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Abstract

Influenza is one of the most severe respiratory infections affecting humans

throughout the world, yet the dynamics of its global transmission network are

still contentious. Here, I describe a novel combination of phylogenetics, time ser-

ies, and graph theory to analyze 14.25 years of data stratified in space and in

time, focusing on the main target of the human immune response, the hemagglu-

tinin gene. While bypassing the complete phylogenetic inference of huge data

sets, the method still extracts information suggesting that waves of genetic or of

nucleotide diversity circulate continuously around the globe for subtypes that

undergo sustained transmission over several seasons, such as H3N2 and pan-

demic H1N1/09, while diversity of prepandemic H1N1 viruses had until 2009 a

noncontinuous transmission pattern consistent with a source/sink model. Irre-

spective of the shift in the structure of H1N1 diversity circulation with the emer-

gence of the pandemic H1N1/09 strain, US prevalence peaks during the winter

months when genetic diversity is at its lowest. This suggests that a dominant

strain is generally responsible for epidemics and that monitoring genetic and/or

nucleotide diversity in real time could provide public health agencies with an

indirect estimate of prevalence.

Introduction

With three to five million cases of acute illness every year

leading to 250 000 to 500 000 deaths, influenza is consid-

ered to be one of the most severe respiratory infections

affecting humans (Rambaut et al. 2008; World Health

Organization 2009). The recent history of this infection is,

however, punctuated by pandemics that signal, most of the

time, the replacement of a viral subtype by a new one:

H1N1 first emerged in 1918 during the ‘Spanish influenza’

and was replaced in 1957 by H2N2 with the ‘Asian influ-

enza’, itself superseded in 1968 by H3N2 during the ‘Hong

Kong influenza’ (Neumann et al. 2009). The 1977 ‘Russian

influenza’ outbreak marked the reemergence of H1N1, but

it did not replace the dominant H3N2 and the two sub-

types have been cocirculating ever since. The H1N1 2009

‘Swine influenza’ pandemic did not change the situation, as

H3N2 is, to date, still the cause of most infections in

humans during each season (Center for Disease Control

2012).

Each subtype indeed shows a seasonal pattern of infec-

tion that peaks around week ten in the Northern Hemi-

sphere (Center for Disease Control 2012) and 6 months

later in the Southern Hemisphere (Nelson and Holmes

2007). Evidence shows that, on average, these two epidem-

ics are seeded in a tropical region (Rambaut et al. 2008),

most likely centered around East and South-East Asia

(Russell et al. 2008). On a year-to-year basis, the exact

seeding location may vary (Bahl et al. 2011), but data sug-

gest that some strains circulate around the globe and per-

sist for multiple years (Bedford et al. 2010; Bahl et al.

2011). As a result, it is still unclear how this circulation

pattern relates to the global dynamics of viral diversity, and

in turn how this diversity impacts the health of human

populations.

Here, to address these two outstanding questions, I

focus on one single protein-coding gene of the influenza

virus, the hemagglutinin (HA) gene. This gene was chosen

as it is the surface antigen of the influenza virus that is

mostly targeted by the host immune response, so that its
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evolution is expected to reflect the interaction with its

human host (Russell et al. 2008). As a consequence, HA is

the most sequenced gene among the eight single strand

negative RNA segments constituting the influenza A gen-

ome: As of October 28, 2013, the Influenza Virus Resource

(IVR) (Bao et al. 2008) contains 34 540 sequences (in

humans, worldwide, all subtypes confounded), while the

neuraminidase (NA) gene, which encodes the second sur-

face antigen of the influenza virus, comes as a distant sec-

ond in the database with 22 817 sequences (34% fewer

sequences). These HA sequences were then analyzed for

both H1N1 and H3N2 subtypes. For this, I describe a

novel combination of phylogenetic, time series, and net-

work analyses under a stratified design. This approach

reveals the existence of waves of genetic diversity that con-

tinuously circulate around the world, seasonally, and

unveils a potential shift in the transmission pattern of

H1N1 at the emergence of the 2009 pandemic. Regardless

of this shift, the results show that the proportion of

infected people in a given population (prevalence) is at its

peak when influenza diversity is at its lowest, at least in the

US population.

Materials and methods

Data retrieval

Human HA nucleotide sequences of influenza A viruses of

subtypes H1N1 and H3N2 were downloaded from the IVR

for five World Health Organization (WHO) geographic

regions (Asia, Europe, North America, Oceania, and South

America—too few sequences [H1: 258; H3: 277] were

deposited for Africa) for viruses collected between January

1, 1996 and April 1, 2011. These data were split by quarter

for each of the WHO regions. The length of this time win-

dow (quarter) was chosen to ensure that most alignments

had ≫2 sequences. All data were downloaded in May 2011,

resulting in at most 570 data sets (4 quarters for 14.25 years

in 5 regions and 2 subtypes). Sequences without informa-

tion about collection month were discarded. This resulted

in 8748 H1 and 6587 H3 sequences. Figure S1 shows the

countries from which data were retrieved. Data distribution

is depicted in Figure S2, with a more detailed breakdown

by region in Figure S3.

In parallel, weekly prevalence data for the USA were col-

lected from the Centers for Disease Control and Prevention

(CDC) at www.cdc.gov/flu/weekly from the last quarter of

1997 to April 2011. Weekly data were averaged by quarters,

as summarized in Figure S4.

Phylogenetic analyses

Each of the 570 data sets was aligned with Muscle (Edgar

2004) with default parameters. Sequences were not

trimmed (Talavera and Castresana 2007; Capella-Guti�errez

et al. 2009) to conserve as many variable sites as possible

upstream and downstream of the coding sequence. Because

of the potential presence of noncoding sequences in the

data and of out-of-frame data, alignments were performed

directly on DNA instead of protein sequences (Aris-Brosou

2010; Abdussamad and Aris-Brosou 2011). This was not

problematic here as sequences within a quarter and a given

region showed high levels of similarity. Alignments were

visually inspected with JalView (Waterhouse et al. 2009),

misaligned sequences were removed (H1: HM625636,

CY083655; H3: FJ769860, EU835537, EU642547,

EU642548), and gaps were adjusted manually. Phylogenetic

trees for each of these data sets were then estimated using

maximum likelihood with FastTree, version 2.1.3 (Price

et al. 2010), under the GTR + Γ substitution model, which

is general enough to accommodate substitution patterns in

those closely related sequences. Only data sets with more

than two sequences were analyzed. One hundred bootstrap

replicates were generated for each data set with seqboot

(Felsenstein 2005) and analyzed with FastTree as above.

Tree lengths were computed for each estimated tree by tak-

ing the sum of their branch length and were standardized

by dividing each of them by the number of sequences. This

standardized tree length, used as a measure of genetic

diversity, is henceforth denoted m.
As this measure can be sensitive to phylogenetic uncer-

tainty, nucleotide diversity (Nei and Li 1979) p was also

computed: It is the sum of pairwise distances of n aligned

sequences, normalized by the number of comparisons n

(n–1)/2; the distance used is the ‘raw’ distance, that is, the

(uncorrected) number of pairwise differences. The R pack-

age pegas (Paradis 2010) was modified to take care of sums

with missing data as pairwise deletion was used to handle

gaps.

Time series and network analyses

Time series analysis was performed at the level of diversity

data (m and p). To extract seasonality patterns, a simple

additive decomposition was performed with the following

model (here described for m, but a similar equation was

used for p):

mt ¼ mt þ st þ �t ð1Þ
where, mt represents the estimated quarterly values for m,
such that for Q quarters {mt: t = 1,2,…,Q} = {m1,m2,…,mQ}.
The terms in the right-hand side of equation (1) represent

the trend (mt), the seasonal effect (st), and an error term

(et) that is generally a sequence of uncorrelated random

variables with a mean of zero. The trend mt was estimated

with a moving average centered on mt. The quarterly addi-

tive effect was then estimated as:
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ŝt ¼ mt � m̂t ð2Þ
The error term is then calculated as in equation (1) (for

more details, see Cowpertwait and Metcalfe 2009, pp. 19–
22). All time series analyses were performed in R and were

based on the stats package (R Development Core Team

2011). The seasonality component of these time series data

was extracted as detailed in the electronic supplementary

material. The complete design, summarized in Fig. 1, leads

to the reconstruction of connectivity networks in terms of

either genetic diversity m or nucleotide diversity p. The
complete analyses were based on both summary statistics.

To compare the reconstructed networks, PageRank ei-

genvalues (Brin and Page 1998) were computed with R’s

igraph library (Csardi and Nepusz 2006). All three lags

(Q0, Q1, and Q2) were included. Sampling variances of

both their maximum and variance across all five WHO

regions were obtained by rewiring the networks 105 times.

Results and discussion

Seasonality patterns of genetic diversity

HA sequences were split or stratified by quarter, region,

and subtype to compute an estimate of genetic diversity at

these different levels, hereby leading to the analysis of 135

H1 and 201 H3 data sets. The estimate of genetic diversity,

first evaluated here, denoted m, is the average tree length of

the phylogeny reconstructed for each data set, scaled by the

number of sequences entering each data set. This scaling

ensures that m is independent of sample size (t = �0.12,

P = 0.9052). As such, m represents the average number of

substitutions per site per sequence during a given year in a

given WHO region. The stratified design has the advantage

of being simple to implement, and m is a simple statistic to

compute with minimal assumptions. Critically, m does not

assume that all sequences in a given quarter in a given

WHO region come from the same population: Different

populations will be separated by long branch lengths, lead-

ing to high estimates of m, while no population structure

will lead to small estimates of m. Because the complete

analysis only relies on slices in time and in space, it may be

expected to be more robust than a full modeling approach

based on spatial processes (Lemey et al. 2009) that are

potentially time inhomogeneous (Aris-Brosou and Rodri-

gue 2012). The test of this robustness hypothesis is left to

future work.

Because the general approach relies on phylogenetic trees

(Fig. 1), the estimates of m might be sensitive to phyloge-

netic uncertainty. Two additional analyses were taken to

address this point. First, average confidence in the phyloge-

netic trees was estimated by computing mean bootstrap

values �Bp over all the bipartitions (all trees, regions and

subtypes confounded). This mean was very close to 70%

( �Bp ¼ 0:6996), a value showed by Hillis and Bull (1993) to

correspond to a 95% probability of bipartitions to be true,

and �Bp was close to the mode of the distribution of individ-

ual bootstrap values (Figure S5).

Alternatively, nucleotide diversity p, a measure indepen-

dent of phylogenetic information, was also computed. In

spite of losing some information when compared to m (in

the same way that distance methods are less efficient than

maximum likelihood at reconstructing trees; e.g., Hasegawa

et al. 1991), nucleotide diversity p was highly correlated

with m (Figure S6). Furthermore, depending on the data

sets analyzed, correlations vary between 45% and 96% and

are consequently quite high, while the part of the total vari-

ance explained by the model fit varies between 39% and

63% (Figure S6). While the analyses below were performed
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Figure 1 The analytic framework adopted in this study. (A) HA

sequences were downloaded from the Influenza Virus Resource (IVR),

for both H1 and H3 viruses and stratified by quarters. For each quarter,

a phylogenetic tree was estimated by maximum likelihood and used to

derive the estimator m of genetic diversity. (B) The detrended seasonal

component of m was then extracted for each subtype, within each

region (e.g., region R1 in red and R2 in blue). (C) Phase shifts / were

measured and tested through an autocorrelation analysis. (D) The

results were mapped in terms of absolute connectivities and in terms of

relative connectivities through time.
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on both m and p, results show that m or p can be used

almost interchangeably without affecting the conclusions.

As with any phylogenetic analysis, the approach

described here may be sensitive to sampling biases, where a

number of sequences deposited in the database come from

a small number of places. This sampling bias is expected to

be mitigated by pooling individual locations into WHO

regions. Indeed, it is clear from Figure S7 that the five

regions are not homogeneously sampled: For instance, data

from South America are relatively sparse (see also Figures

S2–S3). In spite of this uneven sampling, however, the

diversity peaks are uncorrelated (at the a = 1% level) at

two levels: (i) among the five regions and (ii) between the

two subtypes (Table S1). Regardless of this lack of exact

spatiotemporal correlation, can one find patterns in each

region for each subtype that might be correlated after a

time (phase) shift or lag?

To address this question, I extracted the seasonal signal

through time, first from the diversity m data. The actual

decompositions, shown in Figures S8–S12, reveal that a

seasonal signal exists in each region and for each subtype.

Figure S13 summarizes these results. A number of patterns

emerge from this seasonal decomposition. First, only in

Asia are the H1 and H3 diversities peaking at the same

time, during Q4. In the other four regions, the peak diver-

sities are asynchronous among subtypes, with H3 diversity

generally peaking before H1s, except in Europe where it is

the opposite pattern. This general result is consistent with

previous evidence showing that H3 viruses exhibit highest

diversity early during the epidemic period in the state of

New York (Creanza et al. 2010). This first point also sug-

gests that each subtype has its own global dynamics, which

may become synchronized in the tropics, probably because

tropical regions have more sustained biphasic epidemics

per year than other regions (Tamerius et al. 2011). Second,

only Oceania exhibits a clear biphasic pattern for both sub-

types, with a peak in Q3 and a second one in Q1. This pat-

tern would be more expected from a tropical region that

sees up to two epidemics per year. Of note, Asia has such a

biphasic pattern only for H1 viruses, whose diversity peaks

in Q4 and Q2. Third, epidemics in the northern hemi-

sphere (Europe and North America) are generally charac-

terized by single peaks of diversity for both subtypes. On

the other hand, Asia, Oceania, and South America show

two peaks for H1 viruses, with a 6-month shift for the sec-

ond peak. Again, this result is expected for tropical regions

(Asia and, to some extent, the northern part of Oceania;

Fig. 1), which are known to be seeding a new epidemic in

each hemisphere with a 6-month shift (Nelson and Holmes

2007). As no H1 sequences were documented in South

America prior to the H1N1/09 pandemic (Figure S7), the

biphasic H1 diversity in this region is likely a reflection of

the biphasic pandemic that occurred in 2009, which is rem-

iniscent of the biphasic pandemic diversity observed in the

USA (Nelson et al. 2011) or in Scotland (Lycett et al.

2012).

To assess the general impact of the pandemic H1N1/09

sequences on the results, the seasonality decompositions

were conservatively limited to 1996-Q4/2008 (fourth quar-

ter of 2008). While pandemic sequences could have

diverged as early as 2006 (Abdussamad and Aris-Brosou

2011), the first casualties were recorded back in March

2009 (Smith et al. 2009). Figure S14 confirms the patterns

described above for the whole 14.25-year period. Yet, this

similarity does not mean that the detailed correlation struc-

ture in terms of genetic diversity m, and hence, global trans-

mission patterns, did not change.

Structure and stability of global transmission patterns

To better understand the relationship between these peak

diversities across both geographic regions and subtypes, a

spatiotemporal autocorrelation analysis was performed. In

the first step, the autocorrelation functions were computed

for H1 and H3 viruses among regions (Figures S15–S17).
Then, significant autocorrelations at the 99% level were

plotted on a map of the world for three lags: 0, 1, and 2

quarters (Figure S18). For instance, a lag of 0 means that

the diversities are synchronized between two regions, while

a lag of two quarters indicates a correlation with a 6-month

shift, which corresponds to the time difference between

seasons in each hemisphere. In the context of global circu-

lation of influenza viruses (Rambaut et al. 2008; Russell

et al. 2008), this map represents the temporal connectivity

in terms of genetic diversity of these viruses among differ-

ent regions. Thus, these results naturally lend themselves to

graph theory (see, Kaiser 2011).

H3N2 viruses show two highly connected subnetworks

where diversity peaks are synchronous: (i) the Eurasian–
Oceania axis (Europe + Asia + Oceania: EAO) and (ii) the

American axis (North and South America: NSA; Fig-

ure S18A). Diversity peaks during Q4 in EAO and a quar-

ter later in NSA (green arrows in Figure S18A; see also

Figure S13). Although each subnetwork represents prefer-

ential transmission routes, already known in the case of

EAO (Lemey et al. 2009), the connectivities of their nodes

are quite distinct. Four ratios are used to reconstruct the

connectivity patterns and their temporal dynamics (Fig. 2).

Source or distributor nodes, from which diversity emerges,

have a high proportion of outgoing edges, between 0 and 1

quarter lags. This leads to the definition of the first two

ratios that quantify relative outgoing connectivities at two

different lags: at zero or one quarter, C
0=1
out=Cout (where C

0=1
out

is the outgoing connectivity at lag 0 and 1, and Cout is the

total outgoing connectivity at a particular node) and a half

year later, C2
out=Cout, which corresponds to the season shift

406 © 2013 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 7 (2014) 403–412
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across hemispheres. Two similar ratios are defined for

incoming connections, hereby identifying nodes that

receive diversity waves (local sinks). Although with only

five nodes, the five WHO regions, assessment of statistical

support is limited, a clear pattern emerges. Figure 2A

(see Table S2 for actual values) shows that Oceania is the

primary immediate distributor of H3N2 diversity, as it has

the largest corresponding ratio C
0=1
out=Cout = 0.75. Two

quarters later, South America becomes the main collector

node with C2
in=Cin = 0.75 (Fig. 2B). The remaining diver-

sity is absorbed by Europe and North America. At the same

time, South and North America become the main distribu-

tors (C2
out=Cout = 0.75 and 0.67, respectively; Fig. 2C),

hereby sustaining the diversity dynamics, while two quar-

ters later Oceania and Europe are now the main collectors

(C
0=1
in =Cin = 0.67; Fig. 2D). As a result, the diversity of

H3N2 viruses does not seem to follow a pure source/sink

model (Fig. 3A), but rather acts as a wave rolling across the

globe (Fig. 3B): The outgoing connectivity pattern in

Fig. 2A matches the incoming pattern observed in Fig. 2D,

hereby ‘closing the loop’ through Oceania. This connectiv-

ity network, based on the seasonality of diversity peaks, clo-

sely mirrors the known average pattern of global spread of

H3N2 viruses (Rambaut et al. 2008). This parallel between

diversity and ancestry thereby suggests that the assumption

that these waves of diversity result from waves of circulat-

ing viruses is valid. However, because viral circulation goes

around the globe in a year, the notions of starting points

and finishing lines fade, and Oceania merely becomes one
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Figure 2 Global relative connectivity of influenza diversity m through time. Each column represents the relative connectivity values for H3N2 (A–D),

H1N1 (E–H), and prepandemic H1N1 (I–L) viruses. Each row represents the temporal connection as described in the text. Relative connectivity values

are plotted on two scales: out connectivities are in warm colors, while in connectivities are in cold colors [see insets in panels (A) and (B) for scales].

(A) (B)

Figure 3 Source/sink and circuit models describing global influenza

transmission. (A) In the traditional source/sink model, viral strains ema-

nate from a large source population, assumed to be located between

the tropics (ellipsoid around the equator), to seed epidemics in each

hemisphere (vertical black arrows), which play the role of viral sinks,

from which viruses do not reemerge; strains are replaced through time

in the source population (Rambaut et al. 2008). (B) The model proposed

here to describe the spread of genetic diversity with a continuous circu-

lation model (blue arrows); outgrowths from the global circuit (black

arrows) lead to sink populations. Africa is represented in light gray as

no data were available.
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of the many spatial positions placed on the circuit. The cir-

culation model proposed here for H3N2 (Fig. 3B) is there-

fore distinct from a strict source/sink model (Fig. 3A).

The connectivity structure of H1N1 viruses follows a

similar model of global circulation when the entire

14.25 years are analyzed together. More specifically, the

Americas and Europe appear as a highly connected subnet-

work (Figure S18B). Diversity waves originate from Asia in

the northern hemisphere (C
0=1
out=Cout = 1.00) and end up

essentially in Oceania two quarters later (C2
in=Cin = 1.00)

with some spread to Europe, North America, and South

America (C2
in=Cin = 0.25). At the same time, Oceania

becomes the main distributor (C2
out=Cout = 0.75) and Asia

turns into the main collector two quarters later

(C2
in=Cin = 1.00). The outgoing connectivity pattern in

Fig. 2E matches perfectly the incoming pattern observed in

Fig. 2H, hence closing the loop. Again, this pattern of con-

nectivity of H1N1 diversity closely matches the one

described previously, including the role of Asia (Russell

et al. 2008)—a role that here is reduced to that of a point

on a circuit. Yet, this average pattern is dominated by the

presence of the H1N1/09 pandemic sequences. Indeed,

without these sequences, Asia acts as the first distributor

node with peak diversity in Q4 (C
0=1
out=Cout = 1.00; Fig-

ure S13). Two quarters later, Oceania becomes the main

collector (C2
in=Cin = 1.00) followed in importance by

North America (C2
in=Cin = 0.33), while this latter region

act as a distributor (C2
out=Cout = 1.00). Diversity waves

then end up in Asia (C2
in=Cin = 1.00), where the wave

started, while Europe and especially North America act as

sinks. The outgoing connectivity pattern in Fig. 2I is

almost a perfect negative of the incoming pattern observed

in Fig. 2L, except for the role of Oceania. As a result, before

the emergence of the H1N1/09 pandemic sequences, the

spread of H1N1 diversity followed a strict source/sink

model, emanating from Asia and ending up mostly outside

of it (North America and Europe; no data available for

South America), which is consistent with previous models

(Rambaut et al. 2008; Russell et al. 2008) (both references

included post-2005 data). The emergence of H1N1/09 and

its sustained transmission since then may therefore be

linked to a change in the global transmission network of

H1N1, from a strict source/sink model to a global continu-

ous circulation pattern just like H3N2. This shift in H1N1

global transmission network may be related to the series of

reassortments that led up to the 2009 pandemic (Smith

et al. 2009) and to chance reseeding. However, more data

would be required to test this interplay between shifts of

global circulation patterns and reassortment, or, alterna-

tively, the hypothesis that global continuous circulation

prevents the emergence of highly pathogenic strains by

eliminating chance reseeding. Because all the results above

rely on genetic diversity m, the same analyses were also per-

formed in terms of nucleotide diversity p; these additional
analyses led to similar correlation patterns (Figures S19–
S21) and global maps (Table S3 and Figure S22).

The significance of the difference between circulation

patterns of H3N2 and prepandemic H1N1/09 diversities

was assessed by computing the PageRank (PR) eigenvalues

of the five WHO regions based on the reconstructed net-

works (Figure S18). If all the nodes had the same connec-

tivity, their PR eigenvalues would all be equal and therefore

would all have a variance of zero. Here, both the maximum

PR eigenvalue (Fig. 4A) and the PR eigenvalue variance

(Fig. 4B) have sampling distributions that overlap for

H3N2 and H1N1 (all years), while the same distributions

for prepandemic H1N1 do not, hereby showing that the

shift in H1N1 connectivity network is highly significant

(with 105 replicates: P < 10�5).

This significant shift may be linked to the dominance

and persistence of these subtypes through time. It would

indeed make sense that if a given subtype circulates

around the world through calendar years, using the same
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Figure 4 Comparison of connectivity networks based on the PageRank

algorithm. (A) Sampling distribution of maximum PageRank eigenvalues

for H3N2 (blue), H1N1 (all years; red) and H1N1 (prepandemic, up to

Q4/2008; orange) over the five WHO regions. (B) Sampling distribution

of the variance of PageRank eigenvalues for the same networks. These

distributions were obtained by rewiring each network 105 times. Verti-

cal bars show observed values.
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region both as a source and a sink, then this subtype is

likely to persist over the years. Critically, this persistence

would not be local (see Figure S2 in Russell et al. 2008),

but nonlocal after continuous global circulation—and

change through mutation and reassortment. Note that the

term circulation is used here in its literal form, meaning

‘moving in a circular path’ (Stevenson and Lindberg

2010). In this case, no particular region acts exclusively as

a source, which is the pattern also described by Bahl et al.

(2011). If on the other hand a different subtype or strain

goes through repeated emergence in one region and dies

out at the end of the year in a different region (the source/

sink model: Russell et al. 2008; Rambaut et al. 2008), then

its persistence is more uncertain as reseeding is required

every year with strains that were potentially not those cir-

culating in the previous season. The results presented here

are consistent with this intuition: H3N2 has been the

dominant subtype in human populations since 1968 and

has exhibited a continuous global circulation for at least

the last 14 years; before 2009, H1N1 was not the dominant

subtype and followed the source/sink model; since the

emergence of the pandemic H1N1/09, this subtype is

undergoing global continuous circulation and cocirculates

with H3N2.

Relationship between diversity and prevalence

In the context of these connectivity networks, one may

wonder how the circulating waves of diversity around the

world affect the health of human populations. Prevalence

data are easily available for the USA, so that it is straight-

forward to test for the existence of a relationship between

prevalence and genetic diversity. Let us assume that US

prevalence data are representative of the whole of North

America, an assumption that may not hold, but one that is

likely to be valid here as most of the North American

sequences are from the USA. From there, Figure S23 clearly

demonstrates that prevalence is at its highest when diversity

is at its lowest point (H1: t = �3.61, P = 0.0018, Fig-

ure S23A; H3: t = �3.44, P = 0.0016, Figure S23B). These

results are consistent with previous reports of decreased

genetic diversity after the early period of the season (Crea-

nza et al. 2010). More fundamentally, these results suggest

that an increase in prevalence is linked to the emergence of

a dominant viral genotype, which is not at the forefront of

the circulating diversity wave, but slightly behind (Lehe

et al. 2012).

While the general approach described here supports pre-

vious results both in terms of global spread of influenza

viruses and of prevalence cycles in relation to genetic diver-

sity, one important caveat should be highlighted. Because

the results are based on seasonality components extracted

from time series over a certain period of time, inferences

are sensitive to the time period considered, and to potential

‘irregularities’ such as the 2009 pandemic H1 viruses. In

‘regular’ years, genetic diversity peaks during the winter

months in the northern hemisphere (Rambaut et al. 2008).

When the data are analyzed up to Q4/2008, the results are

consistent with this previous inference for both H1 (Fig-

ure S24A) and H3 (Figure S24B) viruses. However, the

inclusion of data collected since 2009 biases the time series

analysis, shifting the diversity peak for H3 (Figure S24C)

and H1 by one quarter. This example reinforces the point

made previously (Bahl et al. 2011) that trends averaged

over long periods of time do not necessarily predict partic-

ular events accurately and that the evolution of influenza

viruses still exhibits a fair amount of contingency (Nelson

et al. 2006).

To circumvent this issue and represent which quarter is

associated with low diversity and high prevalence, the quar-

terly means were computed for both diversity and preva-

lence; in this way, the results are independent of the

averaged seasonality patterns extracted from the time series

analysis. Figure 5 shows that for both subtypes H1 and H3

prevalence peaks in Q1 when genetic diversity is at its low-

est, while Q3 represents the lowest prevalence quarter but

has the highest diversity. Based on this figure, it could be

suggested that H1 viruses cycle counterclockwise in a prev-

alence/diversity space (Fig. 5A), while H3 viruses cycle the

other way around (Fig. 5B). However, error bars are so

wide that making such an inference would demand survey-

ing more years.

This latter result has a further implication: If increases in

prevalence can be traced back to the emergence of a viral

genotype that will become dominant later in the season,

and that viral diversity circulates around the globe, then

similar waves of prevalence around the world should also

be expected. Data from the WHO (www.who.int/influenza/

surveillance_monitoring/updates) show that different

regions have peak prevalence at different times of the year,

but a more systematic study should be undertaken. An

option would be to use FluNet, available at http://apps.

who.int/globalatlas/dataQuery/default.asp. However, prev-

alence cannot be computed as the total number of individ-

uals tested relates to the week when processed, while the

number of positives relates to when the specimens were

collected (WHO GISRS Team, pers. comm. by email;

May 22, 2012), an issue probably encountered by others

(Finkelman et al. 2007) who instead worked with incidence

(the number of positives divided by the census size of the

population studied).

Conclusions

While numerous models have been developed to recon-

struct the spread of viruses, either in a parsimonious (Wal-
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lace et al. 2007) or in a sound statistical framework (Lemey

et al. 2009), their use can be computationally demanding

when analyzing thousands of sequences. Instead of recon-

structing a single phylogenetic tree with these models, I

analyzed a total of 15 335 sequences spread over

14.25 years of data stratified spatially (WHO regions) and

temporally (quarters) to assess the relationship existing

between the seasonal components of viral diversity for two

influenza subtypes, H3N2 and H1N1. The key point here is

that this long-term analysis was performed in the absence

of a complete reconstruction of viral ancestry over the

whole period. While this novel approach does not negate a

full phylogenetic analysis, the results presented here, based

on simple estimates of diversity, are amendable to analyze

very large data sets and are globally consistent with previ-

ous studies, which were based on complete phylogenetic

analyses (Rambaut et al. 2008; Russell et al. 2008) but

much smaller data sets.

One of the strengths of the method presented here is

that it relies on a stratified design, which by construction

does not assume spatial or time homogeneity of mutation

rates (only local homogeneity, within a slice of time and

space, is required). Models incorporating episodic shifts of

mutation or selection rates have recently been developed

(Murrell et al. 2012a, b), but may prove less robust than

the model-free (not likelihood-based) approach described

here. Although the HA gene is under strong pressure to

evolve adaptively, only the information at the DNA level

was considered here; a more sophisticated summary or set

of summary statistics might be used, such as nonsynony-

mous to synonymous rate ratios (Goldman and Yang

1994; Muse and Gaut 1994). However, this would shift the

focus from uncovering the spread of genetic or nucleotide

diversity to estimating episodic changes in selective pres-

sures through (geographic) space. The approach also has a

number of limitations. Among them: (i) the lack of confi-

dence intervals for relative connectivities, in particular

when the number of nodes (regions) is small, or (ii) the

dependence on the data used. In this latter situation,

wavelet analysis (Tom et al. 2012; Cheng et al. 2013) or

short-time Fourier transforms might prove more robust

to ‘nonregular’ seasons such as 2009–2010 for H1 viruses.

Because the analysis relies on a particular summary statis-

tic such as genetic diversity (m), it can be expected that the

results are sensitive to this particular choice; however, I

showed that using nucleotide diversity (p) gives a very

similar map at the outcome of the network analysis,

hereby suggesting that the algorithm is robust to the

actual choice of summary statistic. Further work would be

required to validate this preliminary result, based on only

two summary statistics.

Although the global transmission dynamics of influ-

enza viruses in humans are driven by a combination of

seasonal stimuli and mechanisms (Tamerius et al. 2011),

the results presented here show that long-term trends

exist. I showed in particular that diversity of dominant

subtypes, that is, those that show a sustained global

transmission network over several seasons, circulate con-

tinuously around the world, even if some regions such as

South America appear to act as sinks (Fig. 3B). On the

other hand, the diversity of prepandemic H1N1 viruses

showed a global transmission network consistent with a

strict source/sink model, without continuous circulation

(Fig. 3A). This absence of continuous circulation may

explain why H1N1 was not the dominant subtype before

the emergence of the pandemic H1N1/09. Irrespective of

shifts in global transmission networks, the data presented

here also show that prevalence is negatively correlated

with diversity, at least in the USA. This result suggests

that (i) epidemics are caused by a dominant viral strain

and that (ii) monitoring genetic or nucleotide diversity

in real time could be used as a proxy for determining

prevalence of influenza A viruses circulating in human

populations.
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Figure 5 Prevalence–diversity cycles of influenza viruses through a full

year. Quarterly mean prevalence and mean genetic diversity on a log10-

log10 scale (A) for H1 viruses, (B) for H3 viruses. Each quarter is indi-

cated with the letter Q (Q1 to Q4). Gray bars represent one standard

deviation of the mean.
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