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Abstract: Accelerated urbanization has changed land use patterns, leading to the deterioration
of ecosystems. Assessments of ecosystem health (ESH) during the urbanization process are used
to determine the reasons and mechanism for this, and to uncover negative factors. In this study,
we assessed the ESH of Qiannan prefecture, in Guizhou Province, China, based on the ecosystem
services value. We selected a series of indicators, including natural, social, and economic aspects,
to detect the impact of urbanization on ecosystem services in 1990, 1995, 2000, 2005, 2010, and 2015.
The results show that ESH in Qiannan declined from 1990 to 2015, especially in the eastern and
northern regions. Further, the results indicate that urbanization had a negative impact on ESH,
of which the dominant factor was the proportion of construction land from 1990 to 2005. After 2005,
moreover, the dominant factor was the gross domestic product. The impact of urbanization on EHS
had spatial differences, however. The most significant negative impact was found in the east and
north. After 2010, the western and central regions of Qiannan showed an urbanization trend in favor
of ecosystem health. We recommend ecological restoration in regions with weak and relatively weak
ESH levels to achieve sustainable development.

Keywords: urbanization; spatial correlation; ecosystem health; comprehensive indicators; GIS

1. Introduction

Urbanization, along with economic development, population increase, and land use change, is the
main path to social development [1–3]. Nowadays, about 55% of the world’s population lives in cities
and the global urbanization rate is expected to reach 68% by 2050. Urban expansion can cause great
changes in ecosystem structure and function [4–6]. During the process of urbanization, the flow of
material, energy, and information is influenced, and the structure and function of ecosystems are
affected [7]. For example, urbanization has caused increasing land fragmentation and land use pattern
conversion from original to designed land cover, which has a significant influence on ecosystems,
including the loss of habitats, decreases in agricultural and forest productivity, as well as the reduction
of climate regulation function supply by plants [8,9]. Considering both the structures and functions of
ecosystems, Rapport defined ecosystem heath (ESH) as the ability to maintain ecosystem structures and
recover with self-regulating processes after disturbances [10]. This concept of ESH enriches the study
of ecosystems and is widely accepted by other scientists. Many researchers have been focusing on the
relationship of urbanization and ESH. Cheng [11] assessed river ecosystem health of the Haihe River
Basin based on multiple indices and found that arable land, urban land, gross domestic product (GDP)
per capita, and population density had negative relationships with river ecosystem health. Pan [12]
explored the variation of ecosystem health level of Huzhou City under the background of urbanization
and concluded that the health level deteriorated severely from 2001 to 2006. Styers [13] selected
landscape indicators and urbanization variables to measure ESH. Five indicators were integrated

Int. J. Environ. Res. Public Health 2020, 17, 826; doi:10.3390/ijerph17030826 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-7131-896X
http://www.mdpi.com/1660-4601/17/3/826?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17030826
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 826 2 of 16

by Niekerk to examine key pressures from urbanization and ESH [14]. Population growth and the
development of urban areas require more benefits (e.g., food, clean air, and water) from ecosystems for
supporting human beings [15]. Maintaining ecosystem health at a high level is important for supplying
adequate resources and achieving sustainable development. For managers and decision makers,
monitoring the health level of ecosystems and analyzing the effects of urbanization on ecosystems is
essential for land use planning and scientific eco-environmental policy making.

Although many studies have been conducted, there is still a challenge to quantify the relationships
between urbanization and ESH because it is difficult to assess ESH due to ecosystem complexity.
Among different methods, the framework of vigor, organization, and resilience has been widely
utilized by ecologists to assess ESH [16,17]. Based on Rapport’s theory, a healthy ecosystem can be
quantified from three aspects: Vigor, organization, and resilience [18]. Vigor represents the functioning
of ecosystems, which can be measured by the metabolism or primary productivity; organization
represents the quantity and diversity of relationships between the components of the system, which are
usually measured by landscape pattern index; resilience refers to the ability of the system to retain its
structure and function under stress, which is usually measured based on land use type [19]. Based on
the vigor–organization–resilience framework, He [20] assessed the ecosystem health level in China
from 2000 to 2015 and explored the socio-economic factors driving the regional differences of ecosystem
health. Kang used the vigor–organization–resilience framework to investigate the way in which
urbanization influences the ecosystem health of the Beijing–Tianjin–Hebei urban agglomeration [21].
Li [22] visualized five indicators of vigor aspects, four indicators of organization aspects, and four
indicators of resilience aspects to assess ESH. However, the traditional vigor–organization–resilience
framework focuses more on ecosystem integrity and ignores the dynamics of ecosystem function
maintenance. Ecosystem services, as benefits or well-beings to society, have a close connection to the
functioning of ecosystems [23]. A healthy ecosystem can supply sustainable resources to meet the needs
of urban residents [24]. As such, ESH assessments that only select indicators of vigor, organization,
and resilience are impoverished. Peng [25] recommended four indicators; vigor, organization, resilience,
and regional ecosystem services, and considered ecosystem services and the landscape structure to
analyze ESH more comprehensively. An ESH theory that incorporates vigor, organization, resilience,
and ecosystem services, then, offers a method of assessing ESH that considers both natural ecosystems
and human well-being [26]. This method offers comprehensive quantification and spatialization of
ESH levels from these four aspects. Moreover, the method integrates land use change, landscape
patterns, and socioeconomic data. This method is applied in some studies about regional ecosystem
health assessment. Cui [27] involved ecosystem services in ESH assessment of Zhuhai, China. Li select
27 indicators covering vigor, organization, resilience, and ecosystem service aspects to assess Beijing and
Shanghai’s urban ecosystem health from 2000 to 2011 [28]. For regional ecosystem health assessment,
remote sensing data and Geography Information System (GIS) technology offer advantages when
monitoring and evaluating ESH [29,30]. By processing remote sensing data, information about land
use change and landscape patterns can be integrated in the assessment. Sun [31] used remote sensing
and GIS technology to assess the ESH of wetlands in the Amazon and Yangtze river basins. Liao [32]
assessed ESH and tested the relationship between changes in ESH and land use change in karst
areas. Nowadays, few studies are conducted on ESH assessment and impacts of urbanization on
ESH in mountainous areas. One of the barriers is the difficulty of obtaining data due to the complex
environment in mountainous areas [33]. The development of remote sensing and GIS technology
facilitate the acquisition of data [34].

In this study, we analyzed the impact of urbanization on ESH based on remote sensing data and
GIS technology in Qiannan Prefecture, a mountainous area in southeast China. First, we assessed
the ESH dynamics using the vigor–organization–resilience–ecosystem services framework. Second,
we quantified the urbanization level. Finally, we analyzed the spatial correlation between urbanization
and ESH in Qiannan Prefecture by calculating the global bivariate Moran’s I and local bivariate Moran’s
I. The purposes of this study were as follows: (1) To measure and map ESH and urbanization based
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on land use data, population data, and economic data; (2) to quantify effects of urbanization on ESH
in Qiannan Prefecture. Our study will provide a reference and suggestions for devising stable and
sustainable policy for local development.

2. Materials and Methods

2.1. Study Area and Data Sources

Qiannan Prefecture is located in the southern part of Guizhou province, in southwest China.
The average altitude is 997 m and the annual average temperature is 19.6 ◦C. The major landforms are
mountain plateaus, with high terrain in the northwest and low terrain in the southeast. It has among
the best-preserved karst forests in the world at the same latitude. The study area includes 12 counties,
autonomous counties, and cities in Qiannan, as shown in Figure 1. There are 37 ethnic groups living in
the Qiannan, including Han, Buyi, Miao, Shui, Zhuang, Dai, Maonan, and Yi.

Figure 1. The studying location of Qiannan Prefecture in North of Guozhong Province and China (red
box area).

Qiannan Prefecture has experienced a fast urbanization rate from 26.86% in 2005 to 42.01%
in 2015, and this has resulted in dramatic changes to the natural landscape and environment [35].
The government of Qiannan has devised an urban development strategy for 2006–2020 [36]. To develop
a comprehensive urban environmental plan for the coming decades, it is necessary to reorganize
the spatial relationship between ESH and urbanization. This will provide useful information and
a reference for urbanization planning and ecosystem management.

In this study, satellite images of Qiannan taken in 1990, 1995, 2000, 2005, 2010, and 2015 [37] were
pre-processed with radiation calibration, geometric correction, and image clipping. The Normalized
Difference Vegetation Index (NDVI) was obtained from these images. Ecosystems were classified into
five types: Forest, grass, farmland, water, and desert. To ensure a reliable classification, kappa values
(> 0.85) were used to evaluate the accuracy. Population and gross domestic product (GDP) data (500 m
× 500 m) were supplied by the Resource and Environment Data Cloud Platform, Institute of Geographic
Sciences and Natural Resources Research, and the China Academy of Science (http://www.resdc.cn/) [38].

http://www.resdc.cn/
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Development plans and relevant policy bulletins were obtained from the official website of the People’s
Government of Guizhou Province (http://www.guizhou.gov.cn/) [36].

2.2. Assessment of Ecosystem Health

In this paper, the ESH of Qiannan was assessed from two dimensions according to Peng’s
method [26]: The physical health of the ecosystem, consisting of the three traditional ESH assessment
indicators (vigor, organization, and resilience) [39,40]; and the ecosystem services value. A high
ecosystem services value means that sufficient material and energy are delivered to society and the
ecosystem is in a stable and healthy state [41]. Thus, we assumed that ecosystem services and the ESH
level are positively related. The formula used is as follows [42]:

H =
√

PH × ESV (1)

where H represents the ESH level of the study area. In this study, five levels of ESH were divided:
Dtrong ESH (80–100%), relatively strong ESH (60–80%), ordinary ESH (40–60%), relatively weak ESH
(20–40%), and weak ESH (0–20%). PH represents the physical health of the ecosystem; and ESV
represents the ecosystem services value.

For the physical health of the ecosystem, we use a formula to integrate these factors:

PH =
3√

V ×O×R (2)

where V represents ecosystem vigor; O represents ecosystem organization; and R represents
ecosystem resilience.

Exhaustively, ecosystem vigor is defined as the ecosystem’s activity, metabolism, or primary
productivity [19]. In this study, the NDVI was applied to quantify ecosystem vigor, because it represents
the degree of vegetation growth and primary productivity [43–45]. Ecosystem organization represents
the number and diversity of relationships between the components [45]. In this study, ecosystem
organization was assessed in terms of landscape heterogeneity and landscape connectivity. Landscape
heterogeneity was quantified using Shannon’s Diversity Index (SHDI), Patch Density (PD), and the
Area-Weighted Patch Fractal Dimension (AWMPFD) [46]. Landscape connectivity was measured
using the Patch Cohesion Index (COHESION), Connectance Index (CONNECT), Integral Index of
Connectivity (IIC), and Contagion Index (CONTAG) (Table 1).

Table 1. Weight of factors measuring organization.

Indicator Factor Weight

Organization

PD Patch Density 0.2
SHDI Shannon’s Diversity Index 0.3

AWMPFD Area-Weighted Patch Fractal
Dimension 0.1

COHESION Patch Cohesion Index 0.1
CONTAG Contagion Index 0.1

CONNECT Connectance Index 0.1
IIC Integral Index of Connectivity 0.1

Notes: PD- Patch Density in landscape; SHDI- Shannon’s Diversity Index in landscape; AWMPFD-he Area-Weighted
Patch Fractal Dimension in landscape; CONNECT- Connectance Index in landscape; CONTAG- Contagion Index in
landscape; IIC- Integral Index of Connectivity in landscape.

http://www.guizhou.gov.cn/


Int. J. Environ. Res. Public Health 2020, 17, 826 5 of 16

Ecosystem resilience is the ability of an ecosystem to retain its structure and function steadily
under stress [47]. Land use contributes in different ways to ecosystem resilience [48,49], and we obtain
the ecosystem resilience for whole study area using the following formula:

R =
n∑

i=1

Ai ×Ri (3)

where R represents ecosystem resilience; Ai represents the area of land use type i; and Ri represents the
ecosystem resilience coefficient of land use type i (Table 2).

We obtain Ri from researches of Guizhou Province and its adjacent areas [50,51].

Table 2. Ecosystem resilience coefficient of land use type [52,53].

Ecosystem
Type Forest Grass Water Farmland Desert

R 0.9 0.8 0.8 0.5 0.1

2.3. Quantifying ESV

Based on the evaluation model proposed by Costanza [52], Xie presented the values per unit area
of ecosystem services in China, which is widely used for quantifying the ecosystem services value
(ESV) [53]. We obtained the ESV by using Xie’s table (Table 3) for 1990, 1995, 2000, 2005, 2010, and 2015.
The ESV is calculated as follows:

ESV =
n∑

i=1

Ai × Pi (4)

where ESV represents the total ESV per unit; Ai represents the area of land use type i; and Pi represents
the values per unit area of land use type i.

Table 3. Values per unit area of ecosystem services in China [53] Unit: yuan hm −2 yr −1.

Ecosystem Services Forest Grassland Water Farmland Desert

Provisioning service Food production 148.20 193.11 449.10 238.02 8.98
Raw materials 1338.32 161.68 175.15 157.19 17.96

Regulating service

Gas regulation 1940.11 673.65 323.35 229.04 26.95
Climate regulation 1827.84 700.60 435.63 925.15 58.38
Water regulation 1836.82 682.63 345.81 8429.61 31.44
Waste treatment 772.45 592.81 624.25 6669.14 116.77

Supporting service Soil formation & protection 1805.38 1,005.98 660.18 184.13 76.35
Biodiversity maintenance 2025.44 839.82 458.08 1540.41 179.64

Cultural service Recreation & aesthetic
value 934.13 390.72 76.35 1,994.00 107.78

total 12,628.69 5241.00 3547.89 20,366.69 624.25

2.4. Mapping Urbanization Levels

To measure urbanization, there are many different variables used [54]. Summarizing them,
urbanization is usually measured in three dimensions: Population increase, economic increase,
and construction land expansion [55]. Population growth is a remarkable characteristic of urbanization.
According to research, the proportion of the populations living in urban areas has increased to over
50% [56]. Population growth has promoted the need for more construction land for residents and
has, thus, inspired economic development. Economic increase and construction land expansion
have a positive correlation with urbanization. Peng [57] selected GDP density and construction
land proportion to map urbanization levels. In this study, the population density (person km−2),
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GDP density (104 yuan km−2), and construction land proportion (CLP) were selected to measure the
population urbanization level, economic urbanization level, and land urbanization level, respectively.

2.5. Spatial Correlation Measurement

Moran’s I is an index of spatial correlation [58], reflecting the similarity of the spatially adjacent
regions. It is widely used in research on ecological security [59], ecological vulnerability assessments [60],
and ecosystem services change [61]. In this study, Moran’s I was utilized to study the spatial correlation
between ESH and urbanization, including the global bivariate Moran’s I and local bivariate Moran’s I
(bivariate Local Indicators of Partial Association (LISA)). The global bivariate Moran’s I was used to
explore the spatial correlation between ESH and urbanization in the study area, and the local bivariate
Moran’s I was used for spatial correlations within different spatial units [62,63]:

I =
N
∑N

i
∑N

j,i Wi jZiZ j

(N − 1)
∑N

i
∑N

j,i Wi j
(5)

Ii
kl = Zi

k

N∑
j=1

Wi jZ
j
l (6)

Z =
Xi

k −Xk

σk
(7)

Z j
l =

X j
l −Xl

σl
(8)

where I is the global bivariate Moran’s I for EHS and the urbanization level; Ii
kl is the local bivariate

Moran’s I for EHS and the urbanization level; N represents the total number of spatial units; Wi j is
a spatial weight matrix for measuring the spatial correlation between the i and j spatial unit [58]; Zi is
the deviation between the attribute of the i spatial unit and the average of the attribute; Z j is the
deviation between the attribute of the j spatial unit and the average of the attribute; Xi

k is the value of

attribute k of spatial unit i; Xk is the average of attribute k; σk is the variance of attribute k. X j
l is the

value of attribute l of spatial unit j; Xl is the average of attribute l; and σl is the variance of attribute l.
The value of I/Ii

kl ranges from −1 to 1. A positive I/Ii
kl value indicates a positive spatial correlation

between ESH and urbanization, which signifies that a unit with a high ESH level (more than the
mean) [62,63] is surrounded by units with high urbanization levels. Conversely, a negative I/Ii

kl
indicates a negative spatial correlation, such that a unit with a high ESH level is surrounded by units
with a low urbanization level (less than the mean) [62,63]. The high absolute value of I/Ii

kl indicates that
the spatial correlation is strong. In this study, we used permutation tests (999 permutations) to evaluate
the statistical significance of the bivariate Moran’s I [62,63]. In order to get credible results, we set the
statistical significance value at the 1% level for the spatial correlation between ESH and urbanization.

3. Results

3.1. Assessment of Ecosystem Health

3.1.1. Dynamics of ESH in Qiannan

From 1990 to 2015, obvious changes were found in the total proportion of areas with relatively
weak ESH, ordinary ESH, relatively strong ESH, and strong ESH. Relatively weak ESH increased
from 2.02% to 13.55%, ordinary ESH increased from 19.50% to 30.03%, strong ESH increased from
21.3% to 51.73%, relatively strong ESH decreased from 55.90% to 3.36%, and weak ESH rarely changed
(Figure 2).
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Figure 2. Proportion of areas with different ecosystem health (ESH) levels from 1990 to 2015.

From 1990–2005, weak ESH, relatively weak ESH, and strong ESH rarely changed. During this
period, relatively strong ESH decreased sharply from 21.31% to 1.80%, while ordinary ESH increased
from 19.50% to 39.83%. From 2005 to 2015, significant changes occurred in relatively weak ESH,
relatively strong ESH, and strong ESH. Relatively strong ESH increased obviously from 1.80% to
51.73 % and relatively weak ESH increased from 2.01% to 13.55%. During this period, strong ESH
showed a sharp decrease from 55.09% to 3.36%. Ordinary ESH decreased from 39.83% to 30.03%.
The results showed that the main part of ecosystems in Qiannan had strong ESH from 1990 to 2005 and
part of the area with relatively strong ESH was converted to area with ordinary ESH. Changes of five
ESH levels in different areas showed that most parts of the ecosystem in Qiannan were healthy from
1990 to 2005, and deteriorating from 2005 to 2015. The decrease in ESH in Qiannan occurred in 2005
and 2015. These results indicated that ESH in Qiannan was deteriorative.

3.1.2. Dynamics of ESH Spatial Patterns

The spatial distribution of ESH in Qiannan ethnic districts from 1990 to 2015 is shown in Figure 3.
It can be seen that, in 1990, areas with weak ESH were mainly distributed in Wenan, Duyun, Fuquan,
and Longli, the main urban areas of Qiannan ethnic districts. Areas with relatively weak ESH were
mainly distributed in Sandu. Areas with ordinary ESH were located in various areas of Qiannan ethnic
districts and mainly distributed around areas with weak ESH. Areas with relatively strong ESH were
mainly distributed in boundary regions: Guiding, Longli, and Huishui. Areas with strong ESH were
distributed in Changshun, Luodian, Sandu, and parts of Pingtang.
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Figure 3. Spatial patterns of ESH from 1990 to 2015.

In the eastern part of Qiannan’s ethnic districts, ESH was strong. These areas are distributed in
the Duliujiang Wetland Nature Reserve, so the environment in these areas was well protected by the
government of Qiannan.

According to the results, there was a decrease in ESH in areas of the northern and eastern
parts of Qiannan from 1990–2005. Areas with ordinary ESH expanded, especially in the middle and
eastern parts of Qiannan. The areas with relatively strong ESH reduced, and dropped to the category
of ordinary ESH. The areas with strong ESH remained stable. For example, Fuquan and Guiding
experienced a decline in ESH levels in this period, and eastern Huishui was relegated to weak ESH.

In 2010, the most characteristic result was the area with strong ESH, which drastically decreased,
especially in the north and east. For instance, in northern Qiannan, areas with strong ESH in Wengan,
Fuquan, Longli, and Guiding showed an obvious decrease, as did Sandu in the east.

Compared to other years, 2015 had the most areas with relatively weak ESH and the least areas
with strong ESH. ESH in northern Qiannan, including Wengan, Longli, and Guiding, deteriorated from
ordinary ESH to relatively weak ESH, and this also occurred in Duyun (eastern Qianan) and Dushan
(southern Qiannan). ESH in western Qiannan deteriorated from strong ESH to relatively strong ESH.
Overall, by 2015, only 55.09% of areas in Qiannan’s ethnic districts had strong or relatively strong ESH.

3.2. Dynamics of Urbanization Spatial Patterns

To verify the relationship between rapid urbanization and ESH, we characterized the spatial
patterns of urbanization levels in Qiannan’s ethnic districts during the study period (Figure 4). We found
that spatial patterns of economic urbanization, population urbanization, and land urbanization had
similar trends. Urbanization was highest in cities, gradually decreasing from the main city area to
the peripheral areas. In detail, economic urbanization was the highest in the middle part of Qiannan,
especially in the main city area, considerably increasing from 1990–2015. By contrast, economic
urbanization increased gradually in western Qiannan.
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Figure 4. Dynamics of spatial patterns of urbanization in Qiannan’s ethnic districts (GDP: GDP density;
CLP: Construction land proportion; POP: Population density).

Land urbanization was highest in the main city, gradually decreasing to the surrounding areas.
The same trend was seen with regard to economic urbanization. From 1990–2005, land urbanization
increased slowly; after 2005, it expanded much faster. Areas with high land urbanization were found
in the middle and northern parts of Qiannan, especially in Duyun, Guiding, Wenan, and Longli.

There was a persistent increase in population urbanization from 1990 to 2015, especially in the
main city. The results showed an obvious increase from 2005 to 2015. Regions with a high level of
population urbanization were found in Duyun, Guiding, and Wenan.

3.3. Effect of Urbanization on Ecosystem Health

The results provided by the global bivariate Moran’s I showed obvious negative spatial correlations
between ESH and urbanization (all Moran’s I values < 0 and p-values = 0.01) (Table 4). This means that
the three kinds of urbanization exerted a negative impact on ESH. Additionally, urbanization exerted
various negative pressures in different years.
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Table 4. Bivariate Moran’s I between ESH and economic urbanization, population urbanization,
and land urbanization.

Factors Year 1990 1995 2000 2005 2010 2015

GDP 1
Moran’s I −0.068 −0.071 −0.068 −0.077 −0.13 −0.11

z-value −72.56 −71.74 −63.40 −72.82 −116.36 −97.56
p-value 0.01 0.01 0.01 0.01 0.01 0.01

POP 1
Moran’s I −0.052 −0.042 −0.035 −0.036 −0.082 −0.067

z-value −48.21 −37.22 −32.40 −35.26 −80.56 −67.35
p-value 0.01 0.01 0.01 0.01 0.01 0.01

CLP 1
Moran’s I −0.072 −0.074 −0.074 −0.076 −0.083 −0.085

z-value −83.20 −76.34 −73.22 −66.13 −74.67 −77.29
p-value 0.01 0.01 0.01 0.01 0.01 0.01

1 Statistical significance at the 1% level.

The negative correlation between land urbanization and ESH, and between economic urbanization
and ESH, increased from 1990–2015. In 1990, there was a strong negative correlation between land
urbanization and ESH (Moran’s I: −0.072), followed by that between economic urbanization and ESH
(Moran’s I: −0.068), and population urbanization and ESH (Moran’s I: −0.052). In 2000, the negative
correlation between the three kinds of urbanization and ESH showed a trend similar to that in 1990.
The Moran’s I between land urbanization, economic urbanization, and population urbanization was
−0.074, −0.068, and −0.035, respectively, but from 2005 to 2015, the negative correlation was strongest
between economic urbanization and ESH, followed by that between land urbanization and ESH,
and between population urbanization and ESH.

The bivariate LISA results showed four types of spatial correlations between urbanization and
ESH (Figure 5). The effects of population increase, GDP growth, and construction land expansion on
ESH of Qiannan Prefecture varied. The similarity was reflected in the expansion of high ESH and low
urbanization (HL) areas which are negatively affected by three indicators in 1990–2015.

HL areas for GDP and ESH were mainly concentrated in the north and middle parts of the areas
around the main city in Qiannan ethnic districts in 1990. With the development of the urban economy,
the areas of HL increased significantly, especially from 2005–2015. HL areas for population density
(POP) and ESH, and for construction land proportion (CLP) and ESH, increased in the period of
2005–2015. In addition, areas of HL were concentrated in the area surrounding the main city.

Low ESH and high urbanization (LH) areas for the three types of spatial correlations all decreased,
along with urbanization in the period from 2005 to 2015, with a peak in 2015. LH areas for POP and
GDP were distributed in the western and eastern parts of Qiannan. LH areas for CLP were distributed
in the western, eastern, and northern parts of Qiannan.

High ESH and high urbanization (HH) areas for GDP and ESH appeared in the middle of Qiannan
in 2015, where Pingtang National Geological Park is located. After 2010, tourism income from this
park increased. HH regions for POP and ESH appeared in the western and middle parts of Qiannan in
2015, where traditional village tourism regions are distributed, attracting many tourists.

Three types of low ESH and low urbanization (LL) areas appeared in eastern part of Qiannan
from 2010 to 2015, an area with stony desertification. The three types of LL areas tended to expand.
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Figure 5. LISA (local indicators of spatial association) cluster maps between ESH and urbanization
level. (GDP: GDP urbanization; CLP: Construction land proportion; POP: Population urbanization;
HH: High ESH and high urbanization; HL: High ESH and low urbanization; LH: Low ESH and high
urbanization; LL: Low ESH and low urbanization).

4. Discussion

4.1. Change in ESH in Qiannan from 1990 to 2015

We evaluated the spatial distribution of ESH over six years. The results showed that the areas
with relatively weak ESH were mainly located in karst areas, which erode easily and mainly comprise
limestone. This kind of area constantly increased from 1990 to 2015. If this trend continues, the vigor and
resilience of the ecosystem will be compromised. The ecosystem will degrade and stony desertification
in the region will intensify. Areas with strong ESH were located widely throughout Qiannan in
1990 but deteriorated to relatively strong ESH thereafter, and they were mainly found in western
parts of Qiannan in 2015. The stable levels in western Qiannan were attributed to slower economic
development and less disturbance. Another reason for this is the so-called Green-for-Grain Project,
which was implemented in western Qiannan [64].

This study detected the spatial relationship between ESH and urbanization, for a more complete
understanding of the impact of urbanization on ESH. The results showed a strong connection between
urbanization and ESH. In this study, decreasing ESH in some regions resulted from an increase in
urbanization (all bivariate Moran’s I < 0; Table 4). The results of Moran’s I Index showed that GDP
growth had the greatest negative impact on ESH after 2005. Massive land exploitation activities occurred
in Qiannan, with 163 land exploitation programs conducted from 2006 to 2014 [37]. These activities were
concentrated in the northern and eastern regions, promoting economic development but destroying
forests. The structure and function of ecosystems were damaged, leading to a decline in ESH.
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The bivariate LISA (Figure 5) and significant correlation of the urbanization indicators (Table 4) showed
that urbanization exerted a negative impact on ESH in Qiannan. This indicated that urbanization
contributed to the variation of ESH at a regional scale. On one hand, an increase in construction land
for urbanization occupies a large amount of land resources, changes the physical properties of the
soil, and reduces drainage, with less heat absorption and heat dissipation, ultimately affecting the
function of the soil system [65]. On the other hand, the impact of increased construction land in urban
areas on the ecosystem is mainly due to the increase in population density. The discharge of garbage
and sewage tends to make the ecosystem unbalanced, as species decrease and the functioning of
the ecosystem declines [66]. If the declining trend continues in the future, the ESH of Qiannan will
suffer serious deterioration. Ultimately, the ecosystem may not have the ability to support sustainable
development. We think that a land use planning policy that includes continual ESH assessments and
monitoring is necessary for decision makers to consider. This is neglected in current planning.

4.2. Spatial Relationship between ESH and Urbanization for Ecosystem Management

Urban planners and environmental managers have always faced the question of how to balance
the relationship among urban construction, economic development, and ecological conservation.
Although some solutions are available, such as demarcating ecological protection areas [67,68],
many problems remain. For instance, studies neglect to consider the impact of urbanization on
ecosystem conservation. Construction activities (roads, artificial pond, reservoirs, etc.) in the
background of high economic output can fragment the land, negatively impacting the ecosystem
services supply [69]. Based on this concern, we offer several recommendations for better and
environmentally-friendly urban planning based on our results.

ESH assessments can provide useful information about the state of an ecosystem. It is important
to conserve ecosystems and devise sound policy for regions under rapid urbanization. We suggest
increasing the so-called Green GDP [70] as a target for achieving sustainable development in ethnic
districts, rather than merely considering economic growth. We also suggest that the ecosystem
services value should be included in GDP accounting in Qiannan, because it reflects the links between
urbanization and ESH to some extent. In this way, the interactions between humans and the ecosystem
can be explored and institutionalized. Relevant data can be a helpful reference for a more scientific
development policy in Qiannan.

After 2010, national parks in Qiannan achieved high GDP while maintaining strong ESH.
National parks in Qiannan are part of the Protected Area System of China [71]. The Protected Area
System of China has achieved progress in ecosystem protection and economic development, and it
provides a new method of accomplishing sustainable development in Qiannan.

Our study identified spatial and temporal relationships between three indicators and ESH at
a local scale. We believe that zoning and management is crucial for Qiannan. For high ESH and high
urbanization regions (Figure 5), intensive land exploitation should be restricted. Land use types that are
important for supplying ecosystem services and maintaining a healthy ecosystem should be conserved
for sustainable development. In regions with strong ESH and low urbanization, it is necessary to
implement a rigorous policy to protect the ecosystem against human disturbance. In regions with low
ESH and high urbanization, the ecosystem is delicate and easily disturbed by humans. Thus, artificial
green infrastructure is needed to improve the ecosystem services supply. For regions with low ESH and
low urbanization, only moderate land activity should be allowed. In these regions, we hope tourism
and ecosystem conservation can promote each other. For example, ecotourism attractions can be
established by combining traditional ethnic cultural tourism and ecosystem conservation projects [72].

5. Conclusions

We concluded that; (1) the ESH in Qiannan declined from 1990 to 2015, with a more obvious decline
in eastern and northern regions than that in western regions; (2) rapid urbanization had the greatest
negative impact on ESH in eastern and northern regions. The dominant factor from 1995 to 2005 was
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CLP, and after 2005 GDP was the dominant factor; and (3) the western and central regions of Qiannan
showed an urbanization trend in favor of ESH after 2010. We recommend ecological restoration in the
regions with poor ESH, and ecotourism should be encouraged to achieve sustainable development.

Author Contributions: Data curation, L.G.; Investigation, Y.X.; Supervision, W.S. All authors have read and
agreed to the published version of the manuscript.

Funding: Ministry of Science and Technology of the People’s Republic of China: 2017YFC0506402, 2017YFC0505606.

Acknowledgments: We thank scientists from the Institute of Botany, Chinese Academy of Sciences, who kindly
provided the relative data. This study was supported by the National Key R&D Program of China (2017YFC0506402,
2017YFC0505606). We are grateful for the reviewer’s comments, which greatly improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gu, C.; Hu, L.; Cook, I.G. China’s urbanization in 1949–2015: Processes and driving forces. Chin. Geogr. Sci.
2017, 27, 847–859. [CrossRef]

2. Cao, H.; Liu, J.; Fu, C.; Zhang, W.; Wang, G.; Yang, G.; Luo, L. Urban expansion and its impact on the land use
pattern in Xishuangbanna since the reform and opening up of China. Remote Sens. 2017, 9, 137. [CrossRef]

3. Li, L. The spatio-temporal dynamic characteristics in expansion of major cities in China in 30 years since the
reform and opening-up. J. Nat. Resour. 2009, 24, 223–226.

4. Wang, Z.; Tang, L.; Qiu, Q.; Chen, H.; Wu, T.; Shao, G. Assessment of regional ecosystem health—A case
study of the Golden Triangle of Southern Fujian Province, China. Int. J. Environ. Res. Public Health 2018, 15,
802. [CrossRef]

5. Tu, J. Urban spatial expansion and its effect on island ecosystem. High Technol. Lett. 2013, 19, 162–169.
6. Wang, W.; Zhang, X.; Wu, Y.; Zhou, L.; Skitmore, M. Development priority zoning in China and its impact on

urban growth management strategy. Cities 2017, 62, 1–9. [CrossRef]
7. Weng, Q. A Remote Sensing-GIS Evaluation of urban expansion and its impact on surface temperature in the

Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [CrossRef]
8. Shrestha, M.K.; York, A.M.; Boone, C.G.; Zhang, S. Land fragmentation due to rapid urbanization in the

Phoenix Metropolitan Area: Analyzing the spatiotemporal patterns and drivers. Appl. Geogr. 2012, 32,
522–531. [CrossRef]

9. Huang, S.; Wang, M.; Wu, J.; Li, Q.; Yang, J.; Guo, L.; Wang, J.; Xu, Z. The exploration and practice on soil
environmental protection in the process of rapid urbanization of the megacity Shanghai. Twenty Years Res.
Dev. Soil Pollut. Remediat. China 2018, 133–147. [CrossRef]

10. Rapport, D.J. What constitutes ecosystem health? Perspect. Biol. Med. 1989, 33, 120–132. [CrossRef]
11. Cheng, X.; Chen, L.; Sun, R.; Kong, P. Land use changes and socio-economic development strongly deteriorate

river ecosystem health in one of the largest basins in China. Sci. Total Environ. 2018, 616–617, 376–385.
[CrossRef]

12. Pan, G.; Xu, Y.; Yu, Z.; Song, S.; Zhang, Y. Analysis of river health variation under the background of
urbanization based on entropy weight and matter-element model: A case study in Huzhou City in the
Yangtze River Delta, China. Environ. Res. 2015, 139, 31–35. [CrossRef] [PubMed]

13. Styers, D.M.; Chappelka, A.H.; Marzen, L.J.; Somers, G.L. Developing a land-cover classification to select
indicators of forest ecosystem health in a rapidly urbanizing landscape. Landsc. Urban Plan. 2010, 94, 158–165.
[CrossRef]

14. Van Niekerk, L.; Adams, J.B.; Bate, G.C.; Forbes, A.T.; Forbes, N.T.; Huizinga, P.; Lamberth, S.J.; MacKay, C.F.;
Petersen, C.; Taljaard, S.; et al. Country-wide assessment of estuary health: An approach for integrating
pressures and ecosystem response in a data limited environment. Estuar. Coast. Shelf Sci. 2013, 130, 239–251.
[CrossRef]

15. Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321.
[CrossRef]

16. Xiao, R.; Liu, Y.; Fei, X.; Yu, W.; Zhang, Z.; Meng, Q. Ecosystem health assessment: A comprehensive and
detailed analysis of the case study in coastal metropolitan region, eastern China. Ecol. Indic. 2019, 98, 363–376.
[CrossRef]

http://dx.doi.org/10.1007/s11769-017-0911-9
http://dx.doi.org/10.3390/rs9020137
http://dx.doi.org/10.3390/ijerph15040802
http://dx.doi.org/10.1016/j.cities.2016.11.009
http://dx.doi.org/10.1080/713860788
http://dx.doi.org/10.1016/j.apgeog.2011.04.004
http://dx.doi.org/10.1007/978-981-10-6029-8_9
http://dx.doi.org/10.1353/pbm.1990.0004
http://dx.doi.org/10.1016/j.scitotenv.2017.10.316
http://dx.doi.org/10.1016/j.envres.2015.02.013
http://www.ncbi.nlm.nih.gov/pubmed/25798876
http://dx.doi.org/10.1016/j.landurbplan.2009.09.006
http://dx.doi.org/10.1016/j.ecss.2013.05.006
http://dx.doi.org/10.1016/j.jclepro.2018.03.293
http://dx.doi.org/10.1016/j.ecolind.2018.11.010


Int. J. Environ. Res. Public Health 2020, 17, 826 14 of 16

17. Shen, C.; Shi, H.; Zheng, W.; Ding, D. Spatial heterogeneity of ecosystem health and its sensitivity to pressure
in the waters of nearshore archipelago. Ecol. Indic. 2016, 61, 822–832. [CrossRef]

18. Costanza, R. Toward an operational definition of ecosystem health. In Ecosystem Health: New Goals for
Environmental Management; Costanza, R., Norton, B.G., Hasktell, B.D., Eds.; Island Press: Washington, DC,
USA, 1992; pp. 239–256.

19. Costanza, R. Ecosystem health and ecological engineering. Ecol. Eng. 2012, 45, 24–29. [CrossRef]
20. He, J.; Pan, Z.; Liu, D.; Guo, X. Exploring the regional differences of ecosystem health and its driving factors

in China. Sci. Total Environ. 2019, 673, 553–564. [CrossRef]
21. Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk

assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636,
1442–1454. [CrossRef]

22. Li, Y.Y.; Dong, S.K.; Wen, L.; Wang, X.X.; Wu, Y. Three-dimensional framework of vigor, organization,
and resilience (VOR) for assessing rangeland health: A case study from the alpine meadow of the
Qinghai-Tibetan Plateau, China. EcoHealth 2013, 10, 423–433. [CrossRef]

23. Fishe, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ.
2009, 68, 643–653. [CrossRef]

24. Lu, Y.; Wang, R.; Zhang, Y.; Su, H.; Wang, P.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Squire, G. Ecosystem health
towards sustainability. Ecosyst. Heal. Sustain. 2015, 1, 1–15. [CrossRef]

25. Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking ecosystem services and landscape patterns to assess urban
ecosystem health: A case study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [CrossRef]

26. Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in
Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [CrossRef]

27. Cui, N.; Feng, C.C.; Han, R.; Guo, L. Impact of Urbanization on Ecosystem Health: A Case Study in Zhuhai,
China. Int. J. Environ. Res. Public Health 2019, 16, 4717. [CrossRef]

28. Li, Y.; Li, D. Assessment and forecast of Beijing and Shanghai’s urban ecosystem health. Sci. Total Environ.
2014, 487, 154–163. [CrossRef]

29. Ludwig, J.A.; Bastin, G.N.; Chewings, V.H.; Eager, R.W.; Liedloff, A.C. Leakiness: A new index for monitoring
the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data.
Ecol. Indic. 2007, 7, 442–454. [CrossRef]

30. Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol.
2003, 18, 299–305. [CrossRef]

31. Sun, R.; Yao, P.; Wang, W.; Yue, B.; Liu, G. Assessment of wetland ecosystem health in the Yangtze and
Amazon river basins. ISPRS Int. J. Geo-Inf. 2017, 6, 81. [CrossRef]

32. Liao, C.; Yue, Y.; Wang, K.; Fensholt, R.; Tong, X.; Brandt, M. Ecological restoration enhances ecosystem
health in the Karst regions of Southwest China. Ecol. Indic. 2018, 90, 416–425. [CrossRef]

33. Wang, X.B.; Yu, X.X.; Gu, J.C.; Lu, S.W.; Wu, H.X. Ecosystem health assessment of the Pinus tabulaeformis
forestin earch-rocky mountain area of North China. Sci. Soil Water Conserv. 2009, 7, 97–102.

34. Yang, Y.; Cai, Y.; Bai, Y. A dynamic evaluation of regional ecosystem health using a multiple indexsystem:
A case study of Maoji Biosphere Reserve. Acta Ecol. Sin. 2016, 36, 4279–4287.

35. Chen, Y. Pollution status and sources of polycyclic aromatic hydrocarbons in soil of Qiannan state.
Ecol. Environ. Sci. 2009, 18, 929–933.

36. The People’s Government of Guizhou Province. Available online: http://www.guizhou.gov.cn/ (accessed on
24 June 2018).

37. Geospatial Data Cloud. Available online: http://www.gscloud.cn/ (accessed on 17 May 2017).
38. Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn/ (accessed on

17 May 2017).
39. Costanza, R.; Mageau, M. What is a healthy ecosystem? Aquat. Ecol. 1999, 33, 105–115. [CrossRef]
40. Patil, G.P.; Balbus, J.; Biging, G.; Brooks, R.; Gong, P.; JaJa, J.; Myers, W.L.; Rapport, D.; Rossi, O.;

Schneiderman, B.; et al. Biocomplexity of Ecosystem Health and Its Measurement at the Landscape Scale; Center for
Statistical Ecology and Environmental Statistics, Department of Statistics, The Pennsylvania State University:
University Park, PA, USA, 2001; Volume 7, pp. 307–316.

http://dx.doi.org/10.1016/j.ecolind.2015.10.035
http://dx.doi.org/10.1016/j.ecoleng.2012.03.023
http://dx.doi.org/10.1016/j.scitotenv.2019.03.465
http://dx.doi.org/10.1016/j.scitotenv.2018.04.427
http://dx.doi.org/10.1007/s10393-013-0877-8
http://dx.doi.org/10.1016/j.ecolecon.2008.09.014
http://dx.doi.org/10.1890/EHS14-0013.1
http://dx.doi.org/10.1016/j.landurbplan.2015.06.007
http://dx.doi.org/10.1016/j.ecolind.2016.08.024
http://dx.doi.org/10.3390/ijerph16234717
http://dx.doi.org/10.1016/j.scitotenv.2014.03.139
http://dx.doi.org/10.1016/j.ecolind.2006.05.001
http://dx.doi.org/10.1016/S0169-5347(03)00071-5
http://dx.doi.org/10.3390/ijgi6030081
http://dx.doi.org/10.1016/j.ecolind.2018.03.036
http://www.guizhou.gov.cn/
http://www.gscloud.cn/
http://www.resdc.cn/
http://dx.doi.org/10.1023/A:1009930313242


Int. J. Environ. Res. Public Health 2020, 17, 826 15 of 16

41. Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem Services for Human
Well-Being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ.
Chang. 2014, 28, 263–275. [CrossRef]

42. Busch, M.; Gee, K.; Burkhard, B.; Lange, M.; Stelljes, N. Conceptualizing the link between marine ecosystem
services and human well-being: The case of offshore wind farming. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag.
2011, 7, 190–203. [CrossRef]

43. Rapport, D.J.; Costanza, R.; Mcmichael, A.J. Assessing ecosystem health. Trends Ecol. Evol. 1998, 10, 397–402.
[CrossRef]

44. Suo, A.N.; Xiong, Y.C.; Wang, T.M.; Yue, D.X.; Ge, J.P. Ecosystem health assessment of the Jinghe River
watershed on the Huangtu Plateau. Ecohealth 2008, 5, 127–136. [CrossRef]

45. Liu, D.; Hao, S. Ecosystem health assessment at county-scale using the pressure-state-response framework
on the Loess Plateau, China. Int. J. Environ. Res. Public Health. 2017, 14, 2. [CrossRef]

46. Brown, M.E.; Pinzón, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency of long-term
NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ Sensors.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. [CrossRef]

47. Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197.
[CrossRef]

48. Colding, J. “Ecological Land-Use Complementation” for building resilience in urban ecosystems.
Landsc. Urban Plan. 2007, 81, 46–55. [CrossRef]

49. Holling, C.S. The resilience of terrestrial ecosystems: Local surprise and global change. In Sustainable
Development of the Biosphere; Clark, W.C., Munn, R.E., Eds.; Cambridge University: New York, NY, USA, 1986;
pp. 292–317.

50. Niu, Q.; Zhou, X.; Zhang, J.; Yang, J.Z.; Huang, X.Y. Evolution of Ecosystem Resilience in Mountainous Cities
of Karst—Taking Guiyang Urban Area as An Example. Resour. Environ. Yangtze Basin 2019, 28, 722–730.

51. Liu, X.P.; Li, P.; Ren, Z.; Miao, Z.Y.; Zhang, J.; Liu, X.J.; Li, Z.B.; Wang, T. Evaluation of ecosystem resilience in
Yulin, China. Acta Ecol. Sin. 2016, 26, 7479–7491.

52. Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.;
Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260.
[CrossRef]

53. Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem
services in China. J. Nat. Resour. 2008, 23, 911–919.

54. Allender, S.; Foster, C.; Hutchinson, L.; Arambepola, C. Quantification of urbanization in relation to chronic
diseases in developing countries: A systematic review. J. Urban Heal. 2008, 85, 938–951. [CrossRef]

55. Bai, X.; Shi, P.; Liu, Y. Realizing China’s urban dream. Nature 2014, 509, 158–160. [CrossRef] [PubMed]
56. Su, M.; Fath, B.D. Spatial distribution of urban ecosystem health in Guangzhou, China. Ecol. Indic. 2012, 15,

122–130. [CrossRef]
57. Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan

areas: Thresholds identification. Sci. Total Environ. 2017, 607–608, 706–714. [CrossRef] [PubMed]
58. Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [CrossRef] [PubMed]
59. Ou, Z.R.; Zhu, Q.K.; Sun, Y.Y. Regional ecological security and diagnosis of obstacle factors in underdeveloped

regions: A case study in Yunnan Province, China. J. Mt. Sci. 2017, 14, 870–884. [CrossRef]
60. Wang, D.; Zheng, J.; Song, X.; Ma, G.; Liu, Y. Assessing industrial ecosystem vulnerability in the coal mining

area under economic fluctuagtions. J. Clean. Prod. 2017, 142, 4019–4031. [CrossRef]
61. Volante, J.N.; Alcaraz-Segura, D.; Mosciaro, M.J.; Viglizzo, E.F.; Paruelo, J.M. Ecosystem functional changes

associated with land clearing in NW Argentina. Agric. Ecosyst. Environ. 2012, 154, 12–22. [CrossRef]
62. Anselin, L. Local indicators of spatial analysis—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
63. Amaral, P.V.; Anselin, L. Finite sample properties of Moran’s I test for spatial autocorrelation in Tobit models.

Pap. Reg. Sci. 2014, 93, 773–781. [CrossRef]
64. Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8,

739–741. [CrossRef]
65. Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil carbon pools and fluxes in urban ecosystems.

Environ. Pollut. 2002, 116, 107–118. [CrossRef]

http://dx.doi.org/10.1016/j.gloenvcha.2014.07.005
http://dx.doi.org/10.1080/21513732.2011.618465
http://dx.doi.org/10.1016/S0169-5347(98)01449-9
http://dx.doi.org/10.1007/s10393-008-0167-z
http://dx.doi.org/10.3390/ijerph14010002
http://dx.doi.org/10.1109/TGRS.2005.860205
http://dx.doi.org/10.1146/annurev.es.20.110189.001131
http://dx.doi.org/10.1016/j.landurbplan.2006.10.016
http://dx.doi.org/10.1038/387253a0
http://dx.doi.org/10.1007/s11524-008-9325-4
http://dx.doi.org/10.1038/509158a
http://www.ncbi.nlm.nih.gov/pubmed/24812683
http://dx.doi.org/10.1016/j.ecolind.2011.09.040
http://dx.doi.org/10.1016/j.scitotenv.2017.06.218
http://www.ncbi.nlm.nih.gov/pubmed/28711000
http://dx.doi.org/10.1093/biomet/37.1-2.17
http://www.ncbi.nlm.nih.gov/pubmed/15420245
http://dx.doi.org/10.1007/s11629-016-4199-5
http://dx.doi.org/10.1016/j.jclepro.2016.10.049
http://dx.doi.org/10.1016/j.agee.2011.08.012
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.1111/pirs.12034
http://dx.doi.org/10.1038/ngeo2544
http://dx.doi.org/10.1016/S0269-7491(01)00263-9


Int. J. Environ. Res. Public Health 2020, 17, 826 16 of 16

66. Bartolini, F.; Cimò, F.; Fusi, M.; Dahdouh-Guebas, F.; Lopes, G.P.; Cannicci, S. The effect of sewage discharge
on the ecosystem engineering activities of two East African fiddler crab species: Consequences for mangrove
ecosystem functioning. Mar. Environ. Res. 2011, 71, 53–61. [CrossRef]

67. Lu, W.H.; Liu, J.; Xiang, X.Q.; Song, W.L.; McIlgorm, A. A comparison of marine spatial planning approaches
in China: Marine functional zoning and the marine ecological eed line. Mar. Policy 2015, 62, 94–101.
[CrossRef]

68. Brandon, K.; Gorenflo, L.J.; Rodrigues, A.S.L.; Waller, R.W. Reconciling biodiversity conservation, people,
protected areas, and agricultural suitability in Mexico. World Dev. 2005, 33, 1403–1418. [CrossRef]

69. Tao, Y.; Li, F.; Crittenden, J.C.; Lu, Z.M.; Sun, X. Environmental impacts of China’s urbanization from 2000 to
2010 and management implications. Environ. Manag. 2016, 57, 498–507. [CrossRef] [PubMed]

70. Wang, J. Environmental costs: Revive china’s green gdp programme. Nature 2016, 534, 37. [CrossRef]
[PubMed]

71. Peng, Y.; Fan, J.; Xing, S.; Cui, G. Overview and classification outlook of natural protected areas in mainland
China. Biodivers. Sci. 2018, 26, 316–325. [CrossRef]

72. Orams, M.B. Towards a more desirable form of ecotourism. Tour. Manag. 2012, 16, 315–323. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.marenvres.2010.10.002
http://dx.doi.org/10.1016/j.marpol.2015.09.004
http://dx.doi.org/10.1016/j.worlddev.2004.10.005
http://dx.doi.org/10.1007/s00267-015-0614-x
http://www.ncbi.nlm.nih.gov/pubmed/26404432
http://dx.doi.org/10.1038/534037b
http://www.ncbi.nlm.nih.gov/pubmed/27251268
http://dx.doi.org/10.17520/biods.2017235
http://dx.doi.org/10.1016/0261-5177(94)00001-Q
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area and Data Sources 
	Assessment of Ecosystem Health 
	Quantifying ESV 
	Mapping Urbanization Levels 
	Spatial Correlation Measurement 

	Results 
	Assessment of Ecosystem Health 
	Dynamics of ESH in Qiannan 
	Dynamics of ESH Spatial Patterns 

	Dynamics of Urbanization Spatial Patterns 
	Effect of Urbanization on Ecosystem Health 

	Discussion 
	Change in ESH in Qiannan from 1990 to 2015 
	Spatial Relationship between ESH and Urbanization for Ecosystem Management 

	Conclusions 
	References

