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Abstract 
Aquaporins (AQPs) are a family of membrane water channels that facilitate the passive transport of water across the plasma 
membrane of cells in response to osmotic gradients created by the active transport of solutes. Water-selective AQPs are involved 
in tumor angiogenesis, invasion, metastasis and growth. However, the polytype expression patterns and prognostic values of 
eleven AQPs in clear cell Renal Cell Cancer (ccRCC) have yet to be filled.

We preliminarily investigated the transcriptional expression, survival data and immune infiltration of AQPs in patients with renal 
cell cancer via the Oncomine database, Kaplan–Meier Plotter, UALCAN cancer database, and cBioPortal databases.

The ethical approval was waived by the local ethics committee of Peking University People's Hospital for the natural feature of 
mine into databases.

The mRNA expression of AQP1/2/3/4/5/6/7/11 was significantly decreased in ccRCC patients. Meanwhile, MIP and 
AQP1/2/4/6/7/8/9/11 are notably related to the clinical stage or pathological grade of ccRCC. Lower levels of AQP1/3/4/5/7/10 
expression were related to worse overall survival (OS) in patients diagnosed with ccRCC. The AQP mutation rate was 25% in 
ccRCC patients, but genetic alterations in AQPs were unlikely to be associated with OS and disease free survival in ccRCC 
patients. In addition, the expression of AQP1, AQP3, AQP4 and AQP10 was positively correlated with immune cells, and the 
expression of AQP6, AQP7 and AQP11 was negatively correlated with immune cells. AQP9 had a strong and significantly positive 
correlation with multiple immune cells.

Abnormal expression of AQPs in ccRCC indicated the prognosis and immunomodulatory state of ccRCC. Further study needs 
to be performed to explore AQPs as new biomarkers for ccRCC.

Abbreviations: AQP = aquaporin, ccRCC = clear cell Renal Cell Cancer, HR = hazard ratio, OS = overall survival, RFS = 
relapse-free survival.
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1. Introduction

Aquaporins (AQPs) are composed of a group of genes encoding 
a family of membrane water channels responsible for the trans-
port of water and some small solutes, such as glycerol, even gas 
and ions. They are involved in tumor angiogenesis and spread. 
The AQPs, in general, are subdivided into 3 groups according to 
their permeability profile and sequence homology.[1] The classi-
cal water-selective channels include MIP, AQP1, AQP2, AQP4, 
AQP5, AQP6, and AQP8. Aquaglyceroprins, including AQP3, 
AQP7, AQP9, and AQP10, are permeable to water and some 
small uncharged solutes. A third subfamily, superaquaporins, 

including AQP11 and AQP12, has low homology at their 
amino acid level with other AQPs and retains functions and 
regulation to be fully defined. These subfamilies overlapped 
functionally. Because of the extremely low expression of 
AQP12 in renal tissues, it was excluded from the present study.

AQPs are widely expressed in the body, particularly in cell 
types that are involved in fluid transport, such as epithelial 
cells in several organs, as well as in some cell types that do not 
have an obvious role in fluid transport, such as adipocytes.[2] 
The expression of AQPs manifests in disorder among diverse 
human malignancies, including breast,[3,4] lung, colorectal,[4] 
brain,[4] liver[5] and pancreatic[6] cancers, mostly playing a 
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role in tumor types, grades, tumor-associated edema, tumor 
cell migration and proliferation, cell–cell adhesiveness, and 
tumor angiogenesis in hematological and solid tumors.[4,7] 
The functions of AQPs in clear cell RCC (ccRCC) are rarely 
reported.[8]

Renal cell carcinoma (RCC) denotes cancer originating from 
the renal epithelium and accounts for >90% of cancers in the 
kidney.[9,10] Targeted therapies[11] (agents targeting the VEGF/
PDGFR/mTOR pathway, for instance), immunotherapy[12] 
(interferon α, high-dose interleukin-2, antibodies against pro-
grammed cell death protein 1 ligand 1, PDL1, and antibodies 
against programmed cell death protein 1, PD1, for instance), 
and combinations were used for the treatment of metastatic 
RCC. ccRCC is the most common subtype of renal cancer, 
accounting for the majority of deaths from kidney cancer. A 
large genomic analysis has been undertaken and has led to the 
identification of several novel prevalent mutations in ccRCC, 
including polybromo 1 (PBRM1, 29%–41% of tumor samples), 
histone-lysine N-methyltransferase SETD2 (SETD2, 8%–12%), 
BRCA1-associated protein 1 (BAP1, 6%–10%), lysine-specific 
demethylase 5C (KDM5C, 4%–7%) and mammalian target of 
rapamycin (mTOR, 5%–6%).[13] Increasing interest was focused 
on immune infiltration since immunotherapy improved the 
outcome of ccRCC,[14] which had the highest T cell infiltration 
score among 19 cancers.[15] With a deep view of T cell immuno-
suppression phenotypes, there were links between a tumor-as-
sociated macrophage (TAM) phenotype and populations of 
regulatory T cells and CD8+ immunosuppressed T cells, and 
the composition of immune cells was correlated with progres-
sion-free survival.[16]

Since the discovery of AQP1, 13 AQPs (MIP, AQP1-12), which 
are distributed widely in specific cell types in various organs and 
tissues, have been characterized in humans. AQPs are thought 
to play distinct and complex roles in multiple human cancers. 
However, the function of disparate AQPs in the initiation and 
progression of ccRCC is still ambiguous, and the prognostic 
value of AQPs in ccRCC remains to be comprehensively investi-
gated. On the basis of the wide application of microarray tech-
nology, the expression level and mutations of individual AQPs 
in patients diagnosed with ccRCC were analyzed in detail to 
explore the expression profile, potential biological functions, 
and definite prognostic values of AQPs in ccRCC.

2. Methods

2.1. Expression analysis using data from ONCOMINE 
datasets

Data provided by public datasets on ONCOMINE (http://
www.oncomine.org) were used for mRNA expression level 
analyses.[17] Oncomine consists of previously published 
microarray data and is publicly available. The mRNA expres-
sion levels of MIP and AQP1/2/3/4/5/6/7/8/9/10/11 were ana-
lyzed. In the present study, the data type was set as mRNA, the 
top 10% gene rank was included, the P value was set to .01, 
and the fold change was set as 1.5. The expression of genes in 
the 2 panels, cancer tissues and corresponding normal samples, 
was compared.

2.2. Clinicopathological analysis using UALCAN from 
TCGA dataset

The UALCAN platform (http://ualcan.path.uab.edu) is a com-
prehensive and interactive web resource that provides authori-
tative and reliable gene expression and clinicopathological data 
of 31 types of cancer.[18] In the present study, the mRNA expres-
sion of 12 AQPs in ccRCC tissues and their relationship with 
clinicopathological parameters (cancer stage and grade) were 
analyzed using the UALCAN database with 72 normal cases 

and 533 tumor cases. For clinical analysis, the study included 
72 normal cases, 267 cases at stage 1, 57 at stage 2, 123 at 
stage 3 and 84 at stage 4. For pathological analysis, the study 
included 72 normal cases, 14 cases at grade 1, 229 at grade 2, 
206 at grade 3 and 76 at grade 4. Cases with any data loss or 
corruption of cancer stage or grade were excluded from the cor-
responding analyses.

2.3. Survival analysis using the Kaplan–Meier (KM) Plotter

The KM Plotter (http://www.kmplot.com) is an online data-
base capable of assessing the effect of 54k genes on survival in 
21 cancer types.[19] Overall survival (OS) acts as the gold stan-
dard primary endpoint to evaluate the outcome of cancers, and 
relapse-free survival (RFS) refers to the length of time after pri-
mary treatment for a cancer ends that the patient survives with-
out any signs or symptoms of that cancer. In the present study, 
the expression of AQPs was divided into 2 cohorts according 
to the Auto Select best cutoff. Based on that, OS and RFS were 
used to appraise the prognostic values of MIP and AQP1-11 in 
ccRCC. The number of cases included in the analysis is marked 
below each figure.

2.4. Genetic mutations analysis using the cBioPortal

The cBioPortal database (http://www.cbioportal.org) hosts can-
cer genomics studies and provides an open resource for explor-
ing, visualizing and analyzing cancer research.[20] cBioPortal was 
used to explore genetic mutations and their correlation with the 
OS and PFS of ccRCC patients.

2.5. Immune infiltration analysis

The infiltration levels of immune cell types were quantified by 
ssGSEA method using gsva package (v1.34.0) in R software. 
The following 24 types of immune cells were obtained: acti-
vated DCs (aDCs), B cells, CD8 T cells, cytotoxic cells, DCs, 
eosinophils, immature DCs (iDCs), mast cells, neutrophils, 
macrophages, NK cells, NK CD56bright cells, NK CD56dim 
cells, plasmacytoid DCs (pDCs), T cells, T helper cells, T cen-
tral memory (Tcm), T effector memory (Tem), T gamma delta 
(Tgd), T follicular helper (Tfh), Th1 cells, Th2 cells, Th17 cells, 
and Tregs.

2.6. Validation at the protein level by using the human 
protein atlas (HPA) database

The databases used above explored the expression of AQPs at 
the mRNA level, so we retrieved the data from the HPA data-
base to assess the expression of AQPs at the protein level. The 
HPA database contains immunohistochemistry images of a wide 
variety of cancers, providing protein expression profiles. The 
HPA database analyzed the proteome of 17 major cancers by 
using clinical metadata and genome-wide transcriptomics data 
of nearly 8000 patients. Based on the rate of positively stained 
cells and the staining intensity, the results were scored as strong, 
moderate, weak and negative.

2.7. Statistical analysis

Statistical analyses were performed by ONCOMINE, 
UALCAN, KM Plotter and cBioPortal. KM method and log-
rank test were adopted for survival analysis by calculating haz-
ard ratio (HR) and 95% confidence interval (CI). Quantitative 
variables were compared using Student t test. For the correla-
tion analysis, the Pearson correlation coefficient analysis was 
used. Two-sided P value threshold was set as 0.05 to be statis-
tically significant.

http://www.oncomine.org
http://www.oncomine.org
http://ualcan.path.uab.edu
http://www.kmplot.com
http://www.cbioportal.org
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3. Results

3.1. Disordered transcriptional expression of AQPs in 
patients with RCC

Twelve AQPs have been identified in kidney tissues. The tran-
scriptional expression of AQPs (kidney cancer vs. normal kid-
ney tissue) was evaluated using the ONCOMINE database 
(Fig.  1). Significant overexpression is marked with red, and 
reduced expression is marked with blue bn. The number of 
analyses that met the threshold was seen in each cell. As pre-
sented in Supplement Digital Content Table S1, http://links.
lww.com/MD2/B24 the mRNA expression of AQPs was lower 
in renal cancers in 7 datasets to a large extent.[21–27] The mRNA 
expression level of MIP was significantly downregulated in 
patients with papillary renal cell carcinoma in one dataset (fold 
change = −2.368).[21] AQP1 was expressed at lower levels in 
chromophobe renal cell carcinoma (fold change = −11.166), 
renal pelvis urothelial carcinoma (fold change = −7.221), renal 
Wilms tumor (fold change = −13.299), chromophobe renal cell 
carcinoma (fold change = −14.864), and nonhereditary clear 
cell renal cell carcinoma (fold change = −4.503) samples than in 
corresponding normal samples. AQP2 was expressed at lower 
levels in ccRCC (fold change = −4.592, Jones Renal, −13.183, 
Yusenko Renal, −5.590, Gumz Renal, -2.567, Lenburg Renal), 
renal Wilms tumor (fold change = −26.722), chromophobe 
renal cell carcinoma (fold change = −4.758, Jones Renal, 
−13.013, Yusenko Renal), renal oncocytoma (fold change = 
−21.537), papillary renal cell carcinoma (fold change = −4.945, 
Jones Renal, −14.794, Yusenko Renal), nonhereditary clear 
cell renal cell carcinoma (fold change = −11.212), and hered-
itary clear cell renal cell carcinoma (fold change = −12.336) 
versus corresponding normal samples. AQP3 was expressed 

at lower levels in clear cell renal cell carcinoma (fold change 
= −3.889), chromophobe renal cell carcinoma (fold change = 
−1.887, Jones Renal, −5.181, Higgins Renal), papillary renal 
cell carcinoma (fold change = −8.716, Jones Renal, −9.131, 
Higgins Renal), nonhereditary clear cell renal cell carcinoma 
(fold change = −3.699), hereditary clear cell renal cell carci-
noma (fold change = −2.391), renal oncocytoma (fold change 
= −13.367), and clear cell sarcoma of the kidney (fold change 
= −8.523) versus corresponding normal samples. AQP4 was 
expressed at lower levels in clear cell renal cell carcinoma (fold 
change = −1.961) and renal oncocytoma (fold change = −6.349) 
samples than in corresponding normal samples. AQP5 was 
expressed at lower levels in granular renal cell carcinoma (fold 
change = −1.803), chromophobe renal cell carcinoma (fold 
change = −2.080), papillary renal cell carcinoma (fold change = 
−1.508), and renal oncocytoma (fold change = −1.759) samples 
than in normal samples. AQP6 was found to be expressed at 
lower levels in clear cell renal cell carcinoma (fold change = 
−8.330, Yusenko renal, −4.140, Gumz renal), papillary renal 
cell carcinoma (fold change = −2.013, Jones renal, −5.431, 
Yusenko renal), renal Wilms tumor (fold change = −3.621), and 
renal pelvis urothelial carcinoma (fold change = −1.750) versus 
corresponding normal samples. AQP7 was expressed at lower 
levels in clear cell renal cell carcinoma (fold change = −9.610, 
Gumz Renal, −2.102, Lenburg Renal), renal oncocytoma (fold 
change = −2.692), and renal pelvis urothelial carcinoma (fold 
change = −1.741) samples than in normal samples. AQP8 was 
found to be expressed at lower levels in clear cell renal cell 
carcinoma (fold change = −3.097), renal pelvis urothelial car-
cinoma (fold change = −2.198), and papillary renal cell carci-
noma (fold change = −2.042) samples than in corresponding 
normal samples. AQP11 was expressed at lower levels in clear 

Figure 1.  The transcriptional expression of AQPs in various types of cancers (Oncomine). AQP expression at the mRNA level was analyzed by using data from 
the ONCOMINE database (cancer vs corresponding normal kidney tissue). Significant overexpression is marked in red, and reduced expression is marked in 
blue. The number in each cell represents the number of analyses that meet the threshold.

http://links.lww.com/MD2/B24
http://links.lww.com/MD2/B24
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Figure 2.  The abnormal mRNA expression of AQPs in cancer and corresponding normal kidney tissues results from the TCGA cohort (UALCAN). The expres-
sion of AQP8 and AQP9 in cancer tissues increased compared with corresponding normal tissues, while AQP1-7 and AQP10 decreased. and MIP and AQP10 
remained not significantly different. ***P < .001.

Figure 3.  Correlation analysis of AQP mRNA expression and cancer stages was conducted by using UALCAN. The results showed that the mRNA expression 
level of AQPs was significantly associated with the clinical features of patients diagnosed with ccRCC. *P < .05, **P < .01, ***P < .001.
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cell renal cell carcinoma (fold change = −1.944) and chromo-
phobe renal cell carcinoma (fold change = −4.694) samples 
than in corresponding normal samples.

3.2. Relationship between the mRNA expression of AQPs 
and the clinicopathological furfures of patients with ccRCC

Using the UALCAN platform, the mRNA expression of AQPs 
between ccRCC and renal tissues was compared. In the pres-
ent study, the results from UALCAN revealed that the mRNA 
expression of AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, 
and AQP11 was remarkably lower in ccRCC samples than in 
corresponding normal renal tissues, and the expression of MIP, 
AQP8, AQP9, and AQP10 was higher in the former than in the 
latter (Fig. 2). We also analyzed the expression of AQPs with 
tumor stage and grade for ccRCC. As displayed in Figure 3, the 
expression of 12 AQPs had a close association with the cancer 
stages of ccRCC patients. The expression of MIP, AQP8, and 
AQP9 was significantly higher in the late stage (stages 3–4), and 
the expression of AQP1, AQP4, AQP7, and AQP10 was signifi-
cantly lower in the late stage (stages 3–4). The expression of 
AQP3 and AQP11 remained close in different stages. Similarly, 
as illustrated in Figure 4, box plots showed that AQP mRNA 
expression was prominently associated with pathological grade. 
The mRNA expression of AQP8 and AQP9 tended to be higher, 
and the pathological grade increased. Conversely, the mRNA 
expression of AQP1, AQP4 and AQP7 was negatively correlated 
with pathological grade in ccRCC. Overall, the UALCAN 

results indicated that the mRNA expression of AQP1, AQP4, 
AQP7 and AQP9 in ccRCC patients was significantly correlated 
with clinicopathological furfures.

3.3. Verification at protein level of AQPs

Immunohistochemically stained images from the HPA database 
showed AQP protein expression in ccRCC tissues and corre-
sponding normal tissues (Fig. 5). The expression was marked as 
high, medium, low and not detected in the figure. These results 
for AQP1-4, 6, and 9-10 were consistent with the transcrip-
tional analysis.

3.4. Prognostic values of AQPs in ccRCC

Survival curves were used to show the overall survival (OS) 
times of ccRCC patients by using Kaplan–Meier Plotter 
(Fig. 6). Among the twelve AQP family members, low mRNA 
expression of AQP1 (P = 5.3e-10), AQP3 (P = .014), AQP4 (P 
= .00025), AQP5 (P = .028), AQP7 (P = 8.8e-05) and AQP10 
(P = .014) was associated with worse OS in ccRCC patients. 
Low MIP (P = .00019), AQP8 (P = 3e-06), and AQP9 (P = 
8.6e-07) showed a relationship with longer OS time. AQP2 
and AQP6 showed no significant difference. Furthermore, RFS 
was also analyzed (Fig.  7). The increased mRNA expression 
of MIP (P = 0.032) and AQP6 (P = .0071) and the decreased 
mRNA expression of AQP4 (P = .014) were significantly asso-
ciated with longer RFS.

Figure 4.  AQP expression varied with pathological grade. The expression of AQP8 and AQP9 increased as pathological grade rose, while AQP1, AQP4, and 
AQP7 showed a negative correlation with pathological grade. *P < .05, **P < .01, ***P < .001.
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3.5. AQP genetic alteration analyses in ccRCC patients via 
the cBioPortal database

Genetic alterations in AQPs were analyzed by using cBioPortal 
databases. The correlations with OS and PFS of ccRCC patients 
were explored. In the present study, 510 ccRCC patients were 
enrolled, and their AQP gene mutation information was thor-
oughly analyzed. The AQPs mutation rate was 31.5% in ccRCC 
patients. As shown in Figure  8A, the percentages of genetic 
alterations in AQPs of ccRCC ranged from 0.2 to 5% for single 
genes (MIP, 2.4%, AQP1, 5%, AQP2, 2.2%, AQP3, 2%, AQP4, 
4%, AQP5, 3%, AQP6, 0.8%, AQP7, 5%, AQP8, 0.2%, AQP9, 
4%, AQP10, 0.4%, AQP11, 2.5%). The results of KM curves 
and log-rank tests suggested that genetic alterations in AQPs 
were correlated with worse OS (P = .149) and PFS (P = .377) 
of patients with ccRCC (Fig. 8B). In short, genetic alterations 
in AQPs slightly influenced the prognosis of ccRCC patients.

3.6. Tumor-infiltrating immune cells associated with AQPs

The expression of AQP9 had a strong and significantly posi-
tive correlation with multiple immune cells. The expression of 
AQP1, AQP3, AQP4, and AQP10 was positively correlated with 
immune cells. The expression of AQP6, AQP7, and AQP11 was 
negatively correlated with immune cells. The potential immuno-
logical correlation between AQPs and tumor-infiltrating immune 
cells was studied. The expression levels of MIP, AQP1, AQP2, 
AQP3, AQP4, AQP5, AQP6, and AQP9 were negatively cor-
related with tumor purity (P < .05), suggesting that these AQPs 
were highly expressed in the ccRCC microenvironment (Fig. 9).

4. Discussion
AQPs are a family of proteins that act as water and solute chan-
nels and play essential roles in cell proliferation, migration, 

Figure 5.  Immunohistochemical images from the HPA database showed AQP expression at the protein level in ccRCC and corresponding normal tissues.
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differentiation and apoptosis. Increasing attention and focus 
have been drawn to the relevance of AQPs and cancer progres-
sion.[28] Recent evidence has indicated that several AQPs are 
involved in the biological processes of tumor growth, angio-
genesis and metastatic processes,[29] and AQP overexpression 
was previously reported in over 12 different tumor cell types.[30] 
Since ccRCC was knew well as a highly immune-infiltrated 
tumor, results from the present study showed that AQP fam-
ily genes were associated with immune-cell subset, implying an 
effect on immunoflofosis in tumor microenvironment and acted 
as candidate prognostic factor for patients with ccRCC, which 
was similar to some of literatures report.[31] The present study 
has, for the first time, comprehensively analyzed the expression 
of AQPs in ccRCC, explored the prognostic values of different 
AQPs in ccRCC and might contribute to the treatment strategy.

The main distribution of MIP was in the fiber cells of the 
eye lens, which worked to maintain homeostasis and transpar-
ency of the lens. A high level of MIP mRNA was associated 
with poor OS in all histological subtype gastric cancer patients, 
HR = 1.55 (1.29–1.86)[32] and all ovarian cancer patients, HR 
= 1.15 (1.01–1.31),[33] but better RFS in all histological subtype 
breast cancer.[34] The expression of MIP is extremely low in the 
kidney, and the biological performance of MIP in ccRCC has 
not yet been studied. In the results from the present study, the 

transcriptional level of MIP in ccRCC tissues was the lowest 
among all AQPs. Datasets from Oncomine and TCGA revealed 
that the expression level of MIP in ccRCC was higher than that 
in corresponding normal renal tissues. The expression of MIP 
was associated with the clinical stage and pathological grade. 
Moreover, after follow-up for 150 months, higher expression of 
MIP was significantly associated with poor OS and RFS.

AQP1, a classical water channel widely distributed in the 
body, plays a central role in the regulation of water transport. 
AQP1 was revealed to be involved in the regulation of angio-
genesis, cell migration and cell growth.[29] AQP1 occupied the 
largest proportion of studies on AQP function in a diverse array 
of cancer types.[35] Elevated expression levels of AQP1 in urine 
were detected in renal cell carcinoma patients,[36,37] and urinary 
concentrations of AQP1 in renal cell carcinoma correlated with 
tumor size and stage.[38] According to the present study, the 
mRNA expression of AQP1 was significantly downregulated in 
ccRCC tissues from 5 datasets. A box plot was used to show a 
comparatively low level of AQP1 in ccRCC tissues compared 
with normal tissues. As clinical stages and pathology grade 
advanced, the expression of AQP1 decreased with statistical sig-
nificance. Via multivariable survival analysis, AQP1 emerged as 
the best candidate among AQPs to be a prognostic and survival 
biomarker for ccRCC.

Figure 6.  The OS and RFS of patients with ccRCC are presented with survival curves via Kaplan–Meier Plotter. Among the twelve AQP family members, low 
mRNA expression of AQP1, AQP3, AQP4, AQP5, AQP7, AQP10, and AQP11 was associated with worse OS in ccRCC patients. Low MIP, AQP8, and AQP9 
were correlated with longer OS time. AQP2 and AQP6 showed no significant difference.



8

Wang et al.  •  Medicine (2022) 101:41� Medicine

AQP2, the vasopressin-regulated water channel involved 
in urine concentration, determines the water permeability of 
the kidney collecting duct. AQP2 was E2 dose-dependently 
increased and expressed in endometrial carcinoma tissues, 
which was blocked by an estrogen receptor inhibitor, and AQP2 
knockdown attenuated E2-enhanced migration, invasion, and 
adhesion of IK cells.[39] Quantitative RT–PCR revealed that 
AQP2 was decreased 5.18 times in 127 RCC patients (P < .05), 
and with the promotion of staging, the expression of AQP2 was 
reduced gradually (P < .05).[40] The same expression trend was 
observed in our present study and 13 previous studies. However, 
the OS and RFS of patients with high or low AQP2 were not 
significantly different. Based on the regulation of the biological 
metabolism of water, AQP2 was reasonably assumed to partici-
pate in the tumor microenvironment. Further study deserved to 
be performed.

AQP3 has a wide tissue distribution. In renal tissue, AQP3 is 
localized in the basolateral plasma membranes of cortical and 
outer medullary collecting duct principal cells.[41] AQP3 was 
recently shown to be stimulated by EGF signaling and trans-
port H2O2 through the plasma membrane, contributing to the 
initiation of intracellular signaling in cell motility, inflamma-
tion, metastasis, proliferation and epithelial-to-mesenchymal 
transition.[42] In addition, AQP3 acted as an oncogenic gene in 
liver cancer, which promoted the stimulation and nuclear trans-
location of signal transducer and activator of transcription 3 
with subsequent accelerated CD133 transcription.[43] Decreased 

expression of AQP3 in ccRCC tissues was observed in 9 data-
bases. After analyses synthetically, AQP3 was downregulated in 
ccRCC with significant differences and decreased with clinical 
stage and pathological grade. Higher expression of AQP3 was 
related to longer OS (P = .014).

AQP4 is a predominant AQP located in the central nervous 
system, enables central nervous system fluid homeostasis and 
promotes maintenance of the blood–brain barrier.[44] In a non-
cancerous epithelial cell line, AQP4 was found to have a signif-
icant effect on collective migration. The decrease in epithelial 
markers following AQP4 expression was not associated with 
epithelial-to-mesenchymal transition because lower vimentin 
levels were also observed upon AQP4 expression, which implies 
how AQP4 functions in cell–cell adhesion.[7] Upregulation of 
AQP4 protein and RNA in glioma has been detected, contribut-
ing to the invasiveness and migration of glioma cells.[45] AQP4 
dysregulation in renal cancer has not yet been reported. In the 
present study, the expression of AQP4 was downregulated sig-
nificantly in ccRCC tumor tissues and decreased with increasing 
clinical stage and pathological grade.

Similar to AQP1 and AQP3, AQP5 plays a role in the acti-
vation of cell proliferation and resistance to oxidative stress by 
facilitating H2O2 diffusion through cell membranes[46] and pref-
erential polarization in the leading edge of migrating cells.[47] 
The expression of AQP6 changes with the development of renal 
cell carcinoma and oncocytoma, but the underlying mechanism 
remains to be further studied.[48] Four datasets proved the lower 

Figure 7.  Relationships between mRNA expression levels of twelve AQP family members and the relapse-free survival (RFS) of patients with ccRCC. Analyses 
were conducted using Kaplan–Meier plotter.
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expression of AQP5 in ccRCC tumors than in peritumoral tis-
sues. Upregulated expression of AQP6 in ccRCC tumor tissues 
was observed in 2 datasets, while downregulated expression 
was observed in 6 datasets. By integrating these data, the expres-
sion of AQP5 and AQP6 was found to be significantly lower in 
tumor tissues but inapparent to clinical stage and pathological 
grade.

AQP7 is abundantly expressed in adipose tissue, mediating 
the efflux of newly generated glycerol and contributing to the 
development of metabolic disease.[49] However, the relation-
ship of AQP7 with renal cancer has not been explored. Lower 
expression of AQP7 in ccRCC tumor tissues was found in 4 
datasets, and recombinational data analyses showed an obvious 
downregulation of AQP7 expression in ccRCC. As the patholog-
ical grade increased, the expression of AQP7 decreased.

Abnormal expression of AQP8 was detected in cervical 
cancer, leukemia, and esophageal cancer. It was reported that 
AQP8 acted as an H2O2 transport facilitator across the plasma 
membrane of B1647 cells, a model of acute myeloid human leu-
kemia, and was inhibited by sulforaphane.[50] The exact mecha-
nism in renal cancer is not yet clear. Tow datasets showed higher 
expression of AQP8 in ccRCC and 3 showed lower expression. 

The total data showed a significant increase in the expression of 
AQP8 in ccRCC tumor tissues.

AQP9 expressed in acute myeloid leukemia was permeable 
to As2O3, and upregulated AQP9 enhanced cytotoxicity in acute 
myeloid leukemia cell lines, expanding the therapeutic spec-
trum of As2O3.

[51] The expression of AQP9 was slightly higher in 
ccRCC than in normal renal tissue, and the trend went with the 
progression of clinical stage and pathological grade.

Abnormal expression of AQP10 and AQP11 was reported 
in gastric cancer,[32] but the regulatory mechanism demanded 
prompt solution. Expression of AQP10 in ccRCC was flat with 
normal tissue, so in different clinical stages and pathological 
grades. Downregulated expression of AQP11 in ccRCC was 
observed in 2 datasets. By integrating these data, the expression 
of AQP11 was found to be significantly lower in tumor tissues 
but inapparent to clinical stage and pathological grade.

Considering the natural characteristics of bioinformatics meth-
odology, different databases include diverse panels of patients 
and sometimes result in mutually contradictory conclusions. For 
example, the results showed overexpression of AQP10 in can-
cer cells compared to normal cells; however, survival analysis 
indicated that overexpression of this gene increases the patient 

Figure 8.  Relationships between AQP gene mutations and survival in ccRCC patients. (A) The AQP mutation rate was 25% in ccRCC patients. The top 5 
highest mutation rates were present in AQP1 (5%), AQP7 (5%), AQP9 (4%), AQP4 (4%), and AQP5 (3%). (B) Genetic alterations in AQPs were unlikely to be 
associated with overall survival time (OS, left) and disease-free survival (DFS, right) in ccRCC patients.
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survival rate. The 2 analyses used data from ONCOMINE data-
sets and KM Plotter. Moreover, some results from the present 
study were opposite to previous studies for the same reason. 
Although contradictory, the results reflected the different consti-
tutions but of real panels of patients. Further study is needed to 
explore potential biological functions and values.

With limited cases used for immunohistochemistry staining, 
the protein expression results were partly consistent with the 
analysis at the transcriptional level. Further study at the protein 
level with more tissue samples is needed.

5. Conclusions
Abnormal expression of AQPs in ccRCC indicated the prognosis and 
immunomodulatory state of ccRCC, indicating that AQPs are poten-
tial biomarkers of ccRCC. Further exploration would be valuable.
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