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Abstract

Viruses represent one of the greatest threats to human health, necessitating the development of new antiviral drug
candidates. Antiviral peptides often possess excellent biological activity and a favourable toxicity profile, and therefore
represent a promising field of novel antiviral drugs. As the quantity of sequencing data grows annually, the development of
an accurate in silico method for the prediction of peptide antiviral activities is important. This study leverages advances in
deep learning and cheminformatics to produce a novel sequence-based deep neural network classifier for the prediction of
antiviral peptide activity. The method outperforms the existent best-in-class, with an external test accuracy of 93.9%,
Matthews correlation coefficient of 0.87 and an Area Under the Curve of 0.93 on the dataset of experimentally validated
peptide activities. This cutting-edge classifier is available as an online web server at https://research.timmons.eu/ennavia,
facilitating in silico screening and design of peptide antiviral drugs by the wider research community.
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Introduction

Viruses are an ancient infection agent that replicate inside
the cells of living organisms. They are ubiquitous, affecting
all species, from bacteria to plants and animals [1], and
are incredibly successful due to their genetic diversity, non-
uniformity of mode of transmission, efficient replication and
capacity for persistence in their hosts [2–4]. Viral diseases are
difficult to control due to their potential for high pathogenicity,
increased resistance to antiviral drugs, continuous evolution
of existing viruses and the emergence of novel viruses [5].
Viruses are responsible for many human diseases and are the
cause of many death annually. Cold sores, influenza, AIDS and
the current coronavirus disease 2019 (COVID-19) pandemic
are all caused by viral infection. Zoonotic viruses, such as
the Ebola, Zika, West Nile, HIV, SARS-CoV and SARS-CoV-2
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viruses, are especially dangerous, as they are not well adapted
to the human hosts’ immune systems, and consequently,
cause life-threatening diseases. The World Health Organisation
estimated in 2017 that influenza alone is responsible for up
to 645 832 death annually, and at the time of publication, the
COVID-19 pandemic has been responsible for 3,995,000 deaths.
Therefore, the development of novel antiviral drugs, including
anti-coronavirus drugs, is important to control emerging viral
pathogens.

Host defence peptides (HDPs) are ubiquitous elements of
the immune system, having been identified in all living species
[6]. Indeed, the induction pathways of HDPs are highly con-
served among the genomes of animal and plant genomes [6,
7]. Many HDPs have been found to possess antiviral activity.
These antiviral peptides (AVPs) are short, typically 8–40 amino
acids, cationic and α-helical, although AVPs with an overall
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negative charge and other secondary structures have also been
identified [8]. Most importantly, AVPs are a promising resource
for the development of novel antiviral drugs for the preven-
tion or treatment of viral diseases [8], including those caused
by coronaviruses. For example, a subsequence derived from β-
defensin, P9, possesses potent inhibitory activity against the
SARS-CoV and MERS-CoV viruses [9]. Other anti-coronavirus
peptides include Mucroporin-M1 and HR2P, which inhibit the
SARS-CoV and MERS-CoV viruses, respectively [10, 11].

This class of potential antiviral agents possesses a number
of advantages over conventional non-peptide drugs, as they are
highly specific, cost-effective to produce while remaining easy
to modify and synthesize, and possess a limited susceptibility
to drug resistance [12]. Although initially AVPs were isolated
from plant and animal secretions where they formed part of
the host defence mechanism [13], AVPs have also been derived
from chemical [14], genetic [15] and recombinant [16] libraries,
as well as from rational design [17]. AVPs can be divided into
two classes based on their mechanism of action: virus-targeting
and host-targeting [18]. AVPs belonging to the former class focus
on the inhibition of viral enzymes involved in transcription and
replication [19, 20], or the inactivation of viral structural proteins
[21]. AVPs of the latter class act as immunomodulators, like
interferons [22, 23], or target cyclophilins, which are important
cellular factors that are hijacked by viruses during replication
cycle [18, 24]. The currently identified AVPs, however, represent
only a small subset of a largely unexplored chemical space,
with only a few of those being peptide-based antiviral drugs
available on the market. Those drugs include Enfuvirtide, the
first peptide inhibitor of HIV-1, Boceprevir and Telaprevir, which
both act against hepatitis-C [25]. A number of databases exist
which detail the antiviral activities of AVPs, such as AVPdb [26],
DBAASP [27, 28], CAMP [29] and APD3 [30].

In silico methods offer a fast, efficient way of exploring the
large chemical space that AVPs inhabit, by minimizing the quan-
tity of peptides that need to be synthesized and experimentally
assayed for antiviral activity. A few methods for the prediction
of peptide antiviral activity exist, namely AVPpred [31], AntiVPP
1.0 [32], Meta-iAVP [33], Firm-AVP [34] and the method of Chang
et al. [35]. Antiviral peptide prediction methods have been com-
prehensively reviewed by Charoenkwan et al. [36]. Furthermore,
Pang et al. recently developed a novel method for the prediction
of peptides with specifically anti-coronavirus activity [37]. The
most popular machine learning methods employed are support
vector machines (SVMs) or random forests, although a number of
others have also been trialled. Many areas of bioinformatics have
benefited from the predictive power of deep learning; neural
network-based methods exist for many tasks, such as DeepP-
PISP for the prediction of protein–protein interaction sites [38],
SCLpred and SCLpred-EMS for protein subcellular localization
prediction [39, 40], CPPpred for the prediction of cell-penetrating
peptides [41], HAPPENN for the prediction of peptide hemolytic
activity [42], ENNAACT for the prediction of peptide anticancer
activity [43] and APPTEST for the prediction of peptide tertiary
structure [44]. As the quantity of antiviral peptide sequence data
continuously increases, we have exploited the available data to
create a deep neural network method for the identification of
AVPs from the primary sequence. Herein, we describe ENNAVIA,
a novel neural network peptide antiviral and anti-coronavirus
activity predictor. ENNAVIA (Employing Neural Networks for
Antiviral Activity Prediction for Therapeutic Peptides) is avail-
able as a free-to-use online webserver for the benefit of the
academic community at https://research.timmons.eu/ennavia.

Methods
Datasets

To facilitate easy comparison with existing peptide antiviral
activity predictors, the two AVPpred datasets of Thakur et al.
were used in this work [31]. The first dataset consists of 604
peptides with experimentally validated antiviral activities, and
452 peptides that were experimentally found to have poor
or no antiviral activity. This dataset is divided into training
and external validation subsets, termed T544p+407n and V60p+45n,
respectively, where p and n denote the number of positive and
negative samples. For brevity, these are collectively referred to
as ENNAVIA-A. The second dataset consists of 604 peptides
with experimentally validated antiviral activities, and 604
negative peptides from the AntiBP2 negative dataset, which
were randomly extracted from non-secretory proteins [45].
This second dataset is similarly divided into training and
external validation subsets, termed T544p+544n and V60p+60n,
respectively, where p and n again denote the number of positive
and negative samples. These are collectively referred to as
ENNAVIA-B. Peptide sequences in the datasets consist only
of natural amino acids; peptides that contain residues not
included in the canonical 20 amino acids are excluded, as are
peptides with a sequence length shorter than 7 or longer than
40. Information about the peptides’ secondary structure is not
included in the dataset. The datasets are available for download
from the webserver website and as supplementary material to
this article.

In order to develop a classifier specific to the prediction
of peptides with anti-coronavirus activity, two additional
datasets were created, ENNAVIA-C and ENNAVIA-D. The
positive samples of both datasets are peptide sequences
with anti-coronavirus activity, taken from the dataset created
by Pang et al. [37]. The original dataset included 139 pep-
tide sequences with anti-coronavirus activity. Once peptide
sequences with a sequence length shorter than 7 or longer
than 40 were excluded, 109 peptide sequences remained.
The negative samples of ENNAVIA-C and ENNAVIA-D are the
same as the negative samples of ENNAVIA-A and ENNAVIA-B,
respectively.

Model validation

It is imperative to thoroughly validate classifier models
created by machine learning. Tenfold cross-validations and
validation by an external test set were employed for the
performance evaluation of all models presented herein. The
models trained under cross-validation were ensembled and
evaluated with the external test sets. For ENNAVIA-A and
ENNAVIA-B, the peptides used in the external test sets are
those from the V60p+45n and V60p+60n datasets of Thakur et al.
[31], in order to facilitate a direct comparison with existing
methods.

Peptides with anti-coronavirus activity which are also
present in the ENNAVIA-A and ENNAVIA-B datasets are assigned
to the same fold as in ENNAVIA-A and ENNAVIA-B. In order to
prevent overfitting, the CD-HIT-2D program [46, 47] was used to
identify anti-coronavirus peptides that can be matched to anti-
virus peptides using a sequence identity cut-off value of 0.9.
Anti-coronavirus peptides which had high sequence identity to
anti-virus peptides in the ENNAVIA-A and ENNAVIA-B datasets
were assigned to the same fold as those peptides. The negative
peptides of the ENNAVIA-C and ENNAVIA-D datasets maintained
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the same fold-assignment as in the ENNAVIA-A and ENNAVIA-B
datasets.

Amino acid composition analysis

The amino acid composition of the experimentally verified AVPs
was analysed and compared to that of the experimentally ver-
ified non-antiviral peptide sequences and the random non-
secretory peptide sequences extracted from UniProt. The com-
position analysis includes the peptides’ full sequences, the 10
N-terminal residues and the C-terminal 10 residues.

Residue position preference analysis

Enrichment depletion logos (EDLogo) [48] were created for the
AVPs’ sequences to identify any position-specific amino acid
preferences that may exist. The experimentally validated non-
antiviral peptide sequences were used as the baseline in the
construction of the logo plots.

Features extraction

A variety of features was extracted from the peptides’ primary
sequences. These features can be divided into two subcategories,
amino acid-based descriptors and physicochemical descriptors.
Only features that were non-zero for at least 20 samples were
retained in the final feature vector, which has a dimensionality
of 6397.

Composition descriptors

The peptides’ compositional descriptors were calculated based
on the peptides’ amino acid, dipeptide and tripeptide composi-
tions for the conventional 20-amino acid alphabet. Additionally,
descriptors were also calculated based on the reduced amino
acid alphabets of Veltri et al. [49], Thomas and Dill [50] and
the conjoint alphabet [51]. g-gap dipeptide and tripeptide com-
positions were calculated to account for the three-dimensional
structure of the peptides [52], with the values of the parameter
g being 1, 2 and 3 for the dipeptide compositions, and 3 and
4 for the tripeptide compositions. Furthermore, conjoint triad,
composition, transition and distribution [53] and pseudo amino
acid composition [54] descriptors were also calculated.

Physicochemical descriptors

The modlAMP package was employed for the calculation of
global physicochemical descriptors and amino acid scale-based
descriptors [55]. Global physicochemical features include molec-
ular formula, sequence length, molecular weight, sequence
charge, charge density, isoelectric point, instability index,
aliphatic index [56], aromaticity index [57], hydrophobic ratio
and the Boman index [58]. Amino acid scale-based descriptors
include hydrophobicity [59–63], side-chain bulkiness [64],
refractivity [65], side-chain flexibility [66], α-helix propensity
[67], transmembrane propensity [68], polarity [64, 69], amino acid
charges, AASI [70], ABHPRK [55], COUGAR [55], Ez [71], ISAECI [72],
MSS [73], MSW [74], PPCALI [75], t_scale [76], z3 [77], z5 [78] and
pepArc [55].

Additional physicochemical features were calculated based
on amino acid properties detailed in the AAindex [79]. The pep-
tides’ hydrophobicities were quantified using the amino acids’
hydrophobicities [80, 81], hydropathies [82], retention coeffi-
cients in HPLC [83] and partition energies [84, 85]. Similarly, the
peptide sequences’ hydrophilicities were characterized using

descriptors based on the amino acid hydrophilicity scale [86],
the amino acids’ net charges [87], polar requirements [88] and
fractions of site occupied by water [89]. Descriptors pertaining
to sterics were obtained from the residues’ steric hindrance [90]
and bulkiness [64] properties, while secondary structure features
were calculated based on helical [91] propensities. Furthermore,
descriptors were also calculated from the side-chain interaction
parameters [92] and membrane-buried preference parameters
[93].

Machine learning approaches

Unsupervised and supervised machine learning approaches are
employed in the current study. The former includes princi-
pal component analysis (PCA) [94] and t-distributed Stochastic
Neighbour Embedding (t-SNE) [95] for visualizing the data. The
latter includes SVM [96], random forest (RF) [97] and dense fully
connected neural networks [98] for creating supervised classi-
fiers. The scikit-learn Python module is used for its PCA, t-SNE,
SVM and RF implementations [99].

SVMs were trialled using both a linear and non-linear radial
base function (RBF) kernel. A grid search was employed for the
tuning of the RF number of estimators, the maximum number
of features and the maximum depth hyperparameters, and the
SVM regularization parameter C and kernel width parameter γ .

Neural network architecture and implementation

The Keras deep learning framework with a Tensorflow backend
was used to build and train the deep-fully connected neural
networks [100].

The neural network’s input features are scaled to have mini-
mum and maximum values of 0 and 1, respectively.

The optimal combination of neural network architecture and
hyperparameters was selected using a randomized grid search
strategy.

The first hidden layer has 1024 nodes, and is followed by two
layers of 256 nodes each. Batch normalization [101] is applied
before the ReLU activation function for each hidden layer. To
prevent overfitting to the training data, each hidden layer is
followed by a Dropout regularization layer, with a rate of 0.30
[102]. The output layer is a single node activated by the sigmoid
function. As is common in binary classification neural networks,
the binary cross-entropy loss function is employed.

It is defined as:

− 1
N

N∑

i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (1)

where yi is the true value of the ith sample, and ŷi is the predicted
value of the ith sample. As the predicted labels of all training data
approach their respective true values, the value of the function
approaches zero.

The optimal optimizer was found to be Adaptive Momentum
(Adam), with an optimal initial learning rate of 0.05 and a decay
of 0.0001. Adam utilizes the following formula to update the
neural network weights [103]:

�t+1 = �t − ηm̂t√
v̂t + ε

(2)

where the m̂t and v̂t are the bias-corrected estimates of the mean
and the variance of the gradients, respectively.
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The neural networks were trained for 600 epochs, without
stopping criteria. The model with the highest validation accu-
racy encountered during training was retained for each of the
cross-validation splits.

Transfer learning

As the dataset of peptides with anti-coronavirus is small,
numbering only 109 peptides, transfer learning was used to train
the models for the ENNAVIA-C and ENNAVIA-D datasets. Models
originally trained for each cross-validation fold for ENNAVIA-A
and ENNAVIA-B, respectively, were used to initialize the weights
for the neural network models of the corresponding cross-
validation folds for ENNAVIA-C and ENNAVIA-D, respectively.
The neural network models were then trained for 600 epochs,
without stopping criteria. The model with the highest validation
accuracy encountered during training was retained for each of
the cross-validation splits.

Performance evaluation

A number of standard metrics are employed for the evalua-
tion of the presented models’ performance, specifically accuracy
(Acc), sensitivity (Sn), specificity (Sp), the Matthews correlation
coefficient (MCC) and the receiver operating characteristic (ROC)
curve. Confidence intervals are provided at the 95% level of
significance.

The first four metrics are defined by the following equations:

Acc = TP + TN
TP + TN + FP + FN

× 100% (3)

Sn = TP
TP + FN

× 100% (4)

Sp = TN
TN + FP

× 100% (5)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6)

where

• TP = True positives: the number of correctly predicted posi-
tive (antiviral) peptides.

• FP = False positives: the number of non-antiviral peptides
incorrectly predicted as being antiviral.

• TN = True negatives: the number of correctly predicted
negative (non-antiviral) peptides.

• FN = False negatives: the number of anticancer peptides
incorrectly predicted as being non-antiviral.

Results
The dataset of peptide sequences was subjected to an amino
acid composition analysis and residue position preference anal-
ysis. Feature vectors comprising the peptides’ physicochemi-
cal descriptors, compositional descriptors and all descriptors

were constructed and visualized in two-dimensional space using
PCA and t-SNE plots. Plots created using both methods show
an incomplete separation of the positive and negative classes.
Finally, three machine learning classifiers, namely SVMs, ran-
dom forests and neural networks, are trained on the dataset’s
feature vectors, and the antiviral activity prediction results are
evaluated.

Amino acid composition analysis

To identify if particular amino acid residues are more prevalent
in antiviral and anti-coronavirus peptides, an amino acid residue
composition analysis was performed. The amino acid compo-
sitions of anti-coronavirus peptides, AVPs, experimentally vali-
dated non-antiviral peptides and random non-antiviral peptide
sequences are illustrated in Figure 1. Statistical analysis was
carried out using a Chi-squared test; all results are significant
at the P < 0.01 significance level.

Interestingly, antiviral and anti-coronavirus peptides are
enriched in the cysteine and the hydrophobic isoleucine residue,
and depleted in proline and histidine. While AVPs in general
exhibit enrichment in lysine and tryptophan, this is not observed
for the specifically anti-coronavirus peptides. Similarly, AVPs
are depleted in glycine and valine, while anti-coronavirus
peptides are enriched in these residues. While the amino acid
composition for anti-coronavirus peptides is based on a limited
sample size, it does suggest that the composition requirements
for peptides to possess activity against coronaviruses differ from
the composition requirements for activity against viruses in
general.

Furthermore, an amino acid composition analysis was car-
ried out for AVPs on the basis of their mode of action (Figure 2).
Interestingly, while AVPs are generally not enriched in aspartic
acid or tryptophan, AVPs that act at the viral membrane are rich
in aspartic acid.

Residue position preference analysis

To assess the possibility of a preference existing for certain
amino acid residues at certain positions in the peptides’
primary sequence, an enrichment-depletion logo plot was
produced (Figure 3) for the experimentally validated AVPs. The
experimentally validated non-antiviral peptides were used to
establish a baseline for the plot.

The first inspection of the logo plot suggests that AVPs are
enriched in tryptophan at most positions. This is consistent
with the aforementioned amino acid composition analysis. More
specifically, however, AVPs appear to be enriched in glycine at
position 1, and have a preference for a positively charged residue
at position 4. Conversely, they are enriched in aspartic acid at
position 5 and 8, and the third-last residue. Enrichment is also
observed in phenylalanine at the three C-terminal positions.
Again, in agreement with the amino acid composition analysis,
AVPs are depleted in proline and tryptophan at all positions.

Data Visualization

Principal Component Analysis

PCA was carried out on the ENNAVIA-A dataset for all computed
descriptors, only the physicochemical descriptors and only the
compositional descriptors subsets (Figure 4). While a separation
does exist between the experimentally verified antiviral and
non-antiviral peptides, it is incomplete, and the two classes are
significantly overlapped.
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Figure 1. Percentage average amino acid residue composition of the (A) full sequences, (B) N-terminal 10 residues and (C) C-terminal 10 residues of anti-coronavirus

peptides (red), experimentally validated antiviral peptides (green), experimentally validated non-antiviral peptide (orange) and non-antiviral peptides randomly

extracted from UniProt proteins (blue). One-letter amino acid codes are given for the residues on the x-axis.

T-Distributed Stochastic Neighbour Embedding

To complement the PCA analysis, a t-SNE analysis was
conducted for the experimentally verified antiviral and non-
antiviral peptides, again for all computed descriptors, only
the physicochemical descriptors and only the compositional
descriptors subsets (Figure 5). As with the results of the PCA
analysis, the inter-class separation is incomplete, although it is
clearly greater.

Antiviral activity prediction

The principal aim of this study was to train and evaluate a
selection of machine learning classifiers for the prediction of
peptide antiviral activity. Tenfold cross-validation was employed
for the evaluation of the classifiers’ robustness and predictive
power. Additionally, the 10 models trained for each classifier
under 10-fold cross-validation were ensembled and further eval-
uated through the use of the external, independent test set. The
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Figure 2. Percentage average amino acid residue composition of the full peptide sequences that exert their antiviral activity by disruption of the viral membrane (blue),

prevention of virus entry (orange), inactivation of viral structural proteins (green) and inhibition of viral enzymes (red). One-letter amino acid codes are given for the

residues on the x-axis.

accuracy, MCC, sensitivity and specificity parameters, together
with their respective confidence intervals, are reported for each
model. ROC curves with calculated area under the curve (AUC)
values are also given for both final neural network models. The
SVM, random forest (RF) and neural network (NN) performance
metrics are tabulated in Table 1.

A grid search strategy was employed for the optimization of
SVM and RF hyperparameters.

The SVM classifier achieved its best performance with the
regularization parameters C = 1 and C = 10 for the linear and
RBF kernels, respectively, and the kernel coefficient γ = 1.5 ×
10−4 for the non-linear kernel. The SVM classifiers, both with
a linear and non-linear kernel, perform worse than the RF and
NN approaches, with cross-validation accuracies of 84.2% and
82.8%, and MCCs of 0.68 and 0.65, respectively on the ENNAVIA-A
dataset.

The optimal RF hyperparameters differed depending on the
dataset used. For the ENNAVIA-A dataset, optimal performance
was observed with 124 estimators, a maximum tree depth of 10
and a maximum of 80 features, achieving a cross-validation
accuracy and MCC of 84.9% and 0.69, respectively. For the
ENNAVIA-B dataset, meanwhile, optimal performance was
observed with 512 estimators, unrestricted tree depth and a
maximum of 13 features.

The neural network approach, however, achieves the best
predictive performance of all machine learning approaches tri-
alled, with an accuracy and MCC scores of 93.88% and 0.87 on
the ENNAVIA-A external test set, and 95.65% and 0.91 on the
ENNAVIA-B external test set. Furthermore, the neural network
achieves a very good balance between sensitivity and specificity,
94.74% and 92.68% for ENNAVIA-A. ROC (Figure 6) curves were
produced to further evaluate the neural networks’ robustness,
as were the corresponding AUC values, which were calculated
as 0.93 and 0.98 for the ENNAVIA-A and ENNAVIA-B models,
respectively.

As the neural networks’ performance was superior to the
SVM and RF approaches, it was deemed as the best model for
the prediction of peptide antiviral activity and further studied.

Comparison with existing peptide antiviral activity
prediction methods

To establish the utility of ENNAVIA in the context of predic-
tion methods already described in the literature, ENNAVIA was
benchmarked against three existing antiviral peptide prediction
methods, specifically AVPpred [31], the method of Chang et al.
[35], AntiVPP [32], Meta-iAVP [104] and FIRM-AVP [34]. Detailed
results are given in Table 2.

The results presented in Table 2 are reproduced from the
respective articles describing the methods. It must be noted,
however, that the results for Meta-iAVP and AntiVPP 1.0 could
not be reproduced. Independent evaluation of the Meta-iAVP
via its webserver on the V60p+45n dataset resulted in Acc, Sn
and Sp values of 81.0%, 83.3% and 77.8%, respectively. Simi-
larly, evaluation of the AntiVPP 1.0 software on the VV60p+60n

dataset resulted in Acc, Sn and Sp values of 81.6%, 76.6% and
86.6%, respectively. Contact with the corresponding authors of
these articles was attempted prior to publication, however, we
have not received a response to our queries prior to publica-
tion.

Anti-coronavirus activity prediction

A recent study by Pang et al. described a machine learning
method for the identification of anti-coronavirus peptides
through imbalanced learning strategies [37]. This study utilizes
the datasets created by Pang et al. and employs transfer learning
to adapt the ENNAVIA-A and ENNAVIA-B models to the task
of anti-coronavirus peptide prediction. For both ENNAVIA-
A and ENNAVIA-B, the neural network weights of each of
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Figure 3. Enrichment-depletion logo plot of (A) N-terminal 10 residues and (B) C-terminal 10 residues of experimentally validated antiviral peptides of the ENNAVIA-A

dataset. Data are scaled to account for the background probability of each amino acid, based on the experimentally validated non-antiviral peptides dataset.

the 10 models trained under cross-validation are transferred
to their corresponding models for anti-coronavirus peptide
prediction, which are then trained on their respective datasets.
The accuracy, MCC, sensitivity and specificity parameters,
together with their respective confidence intervals, are reported
for each model. ROC curves with the calculated AUC values
are also given for both final neural network models (Figure 6).
The anti-coronavirus peptide prediction performance obtained
by each model is compared with the results obtained by Pang
et al. As the size of the anti-coronavirus peptide dataset is
extremely limited, and neural network performance typically
increases with the amount of data available, validation is

limited to 10-fold cross-validation. Detailed results are given
in Table 3.

Descriptor-set specific results

To ascertain the extent to which a given set of features can
contribute to the correct prediction of peptide antiviral activ-
ity, neural networks were trained on subsets of the feature
space. The validation results obtained by these neural networks
trained on the peptides’ physicochemical features, dipeptide
composition, dipeptide g-gap composition and tripeptide com-
position are detailed in Table 4.
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Figure 4. Principal component analysis of (A) all descriptors, (B) only the physicochemical descriptors and (C) only the compositional descriptors. Experimentally

validated antiviral peptides (positives) are coloured red, experimentally validated non-antiviral peptides (negatives) are coloured yellow, false-positives are coloured

black and false-negatives are coloured blue.

Figure 5. t-SNE visualization of (A) all descriptors, (B) only the physicochemical descriptors and (C) only the compositional descriptors. Experimentally validated

antiviral peptides (positives) are coloured red, experimentally validated non-antiviral peptides (negatives) are coloured yellow, false-positives are coloured black and

false-negatives are coloured blue.

Table 1. Cross-validation and external validation statistical parameters for SVM with a linear kernel, SVM with a RBF kernel, RF and NN models
trained on the ENNAVIA-A and ENNAVIA-B datasets

Cross-validation

Model Dataset Method Acc Sn Sp MCC

ENNAVIA-A SVM (linear) 84.20 ± 2.38 86.83 ± 2.91 81.03 ± 3.95 0.68 ± 0.05
SVM (RBF) 82.80 ± 2.47 85.92 ± 2.99 78.85 ± 4.11 0.65 ± 0.05
RF 84.87 ± 2.34 89.77 ± 2.60 78.44 ± 4.14 0.69 ± 0.05
NN 91.25 ± 1.85 90.56 ± 2.51 91.88 ± 2.75 0.82 ± 0.04

ENNAVIA-B SVM (linear) 92.72 ± 1.56 91.96 ± 2.34 93.47 ± 2.09 0.85 ± 0.03
SVM (RBF) 90.14 ± 1.80 84.02 ± 3.15 96.20 ± 1.61 0.81 ± 0.04
RF 92.92 ± 1.54 91.36 ± 2.41 94.42 ± 1.94 0.86 ± 0.03
NN 95.90 ± 1.19 93.44 ± 2.13 98.35 ± 1.07 0.92 ± 0.02

External validation

Model Dataset Method Acc Sn Sp MCC

ENNAVIA-A SVM (linear) 83.77 ± 7.30 91.71 ± 7.16 72.72 ± 13.63 0.67 ± 0.15
SVM (RBF) 80.24 ± 7.88 91.23 ± 7.34 64.97 ± 14.60 0.59 ± 0.16
RF 84.23 ± 7.22 93.30 ± 6.49 71.62 ± 13.80 0.68 ± 0.15
NN 93.88 ± 4.75 94.74 ± 5.80 92.68 ± 7.97 0.87 ± 0.10

ENNAVIA-B SVM (linear) 87.35 ± 6.07 91.07 ± 7.40 83.70 ± 9.51 0.75 ± 0.12
SVM (RBF) 89.17 ± 5.68 87.56 ± 8.57 90.75 ± 7.46 0.78 ± 0.11
RF 89.88 ± 5.51 91.39 ± 7.28 88.40 ± 8.24 0.80 ± 0.11
NN 95.65 ± 3.73 92.98 ± 6.63 98.28 ± 3.35 0.91 ± 0.07

None of the reduced subset models trained achieve perfor-
mance better than the hybrid model trained on both composi-
tional and physicochemical descriptors, validating the choice of
the hybrid model as the principal approach.

Dipeptide and tripeptide composition

Information about local sequence order can be relayed to
a machine learning method through the use of dipeptide
and tripeptide composition descriptors. A peptide’s dipeptide
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Figure 6. ROC plots and associated AUC values for model performance on (A,B) ENNAVIA-A 10-fold cross-validation set and external test set (C,D) ENNAVIA-B 10-fold

cross-validation set and external test set and (E,F) ENNAVIA-C and ENNAVIA-D 10-fold cross-validation sets. The ENNAVIA-A model achieves an AUC value of 0.93,

ENNAVIA-B achieves and AUC value of 0.98 and ENNAVIA-C and ENNAVIA-D both achieve values of 0.95.

and tripeptide composition can be defined as the percentage
of a given dipeptide or tripeptide in the sequence. These
features also have the added benefit of capturing the peptide’s
chemical nature. Both the dipeptide-based model and the
tripeptide-based model achieve good results, with accuracies
of 90.1% and 89.8%, respectively, and MCC values of 0.80.

g-gap composition

g-gap compositions, defined as the proportion of a pair of amino
acids separated by 1, 2 or 3 residues, are a useful descriptor
as they correspond to residues that may be proximate to one
another in three-dimensional space. As peptides often possess
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Table 2. Cross-validation and external validation performance comparison between ENNAVIA and existing methods for the prediction of peptide
antiviral activity.

Cross-validation
Dataset Method Classifier1 Features2 Acc Sn Sp MCC

T544p+407n

AVPpred SVM AAindex 85.0 82.2 88.2 0.70
Chang et al’s
method

RF AAC, Aggr. 85.1 86.6 83.0 0.70

AntiVPP 1.0 RF PC – – – –
Meta-iAVP M-P AAC,APseAAC 88.20 89.20 86.90 0.76
Firm-AVP SVM AAC,DPC,PseAAC,APseAAC,

PC,SS
– – – –

ENNAVIA NN AAC,DPC,AAindex,PC 91.25 90.56 91.88 0.82

T544p+544n

AVPpred SVM AAindex 90.0 89.7 90.3 0.80
Chang et al’s
method

RF AAC, Aggr. 91.5 89.0 94.1 0.83

AntiVPP 1.0 RF PC – – – –
Meta-iAVP M-P AAC,Am-PseAAC 93.20 89.00 97.40 0.87
Firm-AVP SVM AAC,DPC,PseAAC,APseAAC,

PC,SS
– – – –

ENNAVIA NN AAC,DPC,AAindex,PC 95.90 93.44 98.35 0.92
External validation

V60p+45n

AVPpred SVM AAindex 85.7 88.3 82.2 0.71
Chang et al’s
method

RF AAC, Aggr. 89.5 91.7 86.7 0.79

AntiVPP 1.0 RF PC – – – –
Meta-iAVP M-P AAC,Am-PseAAC 95.20 96.70 93.20 0.90
Firm-AVP SVM AAC,DPC,PseAAC,APseAAC,

PC,SS
92.4 93.3 91.1 0.84

ENNAVIA NN AAC,DPC,AAindex,PC 93.88 94.74 92.68 0.87

V60p+60n

AVPpred SVM AAindex 92.5 93.3 91.7 0.85
Chang et al’s
method

RF AAC, Aggr. 93.0 91.7 95.0 0.87

AntiVPP 1.0 RF PC 93 87 97 0.87
Meta-iAVP M-P AAC,Am-PseAAC 94.90 91.70 98.30 0.90
Firm-AVP SVM AAC,DPC,PseAAC,APseAAC,

PC,SS
– – – –

ENNAVIA NN AAC,DPC,AAindex,PC 95.65 92.98 98.28 0.91

1SVM: Support vector machine, RF: Random forest, M-P: Meta-predictor, NN: Neural network;
2AAindex: Amino acid index database, Aggr: Aggregation propensity, PC: Physicochemical properties, AAC: Amino acid composition, PseAAC: Pseudo amino acid
composition, APseAAC: Amphiphilic pseudo amino acid composition, DPC: Dipeptide composition, SS: Predicted secondary structure information.

Table 3. Performance evaluation of ENNAVIA in prediction of anti-coronavirus peptides, and comparison with the methods of Pang et al.

Dataset Method Classifier1 Acc Sn Sp MCC

Anti-CoV vs. Non-AVP Pang et al’s method NM,BRF 85.32 85.71 85.31 0.305
ENNAVIA-C ENNAVIA NN 94.95 ± 1.99 91.64 ± 5.20 95.96 ± 2.04 0.87 ± 0.05
Anti-CoV vs. Random Pang et al’s method NM,BRF 97.72 100 97.66 0.730
ENNAVIA-D ENNAVIA NN 97.29 ± 1.25 89.82 ± 5.68 98.77 ± 0.93 0.91 ± 0.03

1NM: Near-miss undersampling, BRF: Balanced random-forest, NN: Neural network with transfer learning;
2Pang et al.’s method utilizes amino acid composition, pseudo amino acid composition, dipeptide composition and physicochemical features. ENNAVIA utilizes amino
acid composition, dipeptide composition, physicochemical features and features calculated from the amino acid index database.

secondary structure upon interaction with their targets, this
information allows for the capturing of the chemical environ-
ment that the peptide presents to its target. Models trained on
g-gap dipeptide composition do not perform better than those
trained on conventional dipeptide composition, achieving an
accuracy and MCC of 90.0% and 0.80.

Physicochemical

Models trained on physicochemical features, such as charge,
amphiphilicity and charge, achieve an accuracy and MCC of

88.3% and 0.76, respectively. Although this performance is poorer
than that achieved by the models trained on compositional fea-
tures, it is only marginally so, and still demonstrates predictive
capability.

Prediction based on selected features

Feature selection was performed for each validation split using
SVMs and random forests; the 500 features with the largest
absolute SVM weights, and the 500 features with the largest RF
feature importance were selected. Neural network models were
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Table 4. Validation statistics achieved by neural network models trained on subsets of the feature space. The g-gap parameter g=1,2,3.

Cross-validation

Dataset Features Acc (%) Sn (%) Sp (%) MCC

ENNAVIA-A Composition, dipeptide 90.05 ± 1.96 90.20 ± 2.56 89.96 ± 3.03 0.80 ± 0.04
Composition, tripeptide 89.82 ± 1.98 88.73 ± 2.72 91.42 ± 2.82 0.80 ± 0.04
g-gap composition, dipeptide 90.01 ± 1.96 90.85 ± 2.48 88.82 ± 3.17 0.80 ± 0.04
Physicochemical 88.30 ± 2.10 89.95 ± 2.58 85.69 ± 3.53 0.76 ± 0.04

ENNAVIA-B Composition, dipeptide 94.84 ± 1.33 92.50 ± 2.26 97.14 ± 1.41 0.90 ± 0.03
Composition, tripeptide 95.17 ± 1.29 92.30 ± 2.29 97.93 ± 1.20 0.90 ± 0.03
g-gap composition, dipeptide 94.93 ± 1.32 92.64 ± 2.24 97.21 ± 1.39 0.90 ± 0.03
Physicochemical 94.00 ± 1.43 92.18 ± 2.31 95.87 ± 1.68 0.88 ± 0.03

External validation

Dataset Features Acc (%) Sn (%) Sp (%) MCC

ENNAVIA-A Composition, dipeptide 90.14 ± 5.90 96.49 ± 4.78 81.30 ± 11.94 0.80 ± 0.12
Composition, tripeptide 90.14 ± 5.90 92.40 ± 6.88 86.99 ± 10.30 0.80 ± 0.12
g-gap composition, dipeptide 87.76 ± 6.49 91.81 ± 7.12 82.11 ± 11.73 0.75 ± 0.13
Physicochemical 85.71 ± 6.93 94.15 ± 6.09 73.98 ± 13.43 0.71 ± 0.14

ENNAVIA-B Composition, dipeptide 87.83 ± 5.98 90.06 ± 7.77 85.63 ± 9.03 0.76 ± 0.12
Composition, tripeptide 89.28 ± 5.66 88.89 ± 8.16 89.66 ± 7.84 0.79 ± 0.11
g-gap composition, dipeptide 92.17 ± 4.91 89.47 ± 7.97 94.83 ± 5.70 0.84 ± 0.10
Physicochemical 87.54 ± 6.04 89.47 ± 7.97 85.63 ± 9.03 0.75 ± 0.12

Table 5. Cross-validation and external validation results achieved with neural network models trained on feature sets reduced by feature
selection.

Cross-validation

Dataset Acc Sn Sp MCC

ENNAVIA-A 89.65 ± 1.99 91.00 ± 2.46 87.60 ± 3.32 0.79 ± 0.04
ENNAVIA-B 94.94 ± 1.32 92.83 ± 2.22 96.79 ± 1.49 0.90 ± 0.03
ENNAVIA-C 93.94 ± 2.50 83.64 ± 6.95 96.91 ± 1.80 0.83 ± 0.06
ENNAVIA-D 68.22 ± 4.84 80.61 ± 7.42 64.15 ± 4.98 0.39 ± 0.10

External validation

Dataset Acc Sn Sp MCC

ENNAVIA-A 89.80 ± 5.99 94.74 ± 5.80 82.93 ± 11.52 0.79 ± 0.12
ENNAVIA-B 87.83 ± 5.98 91.23 ± 7.34 84.48 ± 9.32 0.76 ± 0.12

constructed and trained on the sets of selected features, the
results are presented in Table 5.

The prediction results obtained in all cases are inferior to
those obtained by the models trained on the full feature sets,
most notably in the case of the models trained on the ENNAVIA-
D dataset. This is not unexpected, considering that the feature
selection is performed on the ENNAVIA-B dataset prior to trans-
fer learning, which appears to result in the exclusion of features
important for anti-coronavirus activity prediction.

Discussion
The need for novel anti-viral drugs, especially in the context of
the COVID-19 pandemic, is great. Interest in the development of
novel peptide-based therapeutics has increased in recent years,
even as the number of new drugs approved each year declines
and the cost of drug research and development grows. More
specifically, AVPs represent a promising class of novel drug can-
didates. Despite extensive research having been conducted on
the relationship between the conformations of various bioactive
peptides and their biological activities [105–107], understanding
of this relationship remains insufficient for the accurate de-novo

design of novel peptide drugs, especially antiviral peptide drugs,
which compared to antimicrobial peptides are less numerous
in the literature, and consequently less studied. Molecular
dynamics simulations can reveal insights into activity, but are
time-consuming and largely unsuitable for bulk-screening of
peptide sequences.

An accurate computational method for the prediction of pep-
tide antiviral activity from the primary sequence alone would
facilitate a more rapid exploration of the peptide chemical space,
and lower the cost of research and development by reducing the
need for chemical synthesis and laboratory evaluation of pep-
tide antiviral activity. With a view to accelerating the screening
and design of new antiviral peptide drugs, the present study
focuses on the combination of compositional and physicochemi-
cal descriptors with a deep neural network architecture to create
an in silico method for a more accurate classification of peptides
as either antiviral or non-antiviral, and additionally the predic-
tion of peptide anti-coronavirus activity specifically, solely on
the basis of their primary sequence.

To facilitate as direct a comparison as possible with existing
antiviral peptide prediction methods, the dataset of Thakur et
al. [31] was adapted for use in this study. Peptide sequences
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comprising non-natural amino acids or with a length outside
the 7–40 amino acid range were excluded. A total of 577 of the
original 604 AVPs remain in the ENNAVIA datasets. Two negative
datasets are used in this study: the ENNAVIA-A dataset includes
420 experimentally evaluated non-antiviral peptides, while the
ENNAVIA-B dataset includes 597 random peptide sequences as
the negative samples.

Compositional and physicochemical descriptors were
employed for the construction of feature vectors from the
peptides’ primary sequences, and a selection of machine
learning methods were evaluated for the peptide antiviral
activity prediction task through both 10-fold cross-validation
and validation on an external test set. Deep neural networks
proved most promising, and their architecture was, therefore,
further optimized and evaluated.

The neural network model with five hidden layers was found
to achieve optimal performance. On the ENNAVIA-A dataset, a
10-fold cross-validated accuracy, sensitivity and specificity of
91.3%, 90.6% and 91.9% was achieved, clearly demonstrating
that the neural network model is capable of accurately identi-
fying AVPs among non-antiviral peptides. ENNAVIA’s predictive
performance was compared to existing methods, especially the
existent state-of-the-art, Meta-iAVP, which exhibited a cross-
validated accuracy, sensitivity and specificity of 88.2%, 89.2% and
86.9%, respectively, on the T504p+407n dataset. ENNAVIA’s perfor-
mance surpasses that of Meta-iAVP and other existent models
on all metrics, designating it a new state-of-the-art model for
antiviral peptide prediction.

Similarly, neural network models were trained and evaluated
on the ENNAVIA-B dataset, achieving cross-validated accuracy,
sensitivity and specificity of 95.9%, 93.4% and 98.6%, respectively,
demonstrating that ENNAVIA can distinguish between AVPs and
random peptide sequences. A comparison of performance on
this dataset to existing methods again establishes ENNAVIA
as the best-in-class method for antiviral peptide prediction,
surpassing the previously best accuracy, sensitivity and speci-
ficity of 93.2%, 89.0% and 97.4% achieved by meta-iAVP on the
T504p+504n dataset.

Recently, Pang et al. published a study that employed random
forests with imbalanced learning strategies for the identification
of anti-coronavirus peptides. Notably, the anti-coronavirus pep-
tide dataset is small, with only a total of 139 peptide sequences.
Despite the small number of positive samples available for train-
ing, respectable validation statistics were achieved, with a sen-
sitivity, specificity and MCC of 85.7%, 85.3% and 0.31 with non-
antivirus peptides as the negative dataset, and 100%, 97.7% and
0.73 with random peptide sequences as the negative dataset.

To expand the scope of the current study to include the
facilitation of rapid screening of peptides for anti-coronavirus
activity specifically, two additional datasets which include
the anti-coronavirus peptides from the dataset of Pang et al.
as the positive samples were constructed: ENNAVIA-C and
ENNAVIA-D, which use the negative peptides from the ENNAVIA-
A and ENNAVIA-B datasets, respectively. As the number of
positive samples is too small to accurately train neural network
models, transfer learning was employed, whereby the already-
trained weights of the ENNAVIA-A and ENNAVIA-B models
were transferred to the ENNAVIA-C and ENNAVIA-D models,
respectively, and further fine-tuned to the anti-coronavirus
peptide prediction task. The ENNAVIA-C model achieved a
sensitivity, specificity and MCC of 91.6%, 96.0% and 0.87,
representing a significant improvement on the work of Pang et
al. The ENNAVIA-D model, similarly, achieved good performance,
with a sensitivity, specificity and MCC of 89.8%, 98.8% and

0.91, respectively, outperforming the method of Pang et al. in
specificity, although not sensitivity.

The ENNAVIA model does possess drawbacks, some of
which it shares with the other existing algorithms. Since the
publication of the dataset of Thakur et al. [31], the literature
on AVPs has expanded, and continues to expand as new AVPs
continue to be identified. Consequently, the number of peptide
sequences available for training increases. As neural networks’
predictive power scales with the quantity of data available
for training, further improvements in predictive performance
for both the antiviral and anti-coronavirus predictive models
could be achieved through the development of an updated,
expanded dataset. Neural networks are generally known as
non-interpretable black box models, which precludes rigorous
analysis of the basis for the model’s predictions. Furthermore,
as mentioned previously, AVPs can exert their biological
activity through a variety of host-targeting and virus-targeting
mechanisms of action, which can include the prevention of virus
cell-entry, blocking cell receptors, viral lysis or enhancement
of host immune response. While it stands to reason that the
mechanism of action a given peptide utilizes to exert antiviral
activity depends on the peptide’s amino acid composition
and physicochemical properties, unfortunately the number of
known antiviral peptide sequences still cannot be considered
plentiful, much less the number of AVPs that utilize a given
mechanism of action. For instance, while inhibition of virus
entry is the most prevalent mechanism by which AVPs exert
their action, accounting for 30% of entries in the AVPdb, only
seven peptides are listed in the AVPdb as exerting their antiviral
activity through immunostimulation [26]. Consequently, it is not
always feasible to analyse the relationships between peptides’
properties and their mode of action, nor is it currently feasible to
construct machine learning models that are specific to a mode
of action. Instead, antiviral activity predictors remain limited to
the prediction of the presence or absence of antiviral activity.

To conclude, the limited quantity of available experimentally
validated data and the incomplete understanding of the mech-
anism of peptide antiviral activity continue to pose challenges
for the research community. In an effort to overcome these
challenges, this study described ENNAVIA, a collection of novel
in silico peptide antiviral and anti-coronavirus activity classifiers.
The classifiers, which employ a deep neural network architec-
ture and benefit from a rich feature-space, achieve predictive
power that surpasses the state-of-the-art. This work comple-
ments a suite of existing in silico classifiers developed by the
authors, which includes methods for the prediction of peptide
anticancer and hemolytic activity, and peptide tertiary structure.
The authors believe that the results of this work, in combination
with the aforementioned methods, will enable better in-silico
design of novel peptide-based antiviral and anti-coronavirus
therapeutics, thereby reducing the cost and time required for
the design phase, helping to drive medicinal chemistry into an
unprecedented revolution.

Web server implementation
For the benefit of the scientific community, the ENNAVIA
classifier is available as a user-friendly, publicly accessible web
server online at https://research.timmons.eu/ennavia. The web
server is capable of predicting peptides’ antiviral activity based
on the primary sequence. Input peptide sequences are restricted
to only the 20 natural amino acids; non-natural amino acids
are not supported. The web server includes many features,
and models trained on the ENNAVIA-A (T504p+406n) , ENNAVIA-B
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(T504p+504n), ENNAVIA-C and ENNAVIA-D datasets are available
for prediction.

Peptide antiviral activity prediction

Peptide antiviral activities can be predicted for both a single
sequence and a batch of sequences. Peptide sequences should
be provided in the standard FASTA format. The maximum batch
size is variable depending on the length of the sequences; longer
sequences necessitate smaller batch sizes. The prediction will
be carried out by the ensemble of trained neural networks, and
the average score will be returned, which corresponds to the
probability of the peptide sequence possessing antiviral activ-
ity. Probabilities are given on a scale of 0–1, whereby 0 and 1
are most probably non-antiviral, and most probably antiviral,
respectively.

Mutation analysis

Mutation analysis may be carried out on single peptide
sequences, by selecting the mutation analysis option and
inputting the residue number to be mutated. Mutant sequences
will be created by substituting the residue at the specified
position with each of the other 20 natural amino acids.
The probability of each of the mutant sequences possessing
antiviral activity will be returned by the chosen neural network
model.

Residue scan

Residue scans, such as, for instance, an alanine scan, are avail-
able for single peptide sequences, by choosing the residue scan
option and selecting the amino acid residue to be scanned
with. Mutant sequences are attained by substituting successive
residues with the selected amino acid residue. The probability
of the native and mutant sequences possessing antiviral activity
will be returned by the selected neural network model.

Key Points
• An artificial neural network model ENNAVIA was

constructed for the prediction of antiviral and anti-
coronavirus peptides

• Feature extraction was used to obtain compositional
and physicochemical descriptors from the peptide
sequences

• Transfer learning was employed to adapt neural net-
works for anti-coronavirus activity prediction

• ENNAVIA was evaluated by 10-fold cross-validation
and an external test set

• ENNAVIA outperforms the current best-in-class meth-
ods for antiviral peptide prediction

Data Availability

All data generated or analysed during this study are available
for download at https://research.timmons.eu/ennavia.

Acknowledgements

The authors would also like to thank University College
Dublin for the Research Scholarship granted to P.B.T.

References
1. Koonin EV, Senkevich TG, Dolja VV. The ancient Virus

World and evolution of cells. Biol Direct 2006;1:29. http://
www.biology-direct.com/content/1/1/29.

2. Nichol ST, Arikawa J, Kawaoka Y. Emerging viral diseases.
Proc Natl Acad Sci U S A 2000;97:12411–2. https://pubmed.
ncbi.nlm.nih.gov/11035785/.

3. Domingo E. Mechanisms of viral emergence. Vet Res
2010;41:38. https://pubmed.ncbi.nlm.nih.gov/20167200/.

4. Phan T. Genetic diversity and evolution of SARS-CoV-2.
Infect Genet Evol 2020;81:104260. https://pubmed.ncbi.nlm.
nih.gov/32092483/.

5. Goldenthal, K. L., Midthun, K. & Zoon, K. C. Control of Viral
Infections and Diseases (University of Texas Medical Branch
at Galveston, Galveston, TX 1996). URL http://www.ncbi.
nlm.nih.gov/pubmed/21413344.

6. Mahlapuu, M., Håkansson, J., Ringstad, L. & Björn, C.
Antimicrobial peptides: An emerging category of ther-
apeutic agents. Front Cell Infect Microbiol 2016; 6:194.
URL www.frontiersin.org http://www.ncbi.nlm.nih.gov/pu
bmed/28083516 http://www.pubmedcentral.nih.gov/article
render.fcgi?artid=PMC5186781.

7. Hancock RE, Diamond G. The role of cationic antimi-
crobial peptides in innate host defences. Trends Microbiol
2000;8:402–10. https://www.sciencedirect.com/science/arti
cle/pii/S0966842X00018230.

8. Mahendran ASK, Lim YS, Fang CM, et al. The Poten-
tial of Antiviral Peptides as COVID-19 Therapeutics. Front
Pharmacol 2020;11:575444. https://www.frontiersin.org/arti
cle/10.3389/fphar.2020.575444/full.

9. Zhao H, et al. A novel peptide with potent and broad-
spectrum antiviral activities against multiple respiratory
viruses. Sci Rep 2016;6:1–13. www.nature.com/scientificre
ports.

10. Li Q, et al. Virucidal activity of a scorpion venom peptide
variant mucroporin-M1 against measles, SARS-CoV and
influenza H5N1 viruses. Peptides 2011;32:1518–25.

11. Lu L, et al. Structure-based discovery of Middle East respi-
ratory syndrome coronavirus fusion inhibitor. Nat Commun
2014;5:3067. https://pubmed.ncbi.nlm.nih.gov/24473083/.

12. Otvos L. Peptide-based drug design: Here and now. Meth-
ods Mol Biol. 2008;494:1–8. https://pubmed.ncbi.nlm.nih.go
v/21413344/.

13. Lau JL, Dunn MK. Therapeutic peptides: Historical
perspectives, current development trends, and future
directions. Bioorganic and Medicinal Chemistry 2018;26:
2700–7.

14. Furka Á, Sebestyén F, Asgedom M, et al. General method
for rapid synthesis of multicomponent peptide mixtures.
Int J Pept Protein Res 1991;37:487–93. http://doi.wiley.co
m/10.1111/j.1399-3011.1991.tb00765.x.

15. Sohrabi C, Foster A, Tavassoli A. Methods for generating
and screening libraries of genetically encoded cyclic pep-
tides in drug discovery. Nature Reviews Chemistry 2020;4:
90–101.
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